
Sendmail X README

Claus Aßmann

June 10, 2005

Contents

1 Sendmail X 3

1.1 Documentation . 3

1.2 Version . 4

1.3 Current State . 4

1.4 Main Components of sendmail X . 4

1.5 Typographical Conventions . 4

2 Building sendmail X 5

2.1 Required Packages . 5

2.2 Configuration Options . 5

2.3 Compile Time Options . 6

3 Test Programs 6

3.1 Environment Variables used by Test Programs . 7

3.2 Known Test Program Problems . 7

4 Installing sendmail X 8

4.1 Directories, Files, and Permissions . 9

5 Configuration of sendmail X 10

5.1 Configuration File Syntax . 10

5.2 Configuration for MCP . 11

5.3 Example Configuration File . 13

5.4 Common Global Configuration . 13

1

5.5 Common Configuration Options . 14

5.6 Pathnames for Files, Directories, and Maps . 14

5.7 Configuration for QMGR . 15

5.8 Configuration for SMAR . 18

5.9 Configuration for SMTP Server . 23

5.10 Configuration for SMTP Client . 26

5.11 Lookup Orders . 26

6 Running sendmail X 28

6.1 MCP . 28

6.2 Using sendmail X only for Outgoing Mail . 28

6.3 Using sendmail X for Incoming Mail . 29

6.4 Using sendmail X as Gateway . 29

6.5 Using sendmail X as Backup MX Server . 30

6.6 Miscellaneous Programs . 30

6.7 Reloading Maps . 31

6.8 Logging . 31

6.9 Regular Checks . 31

6.10 Dealing with Errors . 32

7 Caveats 33

8 Policy Milter 33

9 Miscellaneous 33

9.1 Strict RFC 2821 Compliance . 33

9.2 Security Checks . 34

9.3 Restrictions . 34

9.4 Code Review, Enhancements, Patches . 34

9.5 Porting . 34

10 Data Flow in Sendmail X 35

A Miscellaneous about the Source Code 35

A.1 Verifying the Source Code Distribution . 35

A.2 Version Naming . 36

2

B Native Policy Milter API 37

B.1 Data Structures . 37

B.2 Start and Stop . 37

B.3 New SMTP Server . 38

B.4 SMTP Session and Transaction . 38

B.5 Set and Get pmilter Contexts . 39

B.6 Accessing MTA Symbols . 40

B.7 Miscellaneous Functions . 41

B.8 Return Values . 41

C Format Specifications 42

C.1 Format of Session/Transaction Identifiers . 42

C.2 Logfile Format . 42

C.3 Format of Received Header . 43

C.4 Format of DSNs . 43

D Certificates for STARTTLS 44

E Debugging Options 44

F Other Potential Problems with Test Programs 45

1 Sendmail X

This distribution contains the source code for sendmail1 X which implements a Message Transfer System
(MTS)2.

Please report bugs and provide feedback either to the developers list[Aßma] if you are subscribed or
directly to3:

< smx + feedback (at) sendmailx . org >

See the LICENSE file before using the source code.

1.1 Documentation

The document “Sendmail X: Requirements, Architecture, and Functional Specification” [Aßmb] provides
the background about the sendmail X design, its architecture, as well as the functional specification, and

1sendmail is a trademark of Sendmail, Inc.
2often also called MTA: Message Transfer Agent
3Sorry for the obfuscation, replace (at) with @ and remove the spaces.

3

details about the implementation.

1.2 Version

This document has been written for sendmail X.0.0.Alpha3.0, see also the greeting of the SMTP server
and the version output of the main components. See Appendix A.2 for information about version naming.

1.3 Current State

There are still some error conditions which may not be handled gracefully, i.e., in case of some resource
problems (e.g., out of memory or out of disk space) the system may abort. See Section 6.10.1 how to
deal with those conditions. The software is running since 2004-01-01 as MTS on the main machine of the
author without any significant problem, i.e., it never lost any mail.

Feedback about the code, the documentation, as well as patches and enhancements are highly appreciated;
please send it to the address given above.

1.4 Main Components of sendmail X

The following programs are part of the sendmail X message transfer system (MTS):

• Queue manager (QMGR)

• SMTP server (SMTPS)

• SMTP client (SMTPC)

• address resolver (SMAR)

• main control program (MCP)

Information about each component will be given in the appropriate sections. Complete documentation
and background information can be found in [Aßmb]. Section 10 describes the data flow in sendmail X.

This version of sendmail X does not come with a local delivery agent nor a mail submission program.
See Sections 6.3.1 and 6.2 which programs can be used to achieve the desired functionality.

1.5 Typographical Conventions

In this documentation, a command written as

$ command

should be executed as an unprivileged user. Only a command written as

command

should be executed as the superuser.

If a command contains components that need to be replaced by values that depend on the environment
or the local configuration, then it is usually written as a macro, e.g., $LOGFILE.

4

2 Building sendmail X

sendmail X uses GNU autoconf for configuration. Hence you can build it (after verifying the distribution
as explained in appendix A.1 and unpacking it) as follows:

$ mkdir obj.$OS && cd obj.$OS && $PATHTO/smX-$VERSION/configure $OPTIONS

Obviously you have to replace $OS and $VERSION as well as $PATHTO. It is also possible to build sendmail
X in the source tree, however, this is discouraged:

$./configure && make && make check

Note: do not run this as root; this is not just a basic security measure (only use a privileged account if
it is really required), but most of the programs refuse to run with root privileges.

2.1 Required Packages

sendmail X requires Berkeley DB 4.2 (or 4.1). Do not use 4.3.27 as it causes a crash in 64 bit mode on
Solaris 5.8/9 at least4. If this software is not installed in a location that the compiler or linker use by
default, you have to tell configure about it, e.g.,

$ B=/usr/local/BerkeleyDB.4.2
$./configure --with-bdb-libdir=$B/lib --with-bdb-incdir=$B/include

Suggestions how to let configure find this location are welcome! Note: sendmail X is supposed to ship
with Berkeley DB which will probably happen after the alpha development stage.

2.2 Configuration Options

Beside the usual configure options like --prefix a few sendmail X specific configuration options are
available:

–enable-TLS Enable check for STARTTLS support. The default is yes, i.e., configure tries to deter-
mine whether OpenSSL is available on the machine. See Section 2.3 (SM USE TLS) for details.

–enable-SASL Enable check for AUTH support. The default is yes, i.e., configure tries to determine
whether Cyrus SASL v2 is available on the machine.

–with-sasl-libdir=path Path to directory containing Cyrus SASL v2 library.

–with-sasl-incdir=path Path to directory containing Cyrus SASL v2 include files.

–with-bdb-libdir=path Path to directory containing Berkeley DB library.

–with-bdb-incdir=path Path to directory containing Berkeley DB include files.

–enable-pmilter Enable policy milter protocol. Note: this is experimental, see Section 8.

To get the current list of configuration options, use ./configure --help.
4“Private database environments on 64-bit machines no longer drop core because of 64-bit address truncation. [11983]’

[Slea]

5

2.3 Compile Time Options

SM USE TLS Support STARTTLS. Requires OpenSSL 0.9.6 or newer [Pro]. Note: check the OpenSSL
website [Pro] for security announcement and be aware that due to the complexity of the software
it may cause (security) problems.

SM USE SASL Support SMTP AUTH. Requires Cyrus SASL version 2.1.18 or newer [SAS]. Note:
check http://asg.web.cmu.edu/cyrus/ and http://asg.web.cmu.edu/sasl/ for security an-
nouncement and be aware that due to the complexity of the software it may cause (security)
problems.

SM HEAP CHECK Turn on various heap checks and keep track of memory usage.

A simple way to set compile time options is to use:

$ CFLAGS="-DSM_USE_TLS" ./configure

A more complicated example is:

$ CFLAGS="-O -g -DSM_USE_TLS -I/usr/local/include" LDFLAGS="-L/usr/local/lib" \
./configure

Hint: it is useful to write the command line into a local file that can be reused for subsequent builds and
versions.

For more compile time options see Appendix E.

Note: if configure has problems with OpenSSL because you do not have KerberosV installed, add

$ CPPFLAGS="-DSM_USE_TLS -DOPENSSL_NO_KRB5"

3 Test Programs

$ make check

will run all test programs; currently those tests take about one hour to run on a standard workstation.
For each of the test programs one line is printed to denote whether the test succeeded, i.e., the output
consists of lines with the marker PASS: or FAIL: and the name of the test program program. Additional
output might be generated by the test programs themselves, e.g.,

2 of 2 tests completed successfully,

or some debug output. The debug output may even indicate an error, but only a final FAIL: indicates
a test failure. Some tests depend on compilation options and are only conditionally enabled; others may
depend on environment variables, see 3.1. For disabled tests SKIP is shown.

Since some of the tests may fail (see Section 3.2) and make will usually stop after encountering an error,
it might be required to use

$ make -i check

to perform all tests.

6

3.1 Environment Variables used by Test Programs

Some of the test programs perform DNS lookups. These lookups may use domains that are under control
of the sendmail X author. To disable those tests set the environment variable SM_NO_DNS_TEST. To set
a different timeout than the default, the environment variable SM_DNS_TIMEOUT can be used, however, it
may not be obeyed by all DNS test programs.

Most test scripts that perform multiple checks use the environment variable STOPONERROR to stop on the
first error that occurs.

Setting SM_NO_LOG_TEST disables some tests that use syslog(3).

Some tests that take a very long time may be disabled by setting SM_NO_SLOW_TEST.

3.2 Known Test Program Problems

The test programs which involve the full system (and of course sendmail X itself) will not work on an
NFS mounted partition. You have to run the tests on a local disk (that is a restriction of Berkeley DB).

• connctl.sh will fail on systems that have neither inet pton(3) nor inet aton(3). Fix: upgrade
your OS or write a replacement function and put it into librepl/.

• t-evthr-sig.sh fails on Linux systems that use a thread implementation that is not POSIX com-
pliant. The test is currently disabled on all Linux versions. Note: if you know a simple way to
figure out whether the OS actually provides POSIX compliant pthreads, please let me know.

• t-hostname fails on systems where gethostname() does not return any FQHN at all (e.g., default
SunOS 4/5 installations). Add the FQHN as alias to /etc/hosts to solve this problem, e.g.,

10.1.2.3 myname myname.my.domain

• t-smar-0.sh and t-smar-3.sh may fail sometimes due to DNS timeouts. Run the tests again.

• t-mts-icr.sh and t-mts-ocr.sh rely on some timing issues; they try to test incoming/outgoing
rate control.

For more information about possible test program problems that are not listed in the next section see
Appendix F.

3.2.1 Known Test Program Problems specific to an OS/setup

FreeBSD systems when running in a jail(8) exhibit the following problems:

• The test programs for SMAR which perform DNS lookups can fail because UDP does not work in a
jail(8) as expected. A workaround for this is to use the -U option for smar which can be achieved
by setting the environment variable SMAROPTS to that value.

• Connections from localhost to the SMTP server do not have 127.0.0.1 as source IP address,
but the IP address of a NIC. Hence relaying must be allowed for it by setting the environment
variable SM SERVER OPTIONS to the option -C and the IP address, e.g., -C 10.2.3.4. Moreover,
because the tests chkmts/t-mts-icr.sh and chkmts/t-mts-ocr.sh rely on connections coming
from 127.0.0.1 they will fail too.

7

MacOS 10.3.4 has a problem with sigwait(3), see Apple’s bug 3675391; hence sendmail X does not
work on this OS (and other versions that have the same bug).

4 Installing sendmail X

sendmail X needs several users to provide optimum separation of privileges and to maximize security.
Currently there are four required accounts (the numbers for uid and gid are examples only); the last one
listed below (smx) is not really required:

smxs:*:260:260:Sendmail X SMTPS:/nonexistent:/sbin/nologin
smxq:*:261:261:Sendmail X QMGR:/nonexistent:/sbin/nologin
smxc:*:262:262:Sendmail X SMTPC:/nonexistent:/sbin/nologin
smxm:*:263:263:Sendmail X misc:/nonexistent:/sbin/nologin
smx:*:264:264:Sendmail X other:/nonexistent:/sbin/nologin

with the corresponding groups:

smxs:*:260:
smxq:*:261:
smxc:*:262:smxs
smxm:*:263:smxs,smxq
smx:*:264:

A simple shell script to setup the directories, files, etc. as described below is available in misc/sm.setup.sh.in.
This script is modified by configure to create misc/sm.setup.sh (in the build directory) which is in-
voked when

make install

is called. Most defaults in the installation script misc/sm.setup.sh can be overridden with environment
variables (default is listed in square brackets):

• SMXCONFDIR: [/etc/smx] configuration directory.

• SMXQDIR: [/var/spool/smx] queue directory; communication sockets are created in this directory
by default too.

• SMXLOGDIR: [.] logging directory (relative to SMXQDIR). If logging is done via syslog(3) then this
directory is not really used.

• SMXS [smxs] SMTP Server user and group

• SMXC [smxc] SMTP Client user and group

• SMXQ [smxq] QMGR user and group

• SMXM [smxm] address resolver (misc) user and group

• SMX [smx] generic (configuration etc) user and group

• SMXLG group for logfiles; the install program tries operator, sysadmin, and root.

8

Notes:

1. The users and groups must be created before make install is invoked.

2. misc/sm.setup.sh requires some programs that are only available if make check has been run
before.

3. misc/sm.setup.sh will not overwrite existing files or directories, hence it does not work for up-
grading a system if configuration files or directory/file owners need to changed.

4.1 Directories, Files, and Permissions

make install (i.e., misc/sm.setup.sh) will create all the required directories and files with the correct
permissions provided the users and groups have been set up properly. This section shows explains what
the created structure looks like.

The CDB5 directories (0-9, A-F) must be owned by smxs and have group smxq with the permissions 0771:

drwxrwx--x 2 smxs smxq 0/

The main (DEFEDB6) and incoming queues (IBDB7) must belong to smxq and should not accessible by
anyone else:

drwx------ 2 smxq smxq defedb/
drwx------ 2 smxq smxq ibdb/
drwx------ 2 smxq smxq ibdb/ibdb/

Note: Do not use an NFS mounted partition for the deferred queue (defedb) (that is a restriction of
Berkeley DB; already mentioned in 3.2).

Mailertable, aliases map, and other maps for SMAR (see Section 5.8.3) should belong to smxm and can
be readable as local conventions require:

-rw-r--r-- 1 smxm smxm mt
-rw-r--r-- 1 smxm smxm aliases.db

In general, maps should be owned by the user id of the program that uses them, e.g., smxq owns the
QMGR configuration map conf.db (see Section 5.7.1).

The sendmail X configuration file can either belong to root or the generic sendmail X user:

-rw-r--r-- 1 smx smx smx.conf

The directories in which the communication sockets between QMGR and the other programs are located
must belong to smxq and be group accessible for the corresponding program:

5Content DataBase: the contents of mails are stored here; see Section 10.
6DEFerred Envelope DataBase
7Incoming Backup DataBase

9

drwxrws--- 2 smxq smxm qmsmar/
drwxrws--- 2 smxq smxc qmsmtpc/
drwxrws--- 2 smxq smxs qmsmtps/

The directory in which the communication socket between MCP and SMTPS is located must belong to
smxs:

drwxr-x--- 2 smxs smxs smtps/

The logfiles must be owned by the corresponding user and may have relaxed group (or even world) read
permissions:

-rw-r----- 1 smxq operator qmgr.log
-rw-r----- 1 smxm operator smar.log
-rw-r----- 1 smxc operator smtpc.log
-rw-r----- 1 smxs operator smtps.log

5 Configuration of sendmail X

Configuration of sendmail X can be done via command line parameters or via a configuration file (the
latter is preferred, the former offers only a small subset of the available configuration options). If a
configuration file and command line options are specified, then the options are currently processed in
order, i.e., later settings override earlier ones for the same options. Information about the former is
available by invoking a program with the option -h (MCP currently uses syslog(3) instead of stderr),
it will show the usage as well as the default values. The syntax of the configuration files is specified in
the following sections. To actually use a configuration file, the option -f $CONFIGFILE must be used,
otherwise the programs use only the built-in default values, but not a configuration file. Option ’-V’ can
be used to show version information, specifying ’-V’ multiple times shows more detail, e.g., ’-VVVVV’ will
show the configuration data including the default value for (almost) every option.

Some configuration options can be set via Berkeley DB hash maps, these maps are: conf for QMGR (see
Section 5.7.1) and access for SMTPS (indirectly via the address resolver, see Section 5.8.3).

5.1 Configuration File Syntax

The grammar for a sendmail X configuration file is very simple:

conf ::= entries
entries ::= entry *
entry ::= option | section
section ::= keyword [name] ”{” entries ”}” [”;”]
option ::= option-name ”=” rhs
rhs ::= value ”;” | ”{” value-list ”}” [”;”]

A configuration file consists of entries, each entry is either an option or a section. An option has a name,
an equal sign, and a value terminated by a semicolon or a (bracketed) list of values separated by comma.
A section consists of a keyword, an optional name, and a (bracketed) sequence of entries. Keywords and
options are not case sensitive. The layout of a configuration file does not matter i.e., indentation and line
breaks are irrelevant (in general, but see below for strings).

10

5.1.1 Configuration File Values

Values in a configuration file are usually strings or numbers. If a string is used, then it should be quoted,
unless it contains no special characters which are treated specially by the grammar. If a string is very
long it can be broken into substrings spread out over several lines (just like strings in ANSI C), e.g.,

somemessage = "this is a very long string which is spread "
"out over several lines because otherwise it is too "
"hard too read.";

In some cases it is possible to have units for values. Currently time and size values make use of this
feature. Valid time units are w for weeks, d for days, h for hours, m for minutes, and s for seconds. Valid
units for size are B for bytes, KB for kilo bytes, MB for mega bytes, and GB for giga bytes. It is allowed to
specify a sequence of numbers and units, e.g., 1h 5m 12s. Unless otherwise specified, the default units
for times and sizes in a configuration file are s and B, respectively; for those values these units can be
used.

5.2 Configuration for MCP

The installation script creates the file smx.conf in the configuration directory (/etc/smx, see Section
4). Check the comments in the file and edit it if required. A configuration file contains a sequence of
sections, here is an abbreviated example:

smtps {
port = 25;
mcp_type = pass; pass_fd_socket = smtps/smtpsfd;
user = smxs;
path = /usr/libexec/smtps;
arguments = "smtps -f /etc/smx/smx.conf";

}
qmgr {
mcp_type = wait;
user = smxq;
restartdependencies = { smtps, smtpc, smar };
path = "/usr/libexec/qmgr";
arguments = "qmgr -f /etc/smx/smx.conf";

}

The valid options in an entry are:

1. mcp_type: one of nostartaccept, accept, pass, wait (required).

2. port: port number on which service should listen.

3. address: IP address on which service should listen [default: INADDR_ANY]

4. socket: This is a subsection that specifies the socket on which a service should listen.

(a) name: path of Unix Domain socket on which service should listen.

11

(b) umask: umask for socket.

(c) user: owner of socket.

(d) group: group of socket.

5. min_processes: minimum number of processes to start [default: 1].

6. max_processes: maximum number of processes to start [default: 1].

7. pass_fd_socket: path of Unix Domain socket to pass a file descriptor to the service.

8. user: user id to run service (process).

9. group: group id to run service (process).

10. restartdependencies: list of services that need to be restarted when this one is restarted (or
crashes).

11. path: path to program to execute (required).

12. arguments: arguments (argv), must start with name of program, see execv(2) (required).

13. pass_id: option to use to pass a unique, numeric identifier to the spawned process via the command
line. The option will be inserted as first argument. Example:

smtpc { pass_id = "-i"; min_processes = 4; max_processes = 4;
path = /usr/libexec/smtpc; arguments = "smtpc -f smx.conf"; }

will cause MCP to start four smtpc processes, each with the options -i ID -f smx.conf where
ID is replaced with a unique identifier.

14. use_id_in_logfile_name: if more than one process can be started then it might be useful to have
unique logfiles unless the processes use syslog(3). This option cause MCP to include a unique
identifier (the same as for pass_id, which must be used too) in the logfile name. By default the
logfile has the name of the section (or the section keyword if no section name is given), preceeded
by the log directory (option -L for MCP), and .log appended. If use_id_in_logfile_name is
turned on, then the numeric id is added before the extension, e.g., /var/log/smx/mailer0.log for
-L /var/log/smx/ and a section with the name mailer.

Notes:

• At most one of port and socket can be specified. This is for programs that run as servers and
communicate via standard protocols, e.g., SMTP or LMTP, with clients.

• pass_fd_socket must be specified for mcp_type = pass, in this case MCP binds to the specified
port and passes it via the Unix domain socket to the started process.

• For mcp_type = nostartaccept MCP waits for incoming connections, and then starts a process
to handle a single connection.

• For mcp_type = accept MCP binds to the socket and then starts a process to handle the connec-
tions without waiting for an actual request.

• For mcp_type = wait MCP simply starts the requested number of processes without passing them
any open connections. This is intended for services (processes) that do not communicate with
external clients.

12

5.3 Example Configuration File

A configuration file for sendmail X contains several sections: a global section which specifies the locations
of sockets and directories that are used by multiple components, and one section each for QMGR, SMAR,
SMTP server, and SMTP client. Other sections may define services that are started by MCP, e.g., a
local mailer.

CDB_base_directory = "/var/spool/smx/";

qmgr {
AQ_max_entries = 8192;
smtpc_initial_connections = 19;
smtpc_max_connections = 101;
smtps_max_open_connections = 5;
smtps_max_connection_rate=160;
max_errors_per_bounce=16;
wait_for_server = 4; wait_for_client = 4;
mcp_type = wait; user = smxq;
restartdependencies = { smtps, smtpc, smar };
path = "/usr/libexec/qmgr"; arguments = "qmgr -f /etc/smx/smx.conf";

}

smtps { flags = {8bitmime}; CDB_gid = 261; IO_timeout = 61;
port = 25; mcp_type = pass; pass_fd_socket = smtps/smtpsfd;
user = smxs; path = /usr/libexec/smtps;
arguments = "smtps -f /etc/smx/smx.conf"; }

smtpc {
Log_Level = 12; Debug_Level = 1; IO_timeout = 66; wait_for_server = 4;
mcp_type = wait; user = smxc; path = "/usr/libexec/smtpc";
arguments = "smtpc -f /etc/smx/smx.conf"; }

smar {
Log_Level = 12;
nameserver = {10.10.10.9, 127.0.0.1};
DNS_timeout = 6;
mcp_type = wait; user = smxm; restartdependencies = { smtps, qmgr };
path = "/usr/libexec/smar"; arguments = "smar -f /etc/smx/smx.conf";

}

5.4 Common Global Configuration

All of the following options have defaults and should only be changed if necessary.

1. hostname: set the hostname to use for the various components. This can be set if gethostbyname(3)
does not return a valid (fully qualified) hostname.

2. CDB_base_directory: base directory of CDB; this should either be empty (which is the default)
or a path to a directory including a trailing slash; the CDB library currently simply appends the

13

directory names (see Section 4.1) to it. It might be useful to move some subdirectories to different
disks (by creating (symbolic) links (ln(1))) to spread the I/O load.

3. SMAR_socket: socket created by the address resolver over which clients (SMTPS, QMGR) can send
requests.

4. SMTPC_socket: communication socket between SMTPC and QMGR.

5. SMTPS_socket: communication socket between SMTPS and QMGR.

The sockets are currently Unix domain sockets only, hence the value is simply the (path)name of the
socket.

5.5 Common Configuration Options

There is currently one configuration option which is the same across all modules but is not specified in
the global section because it is specific to the individual modules.

1. log: this is a section with the following options:

(a) facility: see syslog(3) for valid facilities, here are some valid options provided the OS offers
them: daemon, mail, auth, local0, etc.

(b) ident: identification string for openlog(3), defaults to name of the modules. It might be
useful to chose other identifiers, e.g., smXmta or smxQMGR.

(c) options: options for openlog(3) (without the leading LOG as provided by the OS, e.g., pid
or ndelay.

Example:

qmgr { log { facility = daemon; ident=smX-qmgr; } }
smtps { log { facility = mail; ident=smX-MTA; } }

Note: debug output is currently sent to stdout; syslog(3) is not used for debugging.

All modules have an option to set the amount of logging (log_level) that should be done. The larger
the value the more information is logged. For normal operation a value of 9 is recommended. During
testing values of 12 to 14 are useful.

5.6 Pathnames for Files, Directories, and Maps

Most names of files (including maps) and directories in the configuration file have a default name (compiled
into the binary) without an absolute path, e.g., aliases.db. If a pathname is not explicitly set in the
configuration file or does not use a absolute path (i.e., begins with a slash), then the default is relative
to either

1. the configuration directory: maps and configuration files, e.g., aliases.db and cert_file.

2. the main queue directory: pathnames of sockets, and databases to store envelope information
(IBDB, DEFEDB) or message contents (CDB).

14

The paths for files mentioned in case 1 are taken relative to the path of the configuration file which is
passed via the -f option to the various modules. For example: if SMAR is started as

/usr/libexec/smar -f /etc/smx/smx.conf

then the pathname used for the aliases map is /etc/smx/aliases.db. This applies to the SMAR maps
aliases, mailertable, and access (5.8.2), the QMGR conf map (5.7.1), and the STARTTLS related files
and directories used by the SMTP server (5.9) and client (5.10).

The paths for files mentioned in case 2 are taken relative to the execution directory. All sendmail
X modules should be started (via MCP) in the main queue directory (default: /var/spool/smx, see
Section 4).

See the various configuration options explained below how to override the defaults. Note: relative path-
names specified in the configuration file are (currently) always relative to the main queue directory.

5.7 Configuration for QMGR

The following configuration options are valid for QMGR:

1. AQ_max_entries: maximum number of entries in AQ (active queue) (unit: entries). Note: this
value must be larger than the largest number of recipients accepted by a single transaction.

2. SMAR_timeout: timeout in address resolver, i.e., how long to wait for a result from SMAR (unit:
s). Note: this value must be larger than the DNS timeout and it should take alias expansion into
account.

3. debug_level: debug level (only if compiled with QMGR DEBUG).

4. control_socket: specify path name of “control” socket (for querying and making requests). This
socket can be used by the query/control program qmgrctl, see 6.6.3.

5. subsection DEFEDB. Note: The Berkeley DB documentation [Sleb] should be consulted before mod-
ifying any of these options (except the first two).

(a) base_directory: Home directory for DEFEDB.

(b) log_directory: Log directory for DEFEDB. For better performance, this directory can be
set to point to a different disk than the base directory of DEFEDB.

(c) page_size: DB page size.

(d) cache_size: DB cache size.

(e) KBytes_written_for_checkpointing: If non-zero, a checkpoint will be done if more than the
amount of KBytes of log data have been written since the last checkpoint (unit: KB).

(f) delay_between_2_checkpoints: Minimum delay between two checkpoints (unit: s).

6. delivery_timeout: timeout for a single delivery attempt (unit: s). This value should be large
enough that even big mails can be delivered over a slow link before the QMGR considers the
delivery attempt a failure because the delivery agent did not return a result yet.

7. DSN_max_delay: maximum time for scheduling a DSN (unit: s).

8. aliases: select to which part of an e-mail address the aliases DB should be applied:

(a) localpart only to the local part of local e-mail addresses,

15

(b) localdomains to the full address of local e-mail addresses,

(c) all to the full address of all e-mail addresses, even remote ones.

9. flags: configuration flags:

(a) reuse_connection: try to reuse open SMTP connections for delivery. Note: this feature is
still experimental.

(b) header_only_in_bounce: include only the headers in a bounce message; by default the first
bounce includes the entire message and subsequent ones include only the headers.

(c) DSN_in_MIME_Format: Use MIME to structure a DSN. Note: this is not (yet) a DSN in the
format specified by RFC 3464 [MV03].

10. subsection IBDB:

(a) max_commit_delay: maximum time between commits to IBDB (unit: µs)

(b) size: maximum size of each IBDB file (unit: B).

(c) max_open_TAs: maximum number of open transactions in IBDB before a commit is performed
(unit: entries).

Note: the configuration file offers no way to specify a base directory for IBDB, however, the directory
can be easily moved elsewhere and a (symbolic) link (ln(1)) can be added.

11. subsection IQDB:

(a) max_cache_entries: maximum number of entries in IQDB cache (unit: entries).

(b) hash_table_entries: size of hash table for IQDB (unit: entries).

12. log_level: logging level.

13. max_errors_per_bounce: maximum number of error messages (failed recipients) in a bounce (DSN)
(unit: entries).

14. min_disk_space: minimum amount of free disk space (unit: KB). This value should be significantly
larger than the maximum size of a message to be accepted by the SMTP server.

15. OCC_max_entries: size of open connection cache (unit: entries).

16. ok_disk_space: amount of free disk space at which normal operation continues (unit: KB). Must
be larger than min_disk_space.

17. queuereturn_timeout: maximum time in queue (unit: s).

18. retry_max_delay: maximum time for retrying a delivery (unit: s).

19. retry_min_delay: minimum time for retrying a delivery (unit: s).

20. smtpc_initial_connections: initial number of outgoing connections to a single host (unit: en-
tries).

21. smtpc_max_connections: maximum number of outgoing connections to a single host (unit: en-
tries).

22. smtps_max_connection_rate: maximum incoming connection rate from a single host (unit: con-
nections/60s).

16

23. smtps_max_open_connections: maximum number of open incoming connection from a single host
(unit: entries).

24. tests: testing only.

25. wait_for_client: maximum amount of time to wait for a client to become available (unit: s)

26. wait_for_server: maximum amount of time to wait for a server to become available (unit: s)

27. conf: Name of conf map (including extension), see Section 5.7.1 [default: conf.db]. See also
Section 5.6.

5.7.1 Configuration Map for QMGR

QMGR implements a “slow start” algorithm to control the number of concurrent connections to one IP
address. Initially, it will at most create a (small) number of open connections up to a specified initial
limit. For each successful delivery, the allowed number is increased up to specified maximum limit.

For incoming connections, QMGR establishes two limits: the connection rate and the number of open
connections.

The Berkeley DB hash map conf.db (the file should be owned by smxq) can have the following entries:

1. oci: this key specifies the initial number of concurrent outgoing connection to an IP address.

2. ocm: this key specifies the maximum number of concurrent outgoing connection to an IP address.

3. octo: specify the timeout for an entry in the outgoing connection cache.

4. icr: this key specifies the maximum rate for incoming connections (per 60s).

5. ios: this key specifies the maximum number of concurrently open incoming sessions.

oci:, ocm:, icr:, and ios: take an IP address/net as parameter such that the limits can be imposed
per IP address/net. For example:

oci:127.0.0.1 5
ocm:127.0.0.1 10
oci:10 10
ocm:10 50
oci: 1
ocm: 4
icr:10 5
icr:127.0.0.1 100
ios:127.0.0.1 120

Note, however, that the limits apply only to single IP addresses, they are not aggregated for nets. That
is, for the example every single host in the IP net 10.x.y.z can have a maximum incoming connection rate
of 5 messages per minute.

The default values for these configuration options are set in the binary and can be changed via command
line options or the configuration file (see Section 5.7):

17

1. -C n maximum number of concurrent connections to one IP address [default: 100]

2. -c n initial number of concurrent connections to one IP address [default: 10]

3. -O R=n maximum connection rate per 60s (SMTPS) [default: 100]

4. -O O=n maximum number of open connections (SMTPS) [default: 100]

5.8 Configuration for SMAR

5.8.1 Declaring Maps for SMAR

In general, maps must be declared before they can get used. Each map declaration in a configuration file
is a named section – the name is used for later references – map with the following options:

1. type: type of the map; currently one of hash (Berkeley DB hash), sequence, socket, and passwd.

2. file: the pathname of the db file (including the extension) (type hash only).

3. mapname: name of the map used in the protocol (type socket only).

4. path: path of Unix domain socket (type socket only).

5. address: IPv4 address of inet socket. (type socket only).

6. port: port for inet socket (type socket only).

7. maps: list of map names to use in the map (type sequence only).

Note: for socket maps either a Unix domain socket (path) or an inet socket (address and port) must
be specified.

Example:

map localusers { type = hash; file = "/etc/smx/localusr.db"; }
map otherusers { type = hash; file = "/etc/smx/otherusr.db"; }
map password { type = passwd; }
map seq1 { type = sequence; maps = { localusers, otherusers }; }
map seq2 { type = sequence; maps = { password, otherusers }; }

5.8.2 Configuration Options for SMAR

The following configuration options are valid for SMAR:

1. dnsbl: specify a DNS based blacklist8. This section can be specified multiple times9; it has the
following required options:

• domain: specify the domain to use for DNS lookups, e.g., dnsbl.tld.

• tag: specify the tag to use for lookups in the access map (which must be enabled, see Section
5.9, 4g).

8This option is modelled after dnsblaccess written by Neil Rickert for sendmail 8.
9Compile time option SM MAX DNSBL: currently set to 8.

18

The client IPv4 address A.B.C.D is looked up via DNS as D.C.B.A.domain querying for an A
record. If an A record W.X.Y.Z is found, then it is looked up in the access map as tag:W.X.Y.Z.
for temporary and permanent DNS lookup failures the entries that will be checked in the access
map are tag:temp and tag:perm, respectively.

Notes:

• DNS lookups in blacklists can be disabled via entries in the access map using the tag cltaddr,
see Section 5.8.3.

• currently a colon is added as delimiter after tag, this may be removed in later versions to
allow for more flexibility; e.g., the configuration option itself can include a delimiter.

The access map entry should have one of the usual rejection RHSs as explained in 5.8.3. Example:
configuration file:

smar { dnsbl { domain = dnsbl.tld; tag = dnsbltld; } }

access map:

dnsbltld:127.0.0.1 error:550 5.7.1 listed at dnsbl.tld as open relay
dnsbltld:127.0.0.2 error:550 5.7.1 listed at dnsbl.tld as spam source
dnsbltld:127.0.0.9 error:451 4.7.1 listed at dnsbl.tld as suspicious
dnsbltld:temp error:451 4.7.1 temporary lookup failure at dnsbl.tld

If multiple DNS based blacklists are specified, the DNS queries are made concurrently but the
lookups in the access map are performed in the order in which the blacklists are given; the first
successfull lookup is used as result, no further priorization is performed.

2. DNS_flags: valid flags are:

(a) use_TCP: use TCP instead of UDP for connections to a nameserver.

(b) use_connect: use connect(2) even if using UDP.

3. DNS_timeout: timeout for DNS requests (unit: s).

4. log_level: logging level.

5. nameserver: list of up to four IPv4 addresses10 of nameservers.

6. local_user_map: specify a (name of a) map of valid local addresses; the map must have been
declared as explained in Section 5.8.1.

7. address_delimiter: Delimiter (one character) for address extensions in local part, [default: ’+’].

8. aliases: This is a subsection that specifies the parameters for aliases:

(a) name: Name of aliases map (including extension) [default: aliases.db].

(b) flags:

i. localpart: the aliases map contains only localparts of addresses and those are only looked
up for local addresses.

104 is the default value for the compile time option SM DNS MAX TSKS

19

ii. local_domains: the aliases map contains fully qualified addresses which are only looked
up for local addresses. This can be used similar to virtual users in sendmail 8, e.g.,
vuser1@virt1.tld: user1
vuser2@virt1.tld: user2
vuser3@virt2.tld: user3

iii. all_domains: the aliases map contains fully qualified addresses which are only looked up
for any domain.

iv. replace_macros: Replace macros in the RHS of the map entries by the appropriate value,
see Section 5.11.3.

v. preserve_domain: If the RHS of an entry is an unqualified address, do not append the
local hostname to it but the domain of the original address, i.e., preserve the original
domain.

9. mailertable: This is a subsection that specifies a mailertable, currently it has only one valid entry:
name: Name of mailertable. [default: mt].

10. access: This is a subsection that specifies the access control map, currently it has only one valid
entry: name: Name of access map (including extension) [default: access.db].

5.8.3 Configuration Maps for SMAR

SMAR requires a mailertable, and it can make use of an alias map as well as an access map, all of which
are described in the subsequent sections.

Access Map To activate the access map the flag access (see Section 5.9, 4g) (or the option -a) must
be given to the SMTP servers. All entries consist of a left hand side (LHS, key) which in turn has a tag
and a (partial) address and a right hand side (RHS, value). Valid tags are:

Tag refers to
from: envelope sender address (MAIL)
to: envelope recipient address (RCPT)
cltaddr: client IPv4 address
cltname: client host name
cltresolve: result of forward and reverse client lookup
mxbadip: IPv4 addresses that are not allowed for MX - A records
certissuer: DN of CA cert that signed that presented cert
certsubject: DN of presented cert

Valid addresses for from: and to: are RFC 2821 addresses without the angle backets (localpart@domain)
as well as partial addresses in the form localpart and @domain, i.e., domains must be preceeded with
an at (@) sign. Valid addresses for cltaddr: and mxbadip: are IPv4 addresses and (sub)nets, and for
cltname: host names. The client host name is determined by performing a reverse lookup (PTR record)
for its IP address. The resulting names are looked up as A records. Only if one of the A records matches
the client IP address, the host name is set. The result of these lookups can be used for cltresolve:
where the following keys are valid:

ok reverse and forward lookup match
no reverse and forward lookup do not match
tempptr reverse lookup (PTR) caused a temporary error
tempa forward lookup (A) caused a temporary error

Valid values for RHS are

20

relay allow relaying; currently only for to:, cltaddr:,
certissuer:, and certsubject:

ok accept
error:XYZ A.B.C.D text return an error consisting of SMTP reply code XYZ,

enhanced status code A.B.C.D, and text,
i.e., the part after error: is returned to the client.

reject same as error:550 5.7.0 Rejected.
discard accept command but silently discard its effects.

Some tags may allow for other RHS values, these are explained when those tags are discussed in more
detail.

Optionally a RHS can be preceeded by the modifier quick:. For an error: entry it causes an immediate
rejection when the entry matches. Otherwise rejections can be delayed to the RCPT stage – if SMTPS
is configured appropriately, see Section 5.9 – and can be overridden using the modifier quick: together
with ok or relay in the access map for the recipient address with the to: tag. Using the modifier quick:
together with relay for an entry with the cltaddr: tag causes it to override all other access map checks.
quick:ok for an entry with the cltaddr: tag causes it to override other access map checks unless they
are necessary to allow relaying.

Domain names (@domain) must have an exact match, subdomain matching can be specified with a leading
dot, i.e., @.domain, see Section 5.11.1.

Examples:

cltresolve:tempptr error:451 4.7.1 reverse lookup failed
mxbadip:127.0.0.1 error:551 5.7.1 Bad IP address 127.0.0.1 in MX/A list
mxbadip:192.168.255.255 error:551 5.7.1 Bad IP address 192.168.255.255 in MX/A list
from:@spammer.domain error:551 5.7.1 No spammers
from:@.spammer.domain error:551 5.7.1 No spammers in subdomains either
to:root error:551 5.7.1 No mail to root
to:abuse quick:ok
cltaddr:10 error:551 5.7.1 No direct mail from 10.x.y.z
cltname:spammer.domain quick:error:551 5.7.1 No mail from spammers
to:@primary.domain relay
cltaddr:10 relay
cltaddr:127.0.0.1 quick:relay

Discard The effect of discard depends on the protocol stage in which it is returned. If it is returned
for a session, e.g., when a client connects, all transactions in the session are discarded. If it is returned
for MAIL only that transaction is discarded. If it is returned for RCPT only that recipient is discarded;
however, if no valid recipients are left, the entire transaction is discarded. Moreover, if quick:discard
is returned for one recipient the entire transaction is discarded too.

Mailertable The address resolver implements an asynchronous DNS resolver and it uses a file called
mt (mailertable) which consists of domain parts of e-mail addresses and corresponding IP addresses (in
square brackets) or domain/host names separated by one or more whitespace characters. The syntax for
an entry in mailertable is:

21

entry ::= lhs ” ”+ rhs
lhs ::= [”.”] hostname | ”.”
rhs ::= [[port ”^”] [mailer ”:”] hostlist
port ::= integer
mailer ::= ”lmtp” | ”esmtp”
hostlist ::= host [” ” hostlist]
host ::= ”[” IPv4-address ”]” | hostname

An entry consists of a LHS and a RHS which are delimited by at least one space. The key (LHS) is a
hostname or a dot (denoting the default entry), the value (RHS) consists of an optional port number, a
optional mailer and a list of hosts which are separated by spaces. A host is either a hostname (which is
subject to MX lookups) or an IPv4 address in square brackets.

Example:

localhost lmtp:
SPAM.FILTER.DOMAIN 2525^esmtp:[127.0.0.1]
MY.DOMAIN esmtp:[10.1.2.3]
ANOTHER.DOMAIN esmtp:MTA.SERVER
.TLD esmtp:GATE.WAY
. esmtp:SMART.HOST

Note: currently this file must exist, even if there are no entries (it is created by make install).

Aliases To specify aliases for local addresses the Berkeley DB hash map aliases.db is used. The key
in the map must be

• the local part of a valid (local) e-mail address,

• or a complete local e-mail address,

• or any e-mail address,

based on the aliases option (see Section 5.7, 8). The value (RHS) for an alias entry is a list of one
or more RFC 2821 addresses (including the angle brackets) separated by spaces (not commas). If the
RHS has only a single address which does not have an ’@’ sign, then it is converted into an RFC 2821
address by SMAR, i.e., SMAR will append the hostname of the machine and put angle brackets around
the string. Example:

myalias: localuser
mylist: <user1@my.dom> <user2@my.dom> <localuser@local.host>
owner-mylist: someuser

For mailing lists, the owner- notation is supported, i.e., if there are aliases list and owner-list then mail
sent to list will use owner-list as envelope sender address; the original domain will be preserved.

Example for the option aliases = localdomains. Let two domains be local, i.e., in mailertable:

first.dom lmtp:
second.dom lmtp:

and these entries be in aliases:

myalias@first.dom: user1
another@second.dom: user2

22

Then mail to <myalias@second.dom> and <another@first.dom> would be rejected while mail to <myalias@first.dom>
or <another@second.dom> would be accepted.

Aliases can be nested (currently up to 5 levels, see smar/rcpts.c).

5.9 Configuration for SMTP Server

1. CDB_gid: (numeric) group id for CDB, i.e., the group id of smxq, see Section 4.1.

2. daemon_address: address for daemon to listen on; this should not be used in normal operation.
Current (preliminary) format is: host:port, :port (listen on 0.0.0.0) host (port defaults to 8000).
Up to 16 addresses11 can be specified. See the notes below.

3. pass_fd_socket: socket to pass file descriptor from MCP to SMTPS.

4. flags:

(a) 8bitmime: offer 8BITMIME: sendmail X is 8 bit transparent, but it does not perform any
conversion, so this option should only be used if all communication partners can deal with 8
bit data.

(b) background: fork(2) after start; this should not be used in normal operation.

(c) delay_checks: delay acceptance check until RCPT stage (unless explicitly overridden, see Sec-
tion 5.8.3).

(d) lmtp_does_not_imply_relaying: even if a domain in the mailertable has lmtp: as RHS
do not implicitly allow relaying to it, i.e., do not consider the domain as “local” with re-
spect to relaying. This is useful for an MSA to avoid external mail to local domains without
authentication.

(e) serialize_accept: serialize accept(2) calls.

(f) softbounce: change permanent (5xy) SMTP error replies into temporary (4xy) errors. This
is a useful feature for testing to avoid bounces due to misconfigurations.

(g) access: use access map (in SMAR). Note: currently this flag is required to perform a reverse
lookup for a client IP address to get the hostname of the client which then can be used for
logging and the Received: header.

5. id: unique identifier for SMTP server (0); see Section 5.9.1.

6. io_timeout: timeout for SMTP operations.

7. max_threads: maximum number of threads.

8. max_wait_threads: maximum number of waiting threads.

9. min_wait_threads: minimum number of waiting threads.

10. max_recipients: maximum number of recipients per session.

11. max_hops: maximum number of hops (Received: headers) [default: 2112].

12. max_message_size: maximum message size (unit: KB) [default: 8MB13].

11Compile time option SS MAX BIND ADDRS
12Compile time option SM MAXHOPS
13Compile time option SM MAX MSG SZ KB

23

13. processes: number of processes to start.

14. max_transactions: maximum number of transactions per session.

15. tls: This is a subsection that specifies the parameters for STARTTLS support. It is only available if
the SMTP server has been compiled with the option SM USE TLS, see Section 2.3. See appendix D
for some background information about these options.

(a) cert_file: File with certificate in PEM format.

(b) key_file: File with private key for certificate in PEM format.

(c) CAcert_file: File with CA certificate in PEM format.

(d) CAcert_path: Directory with (symbolic links for) CA certificates in PEM format.

(e) flags: Some flags are available to influence the behavior of the SMTP server with respect to
STARTTLS.

i. allow_relaying_if_verified: If the client presented a certificate that can be verified
by the CA certificates that are available to the server (see above: CAcert_file and
CAcert_path), then relaying is allowed for the SMTP session.

ii. check_access_map_for_relaying: If this flag is set then the access map (which must be
activated, see 4g) is checked to see whether relaying should be allowed for a client which
presented a certificate that has been verified (see above). For this purpose, the DN of the
cert issuer is looked up in the access map using the tag certissuer:. If the resulting
value is relay, relaying is allowed. If it is cont, the DN of the cert subject is looked up
next in the access map using the tag certsubject:. If the value is relay, relaying is
allowed; every other value is currently ignored.
To avoid problems with the DN names in map lookups, they are modified as follows: each
non-printable character and the characters ’<’, ’>’, ’(’, ’)’, ’"’, ’+’, ’ ’ are replaced by their
hexadecimal ASCII value with a leading ’+’. For example:
/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth Mail (Cert)/emailAddress=darth+cert@endmail.org
is encoded as:
/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org
Examples:
To allow relaying for everyone who can present a cert signed by
/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org
simply use:
certissuer:/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org relay

To allow relaying only for a subset of machines that have a cert signed by
/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org
use:
certissuer:/C=US/ST=California/O=endmail.org/OU=private/CN=
Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org cont
CertSubject:/C=US/ST=California/O=endmail.org/OU=private/CN=
DeathStar/emailAddress=deathstar@endmail.org relay

Notes:
• line breaks have been inserted after CN= for readability, each tagged entry must be one

(long) line in the access map.

24

• if OpenSSL 0.9.6 is used then the emailAddress= part of a DN is replaced by Email=.

16. auth: This is a subsection that specifies the parameters for AUTH support. It is only available if the
SMTP server has been compiled with the option SM USE SASL, see Section 2.3.

(a) flags: flags for SMTP AUTH
See the Cyrus SASL documentation for the meaning of these flags: noplaintext, noactive,
nodictionary, forward secrecy, noanonymous, pass credentials, mutual auth.

(b) trusted_mechs: list of SASL mechanisms for which relaying is allowed if a client successfully
authenticated using one of those

17. pmilter: This is a subsection that specifies the parameters for pmilter support (see Section 8). It
is only available if it has been enabled during configure (--enable-pmilter, see Section 2.2).

(a) socket: path of Unix domain socket to communicate with policy milter.

(b) timeout: maximum amount of time to wait for a reply from a policy milter.

Notes: only one of daemon_address and pass_fd_socket should be specified. In normal operation it is
almost always pass_fd_socket because the SMTP server cannot bind to privileged ports, hence the file
descriptor must be passed from MCP.

5.9.1 Multiple SMTP Servers with different Configurations

The normal way to run multiple SMTP servers is to let MCP start several SMTP servers. Each SMTP
server must given a unique identifier (see Section 5.9, item 5) and each SMTP server section in smx.conf
must have a unique name (e.g., MTA and MSA), which is passed via the option -N name to smtps.
Example: smx.conf:

smtps MTA {
port = 25;
type = pass; pass_fd_socket = smtps/mtafd;
user = sm9s;
path = /usr/libexec/smtps;
arguments = "smtps -N MTA -f /etc/smx/smx.conf";
log { facility = mail; ident=smX-MTA; }

}

smtps MSA {
port = 587;
type = pass; pass_fd_socket = smtps/msafd;
user = sm9s;
path = /usr/libexec/smtps;
arguments = "smtps -N MSA -f /etc/smx/smx.conf";
log { facility = mail; ident=smX-MSA; }
trusted_auth_mechs = { CRAM-MD5, DIGEST-MD5 };
auth_flags = { noplaintext }; }

For tests it is also possible to let MCP start only one SMTP server which creates several copies of itself if
multiple daemon addresses are specified (see Section 5.9, item 2). Note: this only works for unprivileged
ports because the SMTP server does not run as root.

25

5.10 Configuration for SMTP Client

1. debug_level: debug level (only if compiled with SMTPC DEBUG).

2. io_timeout: timeout for SMTP operations (unit: s).

3. LMTP_socket: Unix domain socket to use for LMTP [default: lmtpsock].

4. log_level: logging level.

5. max_wait_threads: maximum number of waiting threads.

6. min_wait_threads: minimum number of waiting threads.

7. remote_port: port to which connections should be made [default: 25]. Note: if multiple SMTP
clients are specified, all of them must use the same value for remote_port. Currently the scheduler
requires that all SMTP clients behave the same. If different ports are required, then those must be
listed in mailertable entries.

8. processes: number of processes to start.

9. wait_for_server: maximum amount of time to wait for a server (QMGR) to become available
(unit: s).

10. tls: This is a subsection that specifies the parameters for STARTTLS support. It is only available if
the SMTP client has been compiled with the option SM USE TLS, see Section 2.3. See appendix D
for some background information about these options.

(a) cert_file: File with certificate in PEM format.

(b) key_file: File with private key for certificate in PEM format.

(c) CAcert_file: File with CA certificate in PEM format.

(d) CAcert_path: Directory with (symbolic links for) CA certificates in PEM format.

5.11 Lookup Orders

5.11.1 Lookup Orders in Maps

In many cases an item is not just looked up verbatim in a map, but it may be split into logical parts
and then less significant parts are iteratively removed and the remaining data is looked up until either a
match is found or the data is empty; in the latter case a default key may be looked up depending on the
map.

For domain names of the form “sub2.sub1.tld” the lookup order is “sub2.sub1.tld”, “.sub1.tld”,
“.tld”, and “.” (without the quotes), the last lookup is only done if the map type requests it, e.g.,
mailertable. Obviously this schema is extended if more components are specified. As the sequence shows
there is no implicit “match all subdomains” lookup, instead entries in a map must have a leading dot
for subdomains matches. To reiterate: “sub2.sub1.tld” does neither match the entry “sub1.tld” nor
“tld”.

For IPv4 addresses of the form “A.B.C.D”, the lookup order is “A.B.C.D”, “A.B.C”, “A.B”, and “A”
(without the quotes). In contrast to domain lookups, no trailing dots are required (nor checked) to
denote subnet matches, because the number of components of an IPv4 address is fixed (and known) in
contrast to the number of components in a host name or domain name.

26

For RFC 2821 addresses of the form “<user+detail@hostname>” (where “+detail” is optional and “+”
is the address_delimiter, see Section 5.8.2) the lookups are done according to the following sequence:

1. Repeat the following lookups for each subdomain of hostname (as explained above):

(a) “user+detail@hostname” if “+detail” exists; this is a verbatim match.

(b) “user++@hostname” if “+detail” exists and “detail” is not empty; this matches any non-
empty “+detail”. Note: the second “+” character is a fixed metacharacter, it does not depend
on address_delimiter; it is a modelled after the “+” operator in regular expressions etc to
denote a non-empty sequence of items.

(c) “user+*@hostname” if “+detail” exists; this matches any “+detail” (including just “+”).

(d) “user*@hostname”; this matches “user@hostname” as well as “user+detail@hostname” (“detail”
can be empty). Note: “*” is not a generic metacharacter here, it matches only a token
beginning with address_delimiter or an empty sequence, it does not match any other
character sequence. For example: the input “user1@hostname” does not match the LHS
“user*@hostname”.

(e) “user@hostname”; this does not match if “+detail” exists.

(f) “@hostname”.

2. If nothing has been found and the map type requests it, then try localpart only (with the same
meaning as above):

(a) “user+detail” if detail exists

(b) “user++” if detail exists and is not empty,

(c) “user+*” if detail exists,

(d) “user*”,

(e) “user”

5.11.2 Lookup Orders for Anti-Spam Measures

Map lookups for anti-spam measures are performed according to the (E)SMTP dialogue, i.e., connection
information (cltaddr: and cltname:), MAIL command (from:), and RCPT command (to:). Whether a
rejection has an immediate effective depends on the result of the lookup, e.g., the quick: modifier, and
whether the option delay_checks is set.

5.11.3 Macro Replacements in RHS

The alias map allows the use of macro in the right hand side of map entries. Macros have the form
“${name}” (without the quotes). Available macros are: user, detail, domain, tag, delimiter, subdomain,
extension. They have the obvious meaning; subdomain refers to the part of the domain before the dot,
i.e., if the pattern is @.domain and the input is user@host.domain then subdomain refers to host,
extension is the delimiter and the detail together (provided the address contains them).

Example:

alias*@.domain user${extension}@${subdomain}.domain

provides the following mappings:

27

alias@host.domain user@host.domain
alias+detail@host2.domain user+detail@host2.domain

6 Running sendmail X

6.1 MCP

Start MCP as root in the directory /var/spool/smx (i.e., the main queue directory, see Section 4:
SMXQDIR) using

./mcp.sh

The script contains the runtime path for MCP based on the data used by configure.

To stop the entire sendmail X MTS simply terminate the MCP, it will forward the signal to all processes
it started.

The MCP provides some restart functionality: if a process crashes, it will restart it unless the exit code
indicates that a restart is useless, e.g., EX USAGE. Moreover, the processes listed in the restart dependencies
will be stopped and started too.

6.2 Using sendmail X only for Outgoing Mail

sendmail X can be used in combination with a MUA that speaks (E)SMTP directly or with the send-
mail 8 MSP for outgoing mail. For the latter add this to your sendmail 8 submit.mc file (see also
misc/sm8.submit.mc):

LOCAL_RULE_0
R$* + X<@$*> $#smx $@ localhost $: $1 <@$2>

LOCAL_RULESETS
SHdrToSMTP
R$+ $: $>PseudoToReal $1 sender/recipient common
R$+ $: $>MasqSMTP $1 qualify unqual’ed names
R$* + X<@$*> $: $1 < @ $2 >
R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

MAILER_DEFINITIONS
Msmx, P=[IPC], F=kmDFMuXa, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP/HdrToSMTP,

E=\r\n, L=990, T=DNS/RFC822/SMTP,
A=TCP $h 2009

and run the SMTP server of sendmail X as listener on localhost:2009. Then mail to <local+X@domain>
will be sent via sendmail X. After initial testing the relay mailer can be changed to use port 2009 by
default hence the local additions shown above can be removed.

28

6.3 Using sendmail X for Incoming Mail

6.3.1 Specifying Local Domains

If the domain of a recipient address matches an entry in mailertable (see Section 5.8.3) with the right hand
side lmtp:14 then SMTPC talks LMTP over the local socket lmtpsock (see 5.10). If you have an LDA that
runs as daemon and can talk LMTP over a local socket you can use it for local delivery. It is also possible
to use procmail in LMTP mode and start it from mcp, see smx.conf. See contrib/procmail.lmtp.p0
for a patch for procmail 3.22 to allow handling of addresses with details (+extension) in LMTP mode.
A mailertable mt for local delivery via LMTP should look like this:

localhost lmtp:
MY.DOM lmtp:
HOST.MY.DOM lmtp:

By default mail to addresses whose domain part is listed in mailertable with RHS lmtp: is allowed, i.e.,
those domains are considered local and hence relaying (even though technically this might not be called
relaying) to them is allowed. This behavior can be turned off (see Section 5.9, item 4d) in which case
it is necessary to also allow relaying to these domains which can be done either via the access map (see
Section 5.9, 4g), or the command line option -T for SMTPS. This allows for treating (some of) these
domains as private by not allowing relaying to them, hence they will be only reachable from systems from
which relaying is allowed.

6.3.2 Specifying Valid Local Addresses

To validate addresses for local domains, SMAR uses the Berkeley DB hash map aliases.db, which can
be created using makemap (from sendmail 8) or libsmmap/createmap or a map specified by the option
local_user_map (see Section 5.8.2, item 6). The key in the map must be the local part of a valid (local)
e-mail address. If the local part cannot be found in either map, the address is rejected.

To list valid local addresses in the alias map the right hand side must be the string “local:”, e.g.,

postmaster: <user@host.domain>
abuse: user+abuse
user++: local:
user: local:

6.4 Using sendmail X as Gateway

sendmail X can easily be used as an internet gateway. To override routing, mailertable entries (see Section
5.8.3) can be specified. A list of valid addresses can be made available via the access map by allowing
relaying to those addresses instead of entire domains, e.g.,

to:user1@my.domain relay
to:user2@my.domain relay
to:postmaster@my.domain relay
cltaddr:10.12 relay

14currently internally encoded as 127.0.0.255

29

6.5 Using sendmail X as Backup MX Server

The previous section showed how to specify valid remote addresses if all of them are known. However,
for systems that act as backup MX servers it might not be simple to always keep such a list up to date.
In that case, a default entry for a domain should be made, e.g.,

to:user1@other.domain relay
to:user2@other.domain relay
to:postmaster@other.domain relay
to:@other.domain error:451 4.3.3 Try main MX server
cltaddr:10.12 quick:relay
cltaddr:127.0.0.1 quick:relay

The last two entries allow local systems to send mail to any user at other.domain; without those entries
mail to unlisted users will be (temporarily) rejected and hence cannot be delivered via this system.

6.5.1 Note about Backup MX Servers

It is not a good idea to run a backup MX server B for a host A that has stronger anti-spam measures;
if mails are sent to A via B, then B may accept them for delivery, but A may reject them and hence B
has to sent bounces, which, in case of spam, are most likely to forged addresses, hence those bounces
will only cause additional problems. The opposite case (B has stronger anti-spam measures than A) can
cause the rejection of mail that A actually wanted to receive. Hence B and A should have the same anti-
spam measures; i.e., a system that acts as backup MX server for another one should perform the same
anti-spam checks as the main MX server(s).

6.6 Miscellaneous Programs

6.6.1 Do not run programs as root User

Almost all sendmail X programs (except for MCP) refuse to run with root privileges. To run a program
as a different user the utility misc/runas can be used, e.g., after installation in /usr/local/bin/

/usr/local/bin/runas smxq mailq -V

(specify -h to see the usage).

6.6.2 Displaying Content of Mail Queues

The program mailq displays the content of the mail queues (defedb and ibdb). Currently its output
is in a similar format as the sendmail 8 version. The option -h shows how to use the program; see the
previous section about using runas for mailq. Note: the output of this program might not be accurate
due to internal buffering by QMGR. Moreover, this program reads DEFEDB in such a way that only
entries that have been checkpointed15 are shown. This is done to avoid interference with the operation of
QMGR.

15See Section 5.7 about options for checkpoints.

30

6.6.3 Interacting with QMGR

The program qmgrctl allows to interact with the QMGR via the control socket (see Section 5.7, item 4).
Invoke qmgrctl -h to see the available options. By default the program will show the current status of
QMGR.

Enhancement to this program are welcome to provide more functionality.

6.7 Reloading Maps

Maps (for SMAR and QMGR) can be reloaded by moving the old db file out of the way, creating a new
file and then sending a USR1 signal to the appropriate process to reopen the map.

mv $MAP.db $MAP.old.db
createmap -F $MAP.db < $MAP
kill -USR1 $PID

Note: for QMGR it is also possible to use qmgrctl -r instead, see Section 6.6.3.

6.8 Logging

Logging is done via syslog(3) (see Section 5.5, 1) or to stdout/stderr, which is redirected by the
default MCP configuration to PROG.log. The logging format is not yet completely consistent across
programs. Moreover, the logging entries might not be easy to understand because they contain some
details which are not interesting to a potential postmaster, but to developers. Nevertheless, the logging
entries should show the flow of mail through the system. See Appendix C.2 for an explanation of the
format of logfile entries.

Note: logfiles must exist with the proper owner and permissions to be used. Neither MCP nor the
modules will currently create logfiles. This is done by make install, i.e., misc/sm.setup.sh, which
parses smx.conf to extract the section titles/names and user entries to create the logfiles with the
correct name and owner. This does not (yet) properly work if unique logfile names are created, see
Section 5.2, 14.

6.8.1 Logfile Rotation

Unless syslog(3) is used (see Section 5.5, 1), logfile rotation can be achieved by copying the existing
logfile to a backup file, e.g.,

cp qmgr.log qmgr.log.0

and sending a USR2 signal which will cause the processes to rewind the logfile. Note: the author is aware
that this is not an optimal solution, however, using syslog(3) will usually provide a better way.

6.9 Regular Checks

There are at least two things that should be done regularly:

31

1. Check the logfile for errors:

$ egrep ’sev=(ALERT|CRIT|ERR|FAIL)|assert’ $LOGFILE

2. Keep track of the size of the processes, e.g,

$ date >> $SMXPROCS
$ ps axuww | grep ’^smx’ | sort >> $SMXPROCS

If one of the processes continuously grows then sendmail X chould be compiled with -DSM HEAP CHECK
(see 2.3) and a heap dump should be taken regularly by sending the USR1 signal to the process.
By comparing subsequent heap dumps it should be possible to locate a possible memory leak.

Please report problems that cannot be resolved locally, see Section 1.

6.10 Dealing with Errors

6.10.1 Resource Problems

Resource problems in certain parts of the code can lead to a stop of the involved program. In such a case
it will be restarted automatically but if the resource problem has not been taken care of the MTS may
stop again. In that case manual interaction is required. The simple solution to a resource problem is of
course to add more resources (RAM/disk) or to free up some resources, e.g., stopping programs that do
not need to run or deleting unused files. There are also ways to control resource usage within sendmail
X:

• memory shortage: the memory usage of sendmail X can be controlled by restricting the size of vari-
ous data structures, see Section 5.7, e.g., AQ_max_entries, IQDB, and OCC_max_entries. However,
setting these values too low will result in a very slow MTS that may operate in a degraded state
which is not acceptable.

• disk shortage: sendmail X has options that let it decide how much free disk space is needed for
operation, see Section 5.7: ok_disk_space and min_disk_space. However, if there is not enough
space to store the envelope databases (DEFEDB and IBDB) then the system cannot work, hence
sufficiently free disk space is essential for proper operation.

6.10.2 Database Problems

See Section 10 for some background information about the usage of the various databases before trying
to fix any possible problems.

If the deferred database is corrupted then the Berkeley DB utilities to deal with such situations should
be tried [Sleb], e.g., db_recover.

Currently messages stored in CDB have the transaction identifier (ss_ta, see Section C.2) as filename.
In the worst case, i.e., if IBDB or DEFEDB are destroyed, this allows to reconstruct the envelope data
together with the logfile entries. See the script misc/rcvrenvfromlog.sh for an example, here is a
description of its operation. First, check which messages are still in CDB: in the CDB directory (5.4:
CDB_base_directory) issue:

32

ls -1 [0-9A-F]/S*

Then search for each of those transaction ids ($TAID) in the logfile ($LOG):

$ egrep "ss_ta=$TAID, (mail|rcpt)=" $LOG | \
sed -e ’s;^.*\(mail=<.*>\), .*;\1;’ -e ’s;^.*\(rcpt=<.*>\), .*;\1;’

will show the sender (mail=) and the recipients (rcpt=). Based on this data it is possible to resend the
messages.

Note: contributions in this area are welcome, e.g., better scripts that perform more checks and maybe
allow for completely automatic recovery.

7 Caveats

The following problems exist in this version of sendmail X.0:

• The address resolver seems to leak memory if an old, outdated resolver library (BIND 4.9.x) is
used, however the builtin memory debug module does not show any leak, hence either the process
status output is misleading or the leak is in a system library. Help in tracking down this problem
is appreciated.

• If the system runs out of memory then the MTS may not act gracefully in all cases, see Section
6.10.1.

• If a disk that is used for one of the queues becomes full, some errors may not be handled gracefully,
see Section 6.10.1. To avoid this, sendmail X has some limits for the amount of available disk space
that is required to accept mail (see Section 5.7).

8 Policy Milter

This version of sendmail X has experimental support for a policy milter. Experimental means that the
API (which is documented in Appendix B) may change over time.

A policy milter is similar to a milter in sendmail 8. The most important difference is that a policy milter
in sendmail X can (currently) not modify any part of an e-mail, it can “only” decide whether to accept
or reject an e-mail.

9 Miscellaneous

9.1 Strict RFC 2821 Compliance

The SMTP server currently enforces fairly strict RFC 2821 compliance. For example, a MAIL command
must be given in the following format

MAIL From:<user@some.domain>

33

i.e., the angle brackets are required, there must be no space after ”:”, etc. This has the useful side effect
of catching some spam programs:

5.5.0 Syntax error., input=MAIL FROM: <blafwhoyqjywvu@asia.com>

Moreover, the server requires that lines end in CRLF (\r\n), it will not accept command input without
the correct line ending, i.e., trying to do that will cause a read error.

9.2 Security Checks

There are currently no additional security checks when creating/accessing files or directories besides those
provided by the operating system. This could be a problem if MCP is misconfigured because it runs as
root. Hence it will simply overwrite existing files if those are specified in the configuration file. The
other modules run as non-privileged users, hence the OS provides sufficient access checks – unless the
system is misconfigured and the sendmail X accounts are misused for other purposes too.

9.3 Restrictions

Besides the obviously missing functionality there are some other things that may restrict the use of
sendmail X in certain environments. Here is an incomplete list:

• DNS lookups currently use only UDP by default, hence answers that exceed the UDP paket size
will cause problems. However, such DNS pakets are really rare (because they cause operational
problems in various places, e.g., some firewalls may block TCP for port 53). A possible workaround
might be to force TCP (see Section 5.8.2, item 2a), the correct way is a change in the DNS library
to retry with TCP, but this has not yet been implemented.

• Map lookups convert keys to lower case before checking an entry. In general this is not a problem
unless local addresses rely on preserving the case of the local parts of addresses. That is, local
addresses which require upper case characters do not work.

Everything that is not described in the documentation does either not exist in the current version of
sendmail X, or is unlikely to work. However, there may be omissions in the documentation, please inform
the author of such bugs.

9.4 Code Review, Enhancements, Patches

Source code inspection as well as patches and suggestions are very welcome.

Enhancements and extensions are very welcome too, especially to extend the basic functionality of the
current sendmail X release.

9.5 Porting

Porting to currently unsupported platforms including non-Unix systems is encouraged. Note that the
destination system must support statethreads [SGI01] and Berkeley DB 4.x. It might be necessary to
port those first.

34

10 Data Flow in Sendmail X

This Section explains how Sendmail X stores information about messages that are transferred. It gives
some background information which is useful for troubleshooting. Details about the operation of sendmail
X can be found in [Aßmb].

Sendmail X uses two different databases on disk to store envelope information (sender and recipients):
IBDB: incoming backup database, DEFEDB: deferred envelope database, and one database to store
message contents: CDB: content database. See Section 4.1 about the location and layout of these
databases16. The queue manager additionally uses two internal envelope databases: IQDB (Incoming
Queue DataBase) and AQ (Active Queue).

Incoming messages are accepted by the SMTP servers which store the content in the CDB (complete
messages including headers in the format as received). The envelope information, i.e., sender (MAIL) and
recipients (RCPT), is stored by the queue manager in IQDB and written to IBDB which is just a log
of envelope data and what happened to it. That is, the files in IBDB are written sequentially and are
continuously growing. If a file reaches its size limit (see Section 5.7: IBDB), then it is closed and a new
file is opened. For a delivery, the envelope information must be transferred into AQ. For incoming mail
this happens as soon as a transaction is accepted, in which case the data is moved from IQDB to AQ.
A transaction is only accepted if the message is safely written to CDB and the envelope information has
been committed to IBDB, i.e., all information is committed to persistent storage17.

The scheduler in QMGR takes recipient envelopes from AQ and creates transactions which are given to
the SMTP clients for delivery. An SMTP client takes the transaction information and tries to send a
message whose content is read from CDB. After a successful delivery attempt a record is written to IBDB
that logs this information. A cleanup task removes periodically old IBDB files which contain only data
that is no longer referenced.

The deferred envelope database is only used if a message cannot be delivered during the first attempt. In
that case the appropriate envelope data is added to DEFEDB and a record is written to IBDB stating that
the data has been transferred to DEFEDB. Entries in DEFEDB contain a timestamp called next-time-
to-try at which QMGR reads them from the database into AQ and the scheduler tries another delivery
attempt. If that succeeds, the entries are removed from DEFEDB, otherwise they are either requeued
with a new next-time-to-try (in case of a temporary error) or a DSN (bounce message) is generated (in
case of a permanent error).

A Miscellaneous about the Source Code

A.1 Verifying the Source Code Distribution

The source code is distributed as (compressed) tar file and is accompanied by a PGP signature file which
has the same name as the tar file plus the ending .sig. To verify the integrity of the source code you
need to have a copy of PGP [Cor] or GPG [Gnu] and the sendmail PGP signing key [Con]. Then you
can verify the integrity of the source code distribution by using:

$ gpg --verify smX-$VERSION.tar.gz.sig
or:
$ pgp smX-$VERSION.tar.gz.sig smX-$VERSION.tar.gz

16the term database is used loosely here, only DEFEDB is a real database, the others are just ways to store some
information and access them in some way.

17If non-persistent storage is used for these databases mail can of course be lost.

35

See the documentation for the software that you use for further information.

A.2 Version Naming

Each sendmail X version has a name in the following format:

sendmail X.major.minor.[qualifier]qualifier-version.patchlevel

The major number changes between releases when new features are introduced (major changes, but see
below about the development phases). The minor number changes when no new features are introduced,
but bugfixes and (portability) enhancements are made. That is, no configuration changes are needed
when going from one minor version to the next. The patchlevel number is used for intermediate patches
between releases, e.g., if something is broken but it is not important enough for a new release because it
is barely used or encountered.

There are several different qualifiers:

1. PreAlpha: This means the software is not feature complete and hence might be missing some
functionality that is considered important by different users. Additionally, there is most likely no
compatibility in data structures stored on disk between different pre-alpha versions, e.g., when
upgrading from PreAlpha16 to PreAlpha17 the main queue format may have changed without
checks in the software for this. Hence old queues must be drained before upgrading. Moreover, the
protocols used for communication between sendmail modules may have changed without providing
backward compatibility, therefore modules from different releases must not be used together. Such
incompatibilities are usually stated in the list of changes ChangeLog.

Do not run this on a production server unless you are aware of the possible consequences. The
software is still under development and not fully functional. Moreover, it may not be sufficiently
tested.

2. Alpha: In this state the software is ready for public testing but its features may still change.

3. Beta: Feature changes are unlikely, but still possible if required. Usually only bugfixes occur
between beta versions.

4. Gamma: This is a release candidate. Usually only critical bugfixes occur between gamma versions.
There might be no gamma versions at all if beta testing was considered succesful and sufficient.

5. A release version does not have an explicit qualifier.

The qualifier-version is used to distinguish between different version of the same qualifier, e.g., PreAlpha16
and PreAlpha17. It is 0 for a release version.

Examples for version names: sendmail X.0.0.PreAlpha19.0, sendmail X.0.0.0.0 (this is the name of the
first release).

See the file include/sm/version.h how the version string is converted into a 32 bit number that denotes
the version number.

A.2.1 Snapshots

From time to time snapshots may be made available. Those are marked with a date in the distribution
file name, e.g., smX-0.0.16.0-20040928.tar.gz. The name indicates that it is a snapshot of what will

36

become version smX-0.0.16.0, i.e., the next release will have the given version number (without the
date). The only other indication in the distribution is the inclusion of an s in the version number that is
shown in the version output of the main components. A snapshot did not go through the usual release
cycle and is made available as technology preview.

B Native Policy Milter API

Note: this API is still experimental and may change.

Naming conventions: A policy milter (also called pmilter is a program that uses the API provided by
libpmilter. The latter interacts with the SMTP servers via an internal protocol, i.e., this protocol can be
changed without changing the visible API and should not directly be accessed by a user application.

B.1 Data Structures

libpmilter itself uses three context structures all of which must be treated by a milter as opaque.

1. pmg ctx: “global” libpmilter context (only one per process).

2. pmss ctx: libpmilter context per SMTP server that connects to this instance.

3. pmse ctx: libpmilter context per SMTP session.

Any of the libpmilter functions takes one of these contexts as parameter; e.g., all SMTP session oriented
functions have a parameter of type pmse ctx P.

A milter can have its own contexts for each of these three environments.

B.2 Start and Stop

The functions in this section return SM SUCCESS (0) on success and a negative value in case of an error.

First libpmilter must be initialized; a pmilter must specify a variable pmg ctx P pmg ctx; which is passed
per reference to the initialization function:

sm ret T sm pmfi init(pmg ctx P *pmg ctx)

The pmilter global context must be treated as opaque data structure, it is passed to subsequent libpmilter
function calls.

Next it is started, the milter passes a description of its requirements and functionality:

sm ret T sm pmfi start(pmg ctx P pmg ctx, pmilter P pmilter)

A milter can stop by calling:

sm ret T sm pmfi stop(pmg ctx P pmg ctx)

There are various functions to set some options. To set the path of the Unix domain socket over which
the SMTP servers and libpmilter communicate:

sm ret T sm pmfi setconn(pmg ctx P pmg ctx, const char *path)

37

The backlog parameter of the listen(2) function can be set:

sm ret T sm pmfi setbacklog(pmg ctx P pmg ctx, int backlog)

The debug level of libpmilter might be set via (this requires knowledge of the internals of the library
which can be acquired by looking at the source code):

sm ret T sm pmfi setdbg(pmg ctx P pmg ctx, int debuglevel)

To set the communication timeout:

sm ret T sm pmfi settimeout(pmg ctx P pmg ctx, int timeout)

B.3 New SMTP Server

Whenever an SMTP server connects to a milter an option negotiation is performed (similar to ESMTP
itself). A pmilter can check whether server capabilities are acceptable and return the options that it
wants:

sm ret T pmfi negotiate(pmss ctx P pmss ctx, uint32 t srv cap, uint32 t srv fct, uint32 t srv feat,
uint32 t srv misc, uint32 t *pm cap, uint32 t *pm fct, uint32 t *pm feat, uint32 t *pm misc)

Currently only the capabilities field is used: srv cap is set by the SMTP server to a list (implemented
as bit field) of phases of the ESMTP dialogue that can be passed to a pmilter. In turn the pmilter must
set *pm cap to includes those phases of the ESMTP dialogue that it wants to receive. For details, see
include/sm/pmilter.h. For each of those phases a callback is invoked (see Section B.4) which must be
set by the pmilter in its description structure struct pmilter S (see include/sm/pmfapi.h).

B.4 SMTP Session and Transaction

The protocol steps from ESMTP are “replayed” to the policy milter which can decide to accept or reject
them.

• New SMTP session:

sfsistat T pmfi connect(pmse ctx P pmse ctx, const char *hostname, sm sock addr T *hostaddr)

hostname: host name, as determined by a reverse lookup on the host IP address; hostaddr: host
address, as determined by a getpeername call on the SMTP socket.

• SMTP HELO/EHLO command:

sfsistat T pmfi helo(pmse ctx P pmse ctx, const char *helohost)

helohost: Value passed to HELO/EHLO command, which should be the domain name of the
sending host.

• MAIL (envelope sender):

sfsistat T pmfi mail(pmse ctx P pmse ctx, const char *mail, char **argv)

mail: envelope mail address; argv: null-terminated MAIL command arguments.

• RCPT (envelope recipient):

sfsistat T pmfi rcpt(pmse ctx P pmse ctx, const char *rcpt, char **argv)

rcpt: envelope recipient address; argv: null-terminated RCPT command arguments.

38

• DATA:

sfsistat T pmfi data(pmse ctx P pmse ctx)

• unknown/not implemented SMTP command:

sfsistat T pmfi unknown(pmse ctx P pmse ctx, const char *cmd)

cmd: SMTP command.

• For each body chunk:

sm ret T pmfi body(pmse ctx P pmse ctx, unsigned char *bodyp, size t bodylen)

There may be multiple body chunks passed to the filter. End-of-lines are represented as received
from SMTP (normally Carriage-Return/Line-Feed; CRLF). bodyp: pointer to body data; bodylen:
length of body data. Note: the last body chunk contains the final dot of the SMTP transmission,
i.e., “CRLF.CRLF”

• End of message (final dot of message has been received):

sfsistat T pmfi eom(pmse ctx P pmse ctx)

• Message is aborted outside of the control of the filter, for example, if the SMTP client issues an
RSET command.

sm ret T pmfi abort(pmse ctx P pmse ctx)

If pmfi abort is called, pmfi eom will not be called and vice versa.

• QUIT (end of an SMTP session):

sm ret T pmfi close(pmse ctx P pmse ctx)

This is called when an SMTP session ends.

B.5 Set and Get pmilter Contexts

As explained in Section B.1 a milter can have a “global” context pmilter g ctx, a context per SMTP
server pmilter ss ctx, and a context per SMTP session pmilter se ctx. The following functions are
provided to set and get these contexts.

Set the “global” context pmilter g ctx:

sm ret T sm pmfi set ctx g(pmg ctx P pmg ctx, void *pmilter g ctx).

This must be done after libpmilter has been initialized but before control is transferred to it.

To retrieve the “global” context invoke:

void *sm pmfi get ctx g(pmg ctx P pmg ctx)

Note: this requires the “global” libpmilter context which is not usually passed to pmilter functions in
callbacks. See below how to access the “global” context pmilter g ctx from other places.

To set the pmilter context per SMTP server pmilter ss ctx use:

sm ret T sm pmfi set ctx ss(pmss ctx P pmss ctx, void *pmilter ss ctx);

to retrieve it call:

void *sm pmfi get ctx ss(pmss ctx P pmss ctx)

39

The “global” pmilter context pmilter g ctx can be retrieved from the libpmilter context per SMTP
server:

void *sm pmfi get ctx g ss(pmss ctx P pmss ctx)

At the lowest level a context per SMTP session pmilter se ctx can be set via:

sm ret T sm pmfi set ctx se(pmse ctx P pmse ctx, void *pmilter se ctx)

and retrieved by:

void *sm pmfi get ctx se(pmse ctx P pmse ctx).

Just as before there is a function to retrieve the pmilter context per SMTP server pmilter ss ctx from
the libpmilter context per SMTP session:

void *sm pmfi get ctx ss se(pmse ctx P pmse ctx)

Note: if a pmilter uses these contexts, then it is useful that each “lower level” context contains a link to
its “higher level” context. That is, each pmilter context per SMTP session pmilter se ctx should have
a pointer to its pmilter context per SMTP server pmilter ss ctx which in turn should have a pointer
to the “global” pmilter context pmilter g ctx. This allows access from a function that is specific to a
SMTP session to each relevant context.

B.6 Accessing MTA Symbols

A pmilter can set a list of symbols it wants to receive from the MTA by calling

sm pmilt setmaclist(pmss ctx P pmss ctx, uint where, ...)

during the option negotation, i.e., in pmfi negotiate(). The parameter where denotes the stage of the
ESMTP dialogue when the value of the symbol should be sent. It must be one of

PM SMST CONNECT Session start
PM SMST EHLO EHLO or HELO command
PM SMST MAIL MAIL command
PM SMST RCPT RCPT command
PM SMST DATA DATA command
PM SMST DOT Final dot of mail body

A sequence of up to PM MAX MACROS macros can be requested which must end with PMM END. Valid values
are:

PMM SRVHOSTNAME hostname of SMTP server
PMM SEID session id
PMM MAIL TAID transaction id
PMM DOT MSGID Message-Id

PMM MAIL TAID cannot be requested before PM SMST MAIL and PMM DOT MSGID can only be requested at
stage PM SMST DOT.

To retrieve the value of a symbol the function

sm pmilt getmac(pmse ctx P pmse ctx, uint32 t macro, char **pvalue)

can be used in the various callback functions of the ESMTP dialogue. If the macro was not in the request
list, an error will be returned. If the macro has not yet been received, *pvalue will be NULL. Otherwise
*pvalue will point to the value of the macro. Note: the string to which *pvalue points must not be

40

changed.

B.7 Miscellaneous Functions

To set a reply text in an SMTP session or transaction oriented callback in addition to the reply code use:

sm ret T sm pmfi setreply(pmse ctx P pmse ctx, const char *reply)

Note: the reply string must contain the full SMTP reply, i.e., it must be of the form

XYZ D.S.N text\r\n

where XYZ is a valid SMTP reply code (see RFC 2821 [Kle01]) which must match the return code of the
function from which sm pmfi setreply() is called, D.S.N is an enhanced status code as defined in RFC
3463 [Vau03] and the rest is an explanation of the status including CRLF (\r\n).

Return version number of libpmilter:

sm ret T sm pmfi version(pmg ctx P pmg ctx, uint32 t *major, uint32 t *minor, uint32 t *patchlevel)

This can be used to compare the version number of the library against which pmilter is linked with the
version number against which pmilter is compiled. The major version numbers must match otherwise
the program will not run.

Signal handler function:

sm ret T pmfi signal(pmg ctx P pmg ctx, int sig)

This will be called when a USR1 or USR2 signal is received; it is not called within a signal handler, i.e.,
the code does not have to be signal-safe. Note: this is not yet implemented.

B.8 Return Values

SMTP Session and transaction oriented functions use sfsistat T as return type. Allowed values for this
type are (as defined in include/sm/smreplycodes.h):

• SMTP R OK: accept command.

• SMTP R RELAY: allow relaying for this transaction.

• SMTP R DISCARD: discard effect of command.

• SMTP R CONT: continue other checks.

• SMTP R SSD: shut down SMTP session.

• SMTP R TEMP: reject command with a temporary error.

• SMTP R SYNTAX: syntax error.

• SMTP R PERM: reject command with a permanent error.

• other valid SMTP reply codes [Kle01].

Additionally return values can be modified by using SMTP R SET QUICK(returnvalue). See Section 5.8.3
for the effects of this.

41

C Format Specifications

C.1 Format of Session/Transaction Identifiers

The format of session and transaction identifiers is specified in include/sm/mta.h. For the SMTP server
it consists of a leading ’S’, a 64 bit counter and an 8 bit “process” identifier, both of which are printed
in hexadecimal format. For the SMTP client it consists of a leading ’C’, an 8 bit “process” identifier, a
32 bit counter, and a 32 bit thread index, all of which are printed in hexadecimal format.

Examples: S00000000407CE49200, C010000137D00000000.

SMTP server session/transaction identifiers are unique until the 64 bit counter wraps around, SMTP
client session/transaction identifiers are unique only within a single invocation of QMGR.

C.2 Logfile Format

The general format of entries in a logfile is a sequence of named field which are separated by commas.
Each field consists of a name, an equal sign, and a value. If the value is a text field that is received from
an external (untrusted) source, then all non-printable characters, commas, and percent signs are shown
as their two digit hexadecimal ASCII representation with a leading percent sign. For example, the text

550 5.7.1 no, not now, 99% usage

is encoded as

550 5.7.1 no%2C not now%2C 99%25 usage

This encoding allows a logfile analyser to use the comma symbol as a delimiter of fields without having to
perform complicated parsing, e.g, the Unix awk utility can be used with comma as field separator. Note:
suggestions for a better encoding or different solution for the problem are welcome (more details can be
found in [Aßmb]).

Logfiles use the identifiers described earlier such that transactions and sessions can be easily recognized.
For the following examples logfile entries have been slightly edited and line breaks have been inserted.

Here is one example of a session in an SMTP server:

ss_sess=S00000000407EAE3800, client_ipv4=127.0.0.1,
client_name=localhost.endmail.org.

ss_sess=S00000000407EAE3800, where=connection, starttls=successful
ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,
mail=<SENDER@sendmail.org>, stat=0

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,
rcpt=<RECIPIENT@sendmail.org>, idx=0, stat=0

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,
rcpt=<SOMEONE@SOME.DOMAIN>, idx=1, stat=0

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,
msgid=<20040916050457.GG54961@endmail.org>, size=1177, stat=0

The first entry shows a successful session creation including the IPv4 address and the hostname of the
client as well as whether the client is allowed to relay. The second entry indicates that STARTTLS has

42

been used. A new transaction is shown in the third entry and two recipients are given thereafter (along
with the index idx). The last entry shows that the transaction was successful (status=0; 0 is used
instead of 250 or other SMTP reply codes that indicate success) and the size of the received mail as well
as its Message-Id.

Here is one example of a session in an SMTP client:

da_sess=C01000006C800000002, status=connected, port=25, addr=64.81.247.36
da_sess=C01000006C800000002, where=connection, starttls=successful
da_sess=C01000006C800000002, da_ta=C01000006C900000002,
ss_ta=S00000000407EAE4E00, mail=<SENDER@sendmail.org>, stat=0,
reply=250 2.5.0 MAIL command succeeded

da_sess=C01000006C800000002, da_ta=C01000006C900000002,
ss_ta=S00000000407EAE4E00, rcpt=<RECIPIENT@sendmail.org>, stat=0,
reply=250 2.1.5 RCPT ok

da_sess=C01000006C800000002, da_ta=C01000006C900000002,
ss_ta=S00000000407EAE4E00, where=final_dot, size=1177, stat=0

This is very similar to the format of the entries entries in the SMTP server and should not require an
explanation. In addition to the delivery agent session and transaction ids (da sess and da ta) the SMTP
server transaction id (ss ta) is logged too. This makes it simple to track a message through the MTS.
Obviously ss ta can be used for multiple outgoing messages if the incoming message has been sent to
multiple recipients (maybe indirectly via an alias), hence this is not a unique identifier in the SMTP
client log.

C.3 Format of Received Header

The format of the Received: header added by the SMTP server is specified in smtps/smtps.c.

Received: from EHLO-NAME (CLIENT-NAME [CLIENT-ADDR])
by HOST-NAME (SM-X-VERSION) with PROTOCOL
id SMTP-TA-ID; DATE

where PROTOCOL is ESMTP, ESMTPS, ESMTPA, ESMTPSA, or SMTP [New04]. If STARTTLS is active, then
(TLS=TLSVERSION, cipher=CIPHERSUITE, bits=CIPHERBITS, verify=VERIFYRESULT) is placed before
id, where TLSVERSION is the TLS protocol version, e.g., TLSv1, SSLv3, SSLv2; CIPHERSUITE is the
cipher suite that was in use, e.g., AES256-SHA, EDH-DSS-DES-CBC3-SHA, EDH-RSA-DES-CBC-SHA,
CIPHERBITS denotes the effective keylength (in bits) of the symmetric encryption algorithm of the TLS
connection, and VERIFYRESULT is one of the following:

OK verification succeeded.
NO no cert presented.
NOT no cert requested.
FAIL cert presented but could not be verified, e.g., the signing CA cert is missing.

Note: the name of the client is only shown if the access map feature is activated (see Section 5.9, 4g),
otherwise the time-consuming DNS lookups (PTR and A records) are not performed.

C.4 Format of DSNs

DSNs (bounces) are currently not compliant to RFC 1891ff. The format looks like this:

43

From: Mailer-Daemon@HOST.NAME
Subject: Undeliverable mail

Hi! This is the sendmail X MTA. I’m sorry to inform you that a mail
from you could not be delivered. See below for details.

and then a list of recipients and the reasons for the failure, e.g.,

Recipient:
<user@example.com>
Remote-MTA:
10.2.3.4
Reason:
550 5.7.1 <user@example.com>... Access denied
during RCPT

D Certificates for STARTTLS

When acting as a server, sendmail X requires X.509 certificates to support STARTTLS: one as certificate
for the server, at least one root CA (CAcert_file), i.e., a certificate that is used to sign other certificates,
and a path to a directory which contains certs of other CAs (CAcert_path). The file specified via
CAcert_file can contain several certificates of CAs. The DNs of these certificates are sent to the client
during the TLS handshake (as part of the CertificateRequest) as the list of acceptable CAs. However, do
not list too many root CAs in that file, otherwise the TLS handshake may fail; e.g.,

error:14094417:SSL routines:SSL3_READ_BYTES:
sslv3 alert illegal parameter:s3_pkt.c:964:SSL alert number 47

You should probably put only the CA cert into that file that signed your own cert(s), or at least only
those you trust. The directory specified via CAcert_path must contain the hashes of each CA certificate
as filenames (or as links to them). Symbolic links can be generated with the following two (Bourne) shell
commands:

C=FileName_of_CA_Certificate
ln -s $C ‘openssl x509 -noout -hash < $C‘.0

An X.509 certificate is also required for authentication in client mode, however, sendmail X will always
use STARTTLS when offered by a server. The client and server certificates can be identical. Certificates
can be obtained from a certificate authority or created with the help of OpenSSL. The required format
for certificates and private keys is PEM. To allow for automatic startup of sendmail X, private keys must
be stored unencrypted. The keys are only protected by the permissions of the file system, hence they
should not be readable by anyone but the owner. If server and client share the same key it is ok to make
the key group readable however. Never make a private key available to a third party.

E Debugging Options

There are several compile time parameters to turn on debugging. Doing so will enable the output of
debug data (to stdout/stderr or in some cases to a logfile). Since currently no logging abstraction is in

44

use, the output is done on a per-module basis (whatever is simplest for the individual module).

The compile time options are:

SC DEBUG SMTPC
SSQ DEBUG SMTPS - QMGR communication
SS DATA DEBUG SMTPS DATA stage
QMGR DEBUG QMGR
SMAR DEBUG SMAR
SM LIBDNS DEBUG libdns

For details see the source code.

Note: it is possible to set different debug levels for different debug categories in QMGR. For a list of
categories see include/sm/qmgrdbg.h. To set a debug level n for a category c use the option -xc.n. The
general syntax for the parameters is:

debugoptions ::= debugoption [”,” debugoptions]
debugoption ::= range [”.” level]
range ::= first [”-” last]

If level is omitted, it defaults to 1. Example: -x1-3.4,5.3,9-11

F Other Potential Problems with Test Programs

Some of the test programs may generate warnings, e.g., most of the tree related programs cause compilers
on 32 bit systems to emit a warning integer constant too large which can be ignored.

References

[Aßma] Claus Aßmann. Sendmail X. http://www.sendmail.org/%7Eca/email/sm-9-rfh.html.

[Aßmb] Claus Aßmann. Sendmail X: Requirements, Architecture, Functional Specification, Implemen-
tation, and Performance. http://www.sendmail.org/%7Eca/email/sm-X/.

[Con] Sendmail Consortium. PGP keys. ftp://ftp.sendmail.org/pub/sendmail/PGPKEYS.

[Cor] PGP Corporation. PGP. http://www.pgp.com/.

[Gnu] GnuPG. GNU Privacy Guard. http://www.gnupg.org/.

[Kle01] Simple mail transfer protocol. RFC 2821, Internet Engineering Task Force, 2001.

[MV03] K. Moore and G. Vaudreuil. An Extensible Message Format for Delivery Status Notifications.
RFC 3464, Internet Engineering Task Force, 2003.

[New04] Chris Newman. ESMTP and LMTP Transmission Types Registration. RFC 3848, Internet
Engineering Task Force, 2004.

[Pro] OpenSSL Project. OpenSSL. http://www.openssl.org/.

[SAS] Cyrus SASL. Project Cyrus. http://asg.web.cmu.edu/cyrus/,
http://asg.web.cmu.edu/sasl/.

45

[SGI01] SGI. State threads for internet applications, 2001. http://state-threads.sourceforge.net/.

[Slea] Sleepycat. Berkeley DB 4.4.XX Change Log. http://www.sleepycat.com/update/4.4.XX/if.4.4.XX.html.

[Sleb] Sleepycat. Berkeley DB Tutorial and Reference Guide, version 4.2.52.
http://www.sleepycat.com/docs/.

[Vau03] G. Vaudreuil. Enhanced mail system status codes. RFC 3463, Internet Engineering Task Force,
2003.

46

