/* $NetBSD: qsieve.c,v 1.3 2011/09/04 20:55:43 joerg Exp $ */ /*- * Copyright 1994 Phil Karn <karn@qualcomm.com> * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com> * Copyright 2000 Niels Provos <provos@citi.umich.edu> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Sieve candidates for "safe" primes, * suitable for use as Diffie-Hellman moduli; * that is, where q = (p-1)/2 is also prime. * * This is the first of two steps. * This step is memory intensive. * * 1996 May William Allen Simpson * extracted from earlier code by Phil Karn, April 1994. * save large primes list for later processing. * 1998 May William Allen Simpson * parameterized. * 2000 Dec Niels Provos * convert from GMP to openssl BN. * 2003 Jun William Allen Simpson * change outfile definition slightly to match openssh mistake. * move common file i/o to own file for better documentation. * redo memory again. */ #include <stdio.h> #include <stdlib.h> #include <time.h> #include <openssl/bn.h> #include <string.h> #include <err.h> #include "qfile.h" /* define DEBUG_LARGE 1 */ /* define DEBUG_SMALL 1 */ /* * Using virtual memory can cause thrashing. This should be the largest * number that is supported without a large amount of disk activity -- * that would increase the run time from hours to days or weeks! */ #define LARGE_MINIMUM (8UL) /* megabytes */ /* * Do not increase this number beyond the unsigned integer bit size. * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits). */ #define LARGE_MAXIMUM (127UL) /* megabytes */ /* * Constant: assuming 8 bit bytes and 32 bit words */ #define SHIFT_BIT (3) #define SHIFT_BYTE (2) #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE) #define SHIFT_MEGABYTE (20) #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE) /* * Constant: when used with 32-bit integers, the largest sieve prime * has to be less than 2**32. */ #define SMALL_MAXIMUM (0xffffffffUL) /* * Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */ #define TINY_NUMBER (1UL<<16) /* * Ensure enough bit space for testing 2*q. */ #define TEST_MAXIMUM (1UL<<16) #define TEST_MINIMUM (QSIZE_MINIMUM + 1) /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ /* * bit operations on 32-bit words */ #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1U << ((n) & 31))) #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1U << ((n) & 31))) #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1U << ((n) & 31))) /* * sieve relative to the initial value */ static uint32_t *LargeSieve; static uint32_t largewords; static uint32_t largetries; static uint32_t largenumbers; static uint32_t largememory; /* megabytes */ static uint32_t largebits; static BIGNUM *largebase; /* * sieve 2**30 in 2**16 parts */ static uint32_t *SmallSieve; static uint32_t smallbits; static uint32_t smallbase; /* * sieve 2**16 */ static uint32_t *TinySieve; static uint32_t tinybits; __dead static void usage(void); static void sieve_large(uint32_t); /* * Sieve p's and q's with small factors */ static void sieve_large(uint32_t s) { BN_ULONG r; BN_ULONG u; #ifdef DEBUG_SMALL (void)fprintf(stderr, "%lu\n", s); #endif largetries++; /* r = largebase mod s */ r = BN_mod_word(largebase, (BN_ULONG) s); if (r == 0) { /* s divides into largebase exactly */ u = 0; } else { /* largebase+u is first entry divisible by s */ u = s - r; } if (u < largebits * 2) { /* * The sieve omits p's and q's divisible by 2, so ensure that * largebase+u is odd. Then, step through the sieve in * increments of 2*s */ if (u & 0x1) { /* Make largebase+u odd, and u even */ u += s; } /* Mark all multiples of 2*s */ for (u /= 2; u < largebits; u += s) { BIT_SET(LargeSieve, (uint32_t)u); } } /* r = p mod s */ r = (2 * r + 1) % s; if (r == 0) { /* s divides p exactly */ u = 0; } else { /* p+u is first entry divisible by s */ u = s - r; } if (u < largebits * 4) { /* * The sieve omits p's divisible by 4, so ensure that * largebase+u is not. Then, step through the sieve in * increments of 4*s */ while (u & 0x3) { if (SMALL_MAXIMUM - u < s) { return; } u += s; } /* Mark all multiples of 4*s */ for (u /= 4; u < largebits; u += s) { BIT_SET(LargeSieve, (uint32_t)u); } } } /* * list candidates for Sophie-Germaine primes * (where q = (p-1)/2) * to standard output. * The list is checked against small known primes * (less than 2**30). */ int main(int argc, char *argv[]) { BIGNUM *q; uint32_t j; int power; uint32_t r; uint32_t s; uint32_t smallwords = TINY_NUMBER >> 6; uint32_t t; time_t time_start; time_t time_stop; uint32_t tinywords = TINY_NUMBER >> 6; unsigned int i; setprogname(argv[0]); if (argc < 3) { usage(); } /* * Set power to the length in bits of the prime to be generated. * This is changed to 1 less than the desired safe prime moduli p. */ power = (int) strtoul(argv[2], NULL, 10); if ((unsigned)power > TEST_MAXIMUM) { errx(1, "Too many bits: %d > %lu.", power, (unsigned long)TEST_MAXIMUM); } else if (power < TEST_MINIMUM) { errx(1, "Too few bits: %d < %lu.", power, (unsigned long)TEST_MINIMUM); } power--; /* decrement before squaring */ /* * The density of ordinary primes is on the order of 1/bits, so the * density of safe primes should be about (1/bits)**2. Set test range * to something well above bits**2 to be reasonably sure (but not * guaranteed) of catching at least one safe prime. */ largewords = (uint32_t)((unsigned long) (power * power) >> (SHIFT_WORD - TEST_POWER)); /* * Need idea of how much memory is available. We don't have to use all * of it. */ largememory = (uint32_t)strtoul(argv[1], NULL, 10); if (largememory > LARGE_MAXIMUM) { warnx("Limited memory: %u MB; limit %lu MB.", largememory, LARGE_MAXIMUM); largememory = LARGE_MAXIMUM; } if (largewords <= (largememory << SHIFT_MEGAWORD)) { warnx("Increased memory: %u MB; need %u bytes.", largememory, (largewords << SHIFT_BYTE)); largewords = (largememory << SHIFT_MEGAWORD); } else if (largememory > 0) { warnx("Decreased memory: %u MB; want %u bytes.", largememory, (largewords << SHIFT_BYTE)); largewords = (largememory << SHIFT_MEGAWORD); } if ((TinySieve = (uint32_t *) calloc((size_t) tinywords, sizeof(uint32_t))) == NULL) { errx(1, "Insufficient memory for tiny sieve: need %u byts.", tinywords << SHIFT_BYTE); } tinybits = tinywords << SHIFT_WORD; if ((SmallSieve = (uint32_t *) calloc((size_t) smallwords, sizeof(uint32_t))) == NULL) { errx(1, "Insufficient memory for small sieve: need %u bytes.", smallwords << SHIFT_BYTE); } smallbits = smallwords << SHIFT_WORD; /* * dynamically determine available memory */ while ((LargeSieve = (uint32_t *)calloc((size_t)largewords, sizeof(uint32_t))) == NULL) { /* 1/4 MB chunks */ largewords -= (1L << (SHIFT_MEGAWORD - 2)); } largebits = largewords << SHIFT_WORD; largenumbers = largebits * 2; /* even numbers excluded */ /* validation check: count the number of primes tried */ largetries = 0; q = BN_new(); largebase = BN_new(); /* * Generate random starting point for subprime search, or use * specified parameter. */ if (argc < 4) { BN_rand(largebase, power, 1, 1); } else { BIGNUM *a; a = largebase; BN_hex2bn(&a, argv[2]); } /* ensure odd */ if (!BN_is_odd(largebase)) { BN_set_bit(largebase, 0); } time(&time_start); (void)fprintf(stderr, "%.24s Sieve next %u plus %d-bit start point:\n# ", ctime(&time_start), largenumbers, power); BN_print_fp(stderr, largebase); (void)fprintf(stderr, "\n"); /* * TinySieve */ for (i = 0; i < tinybits; i++) { if (BIT_TEST(TinySieve, i)) { /* 2*i+3 is composite */ continue; } /* The next tiny prime */ t = 2 * i + 3; /* Mark all multiples of t */ for (j = i + t; j < tinybits; j += t) { BIT_SET(TinySieve, j); } sieve_large(t); } /* * Start the small block search at the next possible prime. To avoid * fencepost errors, the last pass is skipped. */ for (smallbase = TINY_NUMBER + 3; smallbase < (SMALL_MAXIMUM - TINY_NUMBER); smallbase += TINY_NUMBER) { for (i = 0; i < tinybits; i++) { if (BIT_TEST(TinySieve, i)) { /* 2*i+3 is composite */ continue; } /* The next tiny prime */ t = 2 * i + 3; r = smallbase % t; if (r == 0) { /* t divides into smallbase exactly */ s = 0; } else { /* smallbase+s is first entry divisible by t */ s = t - r; } /* * The sieve omits even numbers, so ensure that * smallbase+s is odd. Then, step through the sieve in * increments of 2*t */ if (s & 1) { /* Make smallbase+s odd, and s even */ s += t; } /* Mark all multiples of 2*t */ for (s /= 2; s < smallbits; s += t) { BIT_SET(SmallSieve, s); } } /* * SmallSieve */ for (i = 0; i < smallbits; i++) { if (BIT_TEST(SmallSieve, i)) { /* 2*i+smallbase is composite */ continue; } /* The next small prime */ sieve_large((2 * i) + smallbase); } memset(SmallSieve, 0, (size_t)(smallwords << SHIFT_BYTE)); } time(&time_stop); (void)fprintf(stderr, "%.24s Sieved with %u small primes in %lu seconds\n", ctime(&time_stop), largetries, (long) (time_stop - time_start)); for (j = r = 0; j < largebits; j++) { if (BIT_TEST(LargeSieve, j)) { /* Definitely composite, skip */ continue; } #ifdef DEBUG_LARGE (void)fprintf(stderr, "test q = largebase+%lu\n", 2 * j); #endif BN_set_word(q, (unsigned long)(2 * j)); BN_add(q, q, largebase); if (0 > qfileout(stdout, (uint32_t) QTYPE_SOPHIE_GERMAINE, (uint32_t) QTEST_SIEVE, largetries, (uint32_t) (power - 1), /* MSB */ (uint32_t) (0), /* generator unknown */ q)) { break; } r++; /* count q */ } time(&time_stop); free(LargeSieve); free(SmallSieve); free(TinySieve); fflush(stdout); /* fclose(stdout); */ (void) fprintf(stderr, "%.24s Found %u candidates\n", ctime(&time_stop), r); return (0); } static void usage(void) { (void)fprintf(stderr, "Usage: %s <megabytes> <bits> [initial]\n" "Possible values for <megabytes>: 0, %lu to %lu\n" "Possible values for <bits>: %lu to %lu\n", getprogname(), LARGE_MINIMUM, LARGE_MAXIMUM, (unsigned long) TEST_MINIMUM, (unsigned long) TEST_MAXIMUM); exit(1); }