/* $NetBSD: if_kse.c,v 1.38.2.1 2019/11/10 13:05:15 martin Exp $ */ /*- * Copyright (c) 2006 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Tohru Nishimura. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Micrel 8841/8842 10/100 ethernet driver */ #include __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.38.2.1 2019/11/10 13:05:15 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KSE_LINKDEBUG 0 #define CSR_READ_4(sc, off) \ bus_space_read_4(sc->sc_st, sc->sc_sh, off) #define CSR_WRITE_4(sc, off, val) \ bus_space_write_4(sc->sc_st, sc->sc_sh, off, val) #define CSR_READ_2(sc, off) \ bus_space_read_2(sc->sc_st, sc->sc_sh, off) #define CSR_WRITE_2(sc, off, val) \ bus_space_write_2(sc->sc_st, sc->sc_sh, off, val) #define MDTXC 0x000 /* DMA transmit control */ #define MDRXC 0x004 /* DMA receive control */ #define MDTSC 0x008 /* DMA transmit start */ #define MDRSC 0x00c /* DMA receive start */ #define TDLB 0x010 /* transmit descriptor list base */ #define RDLB 0x014 /* receive descriptor list base */ #define MTR0 0x020 /* multicast table 31:0 */ #define MTR1 0x024 /* multicast table 63:32 */ #define INTEN 0x028 /* interrupt enable */ #define INTST 0x02c /* interrupt status */ #define MARL 0x200 /* MAC address low */ #define MARM 0x202 /* MAC address middle */ #define MARH 0x204 /* MAC address high */ #define GRR 0x216 /* global reset */ #define CIDR 0x400 /* chip ID and enable */ #define CGCR 0x40a /* chip global control */ #define IACR 0x4a0 /* indirect access control */ #define IADR1 0x4a2 /* indirect access data 66:63 */ #define IADR2 0x4a4 /* indirect access data 47:32 */ #define IADR3 0x4a6 /* indirect access data 63:48 */ #define IADR4 0x4a8 /* indirect access data 15:0 */ #define IADR5 0x4aa /* indirect access data 31:16 */ #define P1CR4 0x512 /* port 1 control 4 */ #define P1SR 0x514 /* port 1 status */ #define P2CR4 0x532 /* port 2 control 4 */ #define P2SR 0x534 /* port 2 status */ #define PxCR_STARTNEG (1U << 9) /* restart auto negotiation */ #define PxCR_AUTOEN (1U << 7) /* auto negotiation enable */ #define PxCR_SPD100 (1U << 6) /* force speed 100 */ #define PxCR_USEFDX (1U << 5) /* force full duplex */ #define PxCR_USEFC (1U << 4) /* advertise pause flow control */ #define PxSR_ACOMP (1U << 6) /* auto negotiation completed */ #define PxSR_SPD100 (1U << 10) /* speed is 100Mbps */ #define PxSR_FDX (1U << 9) /* full duplex */ #define PxSR_LINKUP (1U << 5) /* link is good */ #define PxSR_RXFLOW (1U << 12) /* receive flow control active */ #define PxSR_TXFLOW (1U << 11) /* transmit flow control active */ #define TXC_BS_MSK 0x3f000000 /* burst size */ #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */ #define TXC_UCG (1U<<18) /* generate UDP checksum */ #define TXC_TCG (1U<<17) /* generate TCP checksum */ #define TXC_ICG (1U<<16) /* generate IP checksum */ #define TXC_FCE (1U<<9) /* enable flowcontrol */ #define TXC_EP (1U<<2) /* enable automatic padding */ #define TXC_AC (1U<<1) /* add CRC to frame */ #define TXC_TEN (1) /* enable DMA to run */ #define RXC_BS_MSK 0x3f000000 /* burst size */ #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */ #define RXC_IHAE (1U<<19) /* IP header alignment enable */ #define RXC_UCC (1U<<18) /* run UDP checksum */ #define RXC_TCC (1U<<17) /* run TDP checksum */ #define RXC_ICC (1U<<16) /* run IP checksum */ #define RXC_FCE (1U<<9) /* enable flowcontrol */ #define RXC_RB (1U<<6) /* receive broadcast frame */ #define RXC_RM (1U<<5) /* receive multicast frame */ #define RXC_RU (1U<<4) /* receive unicast frame */ #define RXC_RE (1U<<3) /* accept error frame */ #define RXC_RA (1U<<2) /* receive all frame */ #define RXC_MHTE (1U<<1) /* use multicast hash table */ #define RXC_REN (1) /* enable DMA to run */ #define INT_DMLCS (1U<<31) /* link status change */ #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */ #define INT_DMRS (1U<<29) /* frame was received */ #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */ #define T0_OWN (1U<<31) /* desc is ready to Tx */ #define R0_OWN (1U<<31) /* desc is empty */ #define R0_FS (1U<<30) /* first segment of frame */ #define R0_LS (1U<<29) /* last segment of frame */ #define R0_IPE (1U<<28) /* IP checksum error */ #define R0_TCPE (1U<<27) /* TCP checksum error */ #define R0_UDPE (1U<<26) /* UDP checksum error */ #define R0_ES (1U<<25) /* error summary */ #define R0_MF (1U<<24) /* multicast frame */ #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */ #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */ #define R0_RE (1U<<19) /* MII reported error */ #define R0_TL (1U<<18) /* frame too long, beyond 1518 */ #define R0_RF (1U<<17) /* damaged runt frame */ #define R0_CE (1U<<16) /* CRC error */ #define R0_FT (1U<<15) /* frame type */ #define R0_FL_MASK 0x7ff /* frame length 10:0 */ #define T1_IC (1U<<31) /* post interrupt on complete */ #define T1_FS (1U<<30) /* first segment of frame */ #define T1_LS (1U<<29) /* last segment of frame */ #define T1_IPCKG (1U<<28) /* generate IP checksum */ #define T1_TCPCKG (1U<<27) /* generate TCP checksum */ #define T1_UDPCKG (1U<<26) /* generate UDP checksum */ #define T1_TER (1U<<25) /* end of ring */ #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */ #define T1_TBS_MASK 0x7ff /* segment size 10:0 */ #define R1_RER (1U<<25) /* end of ring */ #define R1_RBS_MASK 0x7fc /* segment size 10:0 */ #define KSE_NTXSEGS 16 #define KSE_TXQUEUELEN 64 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1) #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4) #define KSE_NTXDESC 256 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1) #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK) #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK) #define KSE_NRXDESC 64 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1) #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK) struct tdes { uint32_t t0, t1, t2, t3; }; struct rdes { uint32_t r0, r1, r2, r3; }; struct kse_control_data { struct tdes kcd_txdescs[KSE_NTXDESC]; struct rdes kcd_rxdescs[KSE_NRXDESC]; }; #define KSE_CDOFF(x) offsetof(struct kse_control_data, x) #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)]) #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)]) struct kse_txsoft { struct mbuf *txs_mbuf; /* head of our mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ int txs_firstdesc; /* first descriptor in packet */ int txs_lastdesc; /* last descriptor in packet */ int txs_ndesc; /* # of descriptors used */ }; struct kse_rxsoft { struct mbuf *rxs_mbuf; /* head of our mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; struct kse_softc { device_t sc_dev; /* generic device information */ bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_sh; /* bus space handle */ bus_dma_tag_t sc_dmat; /* bus DMA tag */ struct ethercom sc_ethercom; /* Ethernet common data */ void *sc_ih; /* interrupt cookie */ struct ifmedia sc_media; /* ifmedia information */ int sc_linkstatus; /* last P1SR register value */ callout_t sc_callout; /* MII tick callout */ callout_t sc_stat_ch; /* statistics counter callout */ bus_dmamap_t sc_cddmamap; /* control data DMA map */ #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr struct kse_control_data *sc_control_data; #define sc_txdescs sc_control_data->kcd_txdescs #define sc_rxdescs sc_control_data->kcd_rxdescs struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN]; struct kse_rxsoft sc_rxsoft[KSE_NRXDESC]; int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next ready Tx descriptor */ int sc_txsfree; /* number of free Tx jobs */ int sc_txsnext; /* next ready Tx job */ int sc_txsdirty; /* dirty Tx jobs */ int sc_rxptr; /* next ready Rx descriptor/descsoft */ uint32_t sc_txc, sc_rxc; uint32_t sc_t1csum; int sc_mcsum; uint32_t sc_inten; uint32_t sc_chip; uint8_t sc_altmac[16][ETHER_ADDR_LEN]; uint16_t sc_vlan[16]; #ifdef KSE_EVENT_COUNTERS struct ksext { char evcntname[3][8]; struct evcnt pev[3][34]; } sc_ext; /* switch statistics */ #endif }; #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x))) #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x))) #define KSE_CDTXSYNC(sc, x, n, ops) \ do { \ int __x, __n; \ \ __x = (x); \ __n = (n); \ \ /* If it will wrap around, sync to the end of the ring. */ \ if ((__x + __n) > KSE_NTXDESC) { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ KSE_CDTXOFF(__x), sizeof(struct tdes) * \ (KSE_NTXDESC - __x), (ops)); \ __n -= (KSE_NTXDESC - __x); \ __x = 0; \ } \ \ /* Now sync whatever is left. */ \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \ } while (/*CONSTCOND*/0) #define KSE_CDRXSYNC(sc, x, ops) \ do { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \ } while (/*CONSTCOND*/0) #define KSE_INIT_RXDESC(sc, x) \ do { \ struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \ struct mbuf *__m = __rxs->rxs_mbuf; \ \ __m->m_data = __m->m_ext.ext_buf; \ __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \ __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \ __rxd->r0 = R0_OWN; \ KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \ } while (/*CONSTCOND*/0) u_int kse_burstsize = 8; /* DMA burst length tuning knob */ #ifdef KSEDIAGNOSTIC u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */ #endif static int kse_match(device_t, cfdata_t, void *); static void kse_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc), kse_match, kse_attach, NULL, NULL); static int kse_ioctl(struct ifnet *, u_long, void *); static void kse_start(struct ifnet *); static void kse_watchdog(struct ifnet *); static int kse_init(struct ifnet *); static void kse_stop(struct ifnet *, int); static void kse_reset(struct kse_softc *); static void kse_set_filter(struct kse_softc *); static int add_rxbuf(struct kse_softc *, int); static void rxdrain(struct kse_softc *); static int kse_intr(void *); static void rxintr(struct kse_softc *); static void txreap(struct kse_softc *); static void lnkchg(struct kse_softc *); static int ksephy_change(struct ifnet *); static void ksephy_status(struct ifnet *, struct ifmediareq *); static void nopifm_status(struct ifnet *, struct ifmediareq *); static void phy_tick(void *); #ifdef KSE_EVENT_COUNTERS static void stat_tick(void *); static void zerostats(struct kse_softc *); #endif static int kse_match(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) && PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK) return 1; return 0; } static void kse_attach(device_t parent, device_t self, void *aux) { struct kse_softc *sc = device_private(self); struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; struct ifmedia *ifm; uint8_t enaddr[ETHER_ADDR_LEN]; bus_dma_segment_t seg; int i, error, nseg; pcireg_t pmode; int pmreg; char intrbuf[PCI_INTRSTR_LEN]; if (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) { printf(": unable to map device registers\n"); return; } sc->sc_dev = self; sc->sc_dmat = pa->pa_dmat; /* Make sure bus mastering is enabled. */ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* Get it out of power save mode, if needed. */ if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) & PCI_PMCSR_STATE_MASK; if (pmode == PCI_PMCSR_STATE_D3) { /* * The card has lost all configuration data in * this state, so punt. */ printf("%s: unable to wake from power state D3\n", device_xname(sc->sc_dev)); return; } if (pmode != PCI_PMCSR_STATE_D0) { printf("%s: waking up from power date D%d\n", device_xname(sc->sc_dev), pmode); pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, PCI_PMCSR_STATE_D0); } } sc->sc_chip = PCI_PRODUCT(pa->pa_id); printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n", sc->sc_chip, PCI_REVISION(pa->pa_class)); /* * Read the Ethernet address from the EEPROM. */ i = CSR_READ_2(sc, MARL); enaddr[5] = i; enaddr[4] = i >> 8; i = CSR_READ_2(sc, MARM); enaddr[3] = i; enaddr[2] = i >> 8; i = CSR_READ_2(sc, MARH); enaddr[1] = i; enaddr[0] = i >> 8; printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev), ether_sprintf(enaddr)); /* * Enable chip function. */ CSR_WRITE_2(sc, CIDR, 1); /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); /* * Allocate the control data structures, and create and load the * DMA map for it. */ error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); goto fail_0; } error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, sizeof(struct kse_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); goto fail_1; } error = bus_dmamap_create(sc->sc_dmat, sizeof(struct kse_control_data), 1, sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, " "error = %d\n", error); goto fail_2; } error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0); if (error != 0) { aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); goto fail_3; } for (i = 0; i < KSE_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, KSE_NTXSEGS, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } for (i = 0; i < KSE_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } callout_init(&sc->sc_callout, 0); callout_init(&sc->sc_stat_ch, 0); /* Initialize ifmedia structures. */ ifm = &sc->sc_media; sc->sc_ethercom.ec_ifmedia = ifm; sc->sc_linkstatus = 0; if (sc->sc_chip == 0x8841) { ifmedia_init(ifm, 0, ksephy_change, ksephy_status); ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); } else { /* * pretend 100FDX w/ no alternative media selection. * 8842 MAC is tied with a builtin 3 port switch. * It can do rate control over either of tx / rx direction * respectively, tough, this driver leaves the rate unlimited * intending 100Mbps maximum. * 2 ports behave in AN mode and this driver provides no mean * to see the exact details. */ ifmedia_init(ifm, 0, NULL, nopifm_status); ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX); } printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n", device_xname(sc->sc_dev)); ifp = &sc->sc_ethercom.ec_if; strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = kse_ioctl; ifp->if_start = kse_start; ifp->if_watchdog = kse_watchdog; ifp->if_init = kse_init; ifp->if_stop = kse_stop; IFQ_SET_READY(&ifp->if_snd); /* * capable of 802.1Q VLAN-sized frames, * can do IPv4, TCPv4, and UDPv4 checksums in hardware. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; if_attach(ifp); ether_ifattach(ifp, enaddr); #ifdef KSE_EVENT_COUNTERS int p = (sc->sc_chip == 0x8842) ? 3 : 1; for (i = 0; i < p; i++) { struct ksext *ee = &sc->sc_ext; snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]), "%s.%d", device_xname(sc->sc_dev), i+1); evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxLoPriotyByte"); evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxHiPriotyByte"); evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxUndersizePkt"); evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxFragments"); evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxOversize"); evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxJabbers"); evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxSymbolError"); evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxCRCError"); evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxAlignmentError"); evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxControl8808Pkts"); evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxPausePkts"); evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxBroadcast"); evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxMulticast"); evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxUnicast"); evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "Rx64Octets"); evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "Rx65To127Octets"); evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "Rx128To255Octets"); evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "Rx255To511Octets"); evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "Rx512To1023Octets"); evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "Rx1024To1522Octets"); evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxLoPriotyByte"); evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxHiPriotyByte"); evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxLateCollision"); evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxPausePkts"); evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxBroadcastPkts"); evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxMulticastPkts"); evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxUnicastPkts"); evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxDeferred"); evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxTotalCollision"); evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxExcessiveCollision"); evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxSingleCollision"); evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxMultipleCollision"); evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "TxDropPkts"); evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC, NULL, ee->evcntname[i], "RxDropPkts"); } #endif return; fail_5: for (i = 0; i < KSE_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_4: for (i = 0; i < KSE_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct kse_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &seg, nseg); fail_0: return; } static int kse_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct kse_softc *sc = ifp->if_softc; int s, error; s = splnet(); switch (cmd) { default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd == SIOCSIFCAP) error = (*ifp->if_init)(ifp); if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the hardware filter * accordingly. */ kse_set_filter(sc); } break; } kse_start(ifp); splx(s); return error; } static int kse_init(struct ifnet *ifp) { struct kse_softc *sc = ifp->if_softc; uint32_t paddr; int i, error = 0; /* cancel pending I/O */ kse_stop(ifp, 0); /* reset all registers but PCI configuration */ kse_reset(sc); /* craft Tx descriptor ring */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) { sc->sc_txdescs[i].t3 = paddr; paddr += sizeof(struct tdes); } sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0); KSE_CDTXSYNC(sc, 0, KSE_NTXDESC, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_txfree = KSE_NTXDESC; sc->sc_txnext = 0; for (i = 0; i < KSE_TXQUEUELEN; i++) sc->sc_txsoft[i].txs_mbuf = NULL; sc->sc_txsfree = KSE_TXQUEUELEN; sc->sc_txsnext = 0; sc->sc_txsdirty = 0; /* craft Rx descriptor ring */ memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs)); for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) { sc->sc_rxdescs[i].r3 = paddr; paddr += sizeof(struct rdes); } sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0); for (i = 0; i < KSE_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_mbuf == NULL) { if ((error = add_rxbuf(sc, i)) != 0) { printf("%s: unable to allocate or map rx " "buffer %d, error = %d\n", device_xname(sc->sc_dev), i, error); rxdrain(sc); goto out; } } else KSE_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; /* hand Tx/Rx rings to HW */ CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0)); CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0)); sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE; sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE; if (ifp->if_flags & IFF_PROMISC) sc->sc_rxc |= RXC_RA; if (ifp->if_flags & IFF_BROADCAST) sc->sc_rxc |= RXC_RB; sc->sc_t1csum = sc->sc_mcsum = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { sc->sc_rxc |= RXC_ICC; sc->sc_mcsum |= M_CSUM_IPv4; } if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { sc->sc_txc |= TXC_ICG; sc->sc_t1csum |= T1_IPCKG; } if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { sc->sc_rxc |= RXC_TCC; sc->sc_mcsum |= M_CSUM_TCPv4; } if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { sc->sc_txc |= TXC_TCG; sc->sc_t1csum |= T1_TCPCKG; } if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { sc->sc_rxc |= RXC_UCC; sc->sc_mcsum |= M_CSUM_UDPv4; } if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { sc->sc_txc |= TXC_UCG; sc->sc_t1csum |= T1_UDPCKG; } sc->sc_txc |= (kse_burstsize << TXC_BS_SFT); sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT); /* build multicast hash filter if necessary */ kse_set_filter(sc); /* set current media */ if (sc->sc_chip == 0x8841) (void)ksephy_change(ifp); /* enable transmitter and receiver */ CSR_WRITE_4(sc, MDTXC, sc->sc_txc); CSR_WRITE_4(sc, MDRXC, sc->sc_rxc); CSR_WRITE_4(sc, MDRSC, 1); /* enable interrupts */ sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS; if (sc->sc_chip == 0x8841) sc->sc_inten |= INT_DMLCS; CSR_WRITE_4(sc, INTST, ~0); CSR_WRITE_4(sc, INTEN, sc->sc_inten); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; if (sc->sc_chip == 0x8841) { /* start one second timer */ callout_reset(&sc->sc_callout, hz, phy_tick, sc); } #ifdef KSE_EVENT_COUNTERS /* start statistics gather 1 minute timer */ zerostats(sc); callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc); #endif out: if (error) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; printf("%s: interface not running\n", device_xname(sc->sc_dev)); } return error; } static void kse_stop(struct ifnet *ifp, int disable) { struct kse_softc *sc = ifp->if_softc; struct kse_txsoft *txs; int i; if (sc->sc_chip == 0x8841) callout_stop(&sc->sc_callout); callout_stop(&sc->sc_stat_ch); sc->sc_txc &= ~TXC_TEN; sc->sc_rxc &= ~RXC_REN; CSR_WRITE_4(sc, MDTXC, sc->sc_txc); CSR_WRITE_4(sc, MDRXC, sc->sc_rxc); for (i = 0; i < KSE_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; if (disable) rxdrain(sc); } static void kse_reset(struct kse_softc *sc) { CSR_WRITE_2(sc, GRR, 1); delay(1000); /* PDF does not mention the delay amount */ CSR_WRITE_2(sc, GRR, 0); CSR_WRITE_2(sc, CIDR, 1); } static void kse_watchdog(struct ifnet *ifp) { struct kse_softc *sc = ifp->if_softc; /* * Since we're not interrupting every packet, sweep * up before we report an error. */ txreap(sc); if (sc->sc_txfree != KSE_NTXDESC) { printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n", device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext); ifp->if_oerrors++; /* Reset the interface. */ kse_init(ifp); } else if (ifp->if_flags & IFF_DEBUG) printf("%s: recovered from device timeout\n", device_xname(sc->sc_dev)); /* Try to get more packets going. */ kse_start(ifp); } static void kse_start(struct ifnet *ifp) { struct kse_softc *sc = ifp->if_softc; struct mbuf *m0, *m; struct kse_txsoft *txs; bus_dmamap_t dmamap; int error, nexttx, lasttx, ofree, seg; uint32_t tdes0; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; /* Remember the previous number of free descriptors. */ ofree = sc->sc_txfree; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->sc_txsfree < KSE_TXQUEUE_GC) { txreap(sc); if (sc->sc_txsfree == 0) break; } txs = &sc->sc_txsoft[sc->sc_txsnext]; dmamap = txs->txs_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { if (error == EFBIG) { printf("%s: Tx packet consumes too many " "DMA segments, dropping...\n", device_xname(sc->sc_dev)); IFQ_DEQUEUE(&ifp->if_snd, m0); m_freem(m0); continue; } /* Short on resources, just stop for now. */ break; } if (dmamap->dm_nsegs > sc->sc_txfree) { /* * Not enough free descriptors to transmit this * packet. We haven't committed anything yet, * so just unload the DMA map, put the packet * back on the queue, and punt. Notify the upper * layer that there are not more slots left. */ ifp->if_flags |= IFF_OACTIVE; bus_dmamap_unload(sc->sc_dmat, dmamap); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); lasttx = -1; tdes0 = 0; for (nexttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = KSE_NEXTTX(nexttx)) { struct tdes *tdes = &sc->sc_txdescs[nexttx]; /* * If this is the first descriptor we're * enqueueing, don't set the OWN bit just * yet. That could cause a race condition. * We'll do it below. */ tdes->t2 = dmamap->dm_segs[seg].ds_addr; tdes->t1 = sc->sc_t1csum | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK); tdes->t0 = tdes0; tdes0 |= T0_OWN; lasttx = nexttx; } /* * Outgoing NFS mbuf must be unloaded when Tx completed. * Without T1_IC NFS mbuf is left unack'ed for excessive * time and NFS stops to proceed until kse_watchdog() * calls txreap() to reclaim the unack'ed mbuf. * It's painful to traverse every mbuf chain to determine * whether someone is waiting for Tx completion. */ m = m0; do { if ((m->m_flags & M_EXT) && m->m_ext.ext_free) { sc->sc_txdescs[lasttx].t1 |= T1_IC; break; } } while ((m = m->m_next) != NULL); /* Write last T0_OWN bit of the 1st segment */ sc->sc_txdescs[lasttx].t1 |= T1_LS; sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS; sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN; KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Tell DMA start transmit */ CSR_WRITE_4(sc, MDTSC, 1); txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; txs->txs_ndesc = dmamap->dm_nsegs; sc->sc_txfree -= txs->txs_ndesc; sc->sc_txnext = nexttx; sc->sc_txsfree--; sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext); /* * Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (sc->sc_txfree != ofree) { /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } static void kse_set_filter(struct kse_softc *sc) { struct ether_multistep step; struct ether_multi *enm; struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &ec->ec_if; uint32_t h, hashes[2]; sc->sc_rxc &= ~(RXC_MHTE | RXC_RM); ifp->if_flags &= ~IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) return; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); if (enm == NULL) { ETHER_UNLOCK(ec); return; } hashes[0] = hashes[1] = 0; do { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ETHER_UNLOCK(ec); goto allmulti; } h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; hashes[h >> 5] |= 1 << (h & 0x1f); ETHER_NEXT_MULTI(step, enm); } while (enm != NULL); ETHER_UNLOCK(ec); sc->sc_rxc |= RXC_MHTE; CSR_WRITE_4(sc, MTR0, hashes[0]); CSR_WRITE_4(sc, MTR1, hashes[1]); return; allmulti: sc->sc_rxc |= RXC_RM; ifp->if_flags |= IFF_ALLMULTI; } static int add_rxbuf(struct kse_softc *sc, int idx) { struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: can't load rx DMA map %d, error = %d\n", device_xname(sc->sc_dev), idx, error); panic("kse_add_rxbuf"); } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); KSE_INIT_RXDESC(sc, idx); return 0; } static void rxdrain(struct kse_softc *sc) { struct kse_rxsoft *rxs; int i; for (i = 0; i < KSE_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } static int kse_intr(void *arg) { struct kse_softc *sc = arg; uint32_t isr; if ((isr = CSR_READ_4(sc, INTST)) == 0) return 0; if (isr & INT_DMRS) rxintr(sc); if (isr & INT_DMTS) txreap(sc); if (isr & INT_DMLCS) lnkchg(sc); if (isr & INT_DMRBUS) printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev)); CSR_WRITE_4(sc, INTST, isr); return 1; } static void rxintr(struct kse_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct kse_rxsoft *rxs; struct mbuf *m; uint32_t rxstat; int i, len; for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; KSE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = sc->sc_rxdescs[i].r0; if (rxstat & R0_OWN) /* desc is left empty */ break; /* R0_FS | R0_LS must have been marked for this desc */ if (rxstat & R0_ES) { ifp->if_ierrors++; #define PRINTERR(bit, str) \ if (rxstat & (bit)) \ printf("%s: receive error: %s\n", \ device_xname(sc->sc_dev), str) PRINTERR(R0_TL, "frame too long"); PRINTERR(R0_RF, "runt frame"); PRINTERR(R0_CE, "bad FCS"); #undef PRINTERR KSE_INIT_RXDESC(sc, i); continue; } /* HW errata; frame might be too small or too large */ bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); len = rxstat & R0_FL_MASK; len -= ETHER_CRC_LEN; /* Trim CRC off */ m = rxs->rxs_mbuf; if (add_rxbuf(sc, i) != 0) { ifp->if_ierrors++; KSE_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = len; if (sc->sc_mcsum) { m->m_pkthdr.csum_flags |= sc->sc_mcsum; if (rxstat & R0_IPE) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; if (rxstat & (R0_TCPE | R0_UDPE)) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if_percpuq_enqueue(ifp->if_percpuq, m); #ifdef KSEDIAGNOSTIC if (kse_monitor_rxintr > 0) { printf("m stat %x data %p len %d\n", rxstat, m->m_data, m->m_len); } #endif } sc->sc_rxptr = i; } static void txreap(struct kse_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct kse_txsoft *txs; uint32_t txstat; int i; ifp->if_flags &= ~IFF_OACTIVE; for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN; i = KSE_NEXTTXS(i), sc->sc_txsfree++) { txs = &sc->sc_txsoft[i]; KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); txstat = sc->sc_txdescs[txs->txs_lastdesc].t0; if (txstat & T0_OWN) /* desc is still in use */ break; /* There is no way to tell transmission status per frame */ ifp->if_opackets++; sc->sc_txfree += txs->txs_ndesc; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } sc->sc_txsdirty = i; if (sc->sc_txsfree == KSE_TXQUEUELEN) ifp->if_timer = 0; } static void lnkchg(struct kse_softc *sc) { struct ifmediareq ifmr; #if KSE_LINKDEBUG > 0 printf("link change detected\n"); #endif ksephy_status(&sc->sc_ethercom.ec_if, &ifmr); } static int ksephy_change(struct ifnet *ifp) { struct kse_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->sc_media; uint16_t p1cr4; #if KSE_LINKDEBUG > 0 printf("ifm_media: %x\n", ifm->ifm_cur->ifm_media); #endif p1cr4 = 0; if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) { p1cr4 |= PxCR_STARTNEG; /* restart AN */ p1cr4 |= PxCR_AUTOEN; /* enable AN */ p1cr4 |= PxCR_USEFC; /* advertise flow control pause */ p1cr4 |= 0xf; /* advertise 100-FDX,100-HDX,10-FDX,10-HDX */ } else { if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX) p1cr4 |= PxCR_SPD100; if (ifm->ifm_media & IFM_FDX) p1cr4 |= PxCR_USEFDX; } CSR_WRITE_2(sc, P1CR4, p1cr4); #if KSE_LINKDEBUG > 0 printf("P1CR4: %04x\n", p1cr4); #endif return 0; } static void ksephy_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct kse_softc *sc = ifp->if_softc; int media_status; u_int media_active; uint16_t p1cr4, p1sr; media_status = IFM_AVALID; media_active = IFM_ETHER; p1cr4 = CSR_READ_2(sc, P1CR4); p1sr = CSR_READ_2(sc, P1SR); #if KSE_LINKDEBUG > 0 printf("P1SR: %04x link %s\n", p1sr, (p1sr & PxSR_LINKUP) ? "up" : "down"); #endif sc->sc_linkstatus = p1sr; if (p1sr & PxSR_LINKUP) media_status |= IFM_ACTIVE; if (p1cr4 & PxCR_AUTOEN) { if ((p1sr & PxSR_ACOMP) == 0) { media_active |= IFM_NONE; goto out; /* Negotiation in progress */ } } media_active |= (p1sr & PxSR_SPD100) ? IFM_100_TX : IFM_10_T; if (p1sr & PxSR_FDX) media_active |= IFM_FDX; if (p1sr & PxSR_RXFLOW) media_active |= IFM_FLOW | IFM_ETH_RXPAUSE; if (p1sr & PxSR_TXFLOW) media_active |= IFM_FLOW | IFM_ETH_TXPAUSE; out: ifmr->ifm_active = media_active; ifmr->ifm_status = media_status; } static void nopifm_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct kse_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->sc_media; #if KSE_LINKDEBUG > 1 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR)); #endif /* 8842 MAC pretends 100FDX all the time */ ifmr->ifm_active = ifm->ifm_cur->ifm_media; ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; } static void phy_tick(void *arg) { struct kse_softc *sc = arg; struct ifmediareq ifmr; int s; uint16_t p1sr; s = splnet(); p1sr = CSR_READ_2(sc, P1SR); if (sc->sc_linkstatus != p1sr) ksephy_status(&sc->sc_ethercom.ec_if, &ifmr); splx(s); callout_reset(&sc->sc_callout, hz, phy_tick, sc); } #ifdef KSE_EVENT_COUNTERS static void stat_tick(void *arg) { struct kse_softc *sc = arg; struct ksext *ee = &sc->sc_ext; int nport, p, i, val; nport = (sc->sc_chip == 0x8842) ? 3 : 1; for (p = 0; p < nport; p++) { for (i = 0; i < 32; i++) { val = 0x1c00 | (p * 0x20 + i); CSR_WRITE_2(sc, IACR, val); do { val = CSR_READ_2(sc, IADR5) << 16; } while ((val & (1U << 30)) == 0); if (val & (1U << 31)) { (void)CSR_READ_2(sc, IADR4); val = 0x3fffffff; /* has made overflow */ } else { val &= 0x3fff0000; /* 29:16 */ val |= CSR_READ_2(sc, IADR4); /* 15:0 */ } ee->pev[p][i].ev_count += val; /* i (0-31) */ } CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p); ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */ CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1); ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */ } callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg); } static void zerostats(struct kse_softc *sc) { struct ksext *ee = &sc->sc_ext; int nport, p, i, val; /* Make sure all the HW counters get zero */ nport = (sc->sc_chip == 0x8842) ? 3 : 1; for (p = 0; p < nport; p++) { for (i = 0; i < 31; i++) { val = 0x1c00 | (p * 0x20 + i); CSR_WRITE_2(sc, IACR, val); do { val = CSR_READ_2(sc, IADR5) << 16; } while ((val & (1U << 30)) == 0); (void)CSR_READ_2(sc, IADR4); ee->pev[p][i].ev_count = 0; } } } #endif