/* $NetBSD: if_fwip.c,v 1.29 2018/11/15 10:23:55 maxv Exp $ */ /*- * Copyright (c) 2004 * Doug Rabson * Copyright (c) 2002-2003 * Hidetoshi Shimokawa. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * * This product includes software developed by Hidetoshi Shimokawa. * * 4. Neither the name of the author nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $ */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.29 2018/11/15 10:23:55 maxv Exp $"); #include <sys/param.h> #include <sys/bus.h> #include <sys/device.h> #include <sys/errno.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_ieee1394.h> #include <net/if_types.h> #include <dev/ieee1394/firewire.h> #include <dev/ieee1394/firewirereg.h> #include <dev/ieee1394/iec13213.h> #include <dev/ieee1394/if_fwipvar.h> /* * We really need a mechanism for allocating regions in the FIFO * address space. We pick a address in the OHCI controller's 'middle' * address space. This means that the controller will automatically * send responses for us, which is fine since we don't have any * important information to put in the response anyway. */ #define INET_FIFO 0xfffe00000000LL #define FWIPDEBUG if (fwipdebug) aprint_debug_ifnet #define TX_MAX_QUEUE (FWMAXQUEUE - 1) struct fw_hwaddr { uint32_t sender_unique_ID_hi; uint32_t sender_unique_ID_lo; uint8_t sender_max_rec; uint8_t sspd; uint16_t sender_unicast_FIFO_hi; uint32_t sender_unicast_FIFO_lo; }; static int fwipmatch(device_t, cfdata_t, void *); static void fwipattach(device_t, device_t, void *); static int fwipdetach(device_t, int); static int fwipactivate(device_t, enum devact); /* network interface */ static void fwip_start(struct ifnet *); static int fwip_ioctl(struct ifnet *, u_long, void *); static int fwip_init(struct ifnet *); static void fwip_stop(struct ifnet *, int); static void fwip_post_busreset(void *); static void fwip_output_callback(struct fw_xfer *); static void fwip_async_output(struct fwip_softc *, struct ifnet *); static void fwip_stream_input(struct fw_xferq *); static void fwip_unicast_input(struct fw_xfer *); static int fwipdebug = 0; static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */ static int tx_speed = 2; static int rx_queue_len = FWMAXQUEUE; /* * Setup sysctl(3) MIB, hw.fwip.* * * TBD condition CTLFLAG_PERMANENT on being a module or not */ SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup") { int rc, fwip_node_num; const struct sysctlnode *node; if ((rc = sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip", SYSCTL_DESCR("fwip controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { goto err; } fwip_node_num = node->sysctl_num; /* fwip RX queue length */ if ((rc = sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"), NULL, 0, &rx_queue_len, 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) { goto err; } /* fwip RX queue length */ if ((rc = sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"), NULL, 0, &fwipdebug, 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) { goto err; } return; err: aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc), fwipmatch, fwipattach, fwipdetach, fwipactivate); static int fwipmatch(device_t parent, cfdata_t cf, void *aux) { struct fw_attach_args *fwa = aux; if (strcmp(fwa->name, "fwip") == 0) return 1; return 0; } static void fwipattach(device_t parent, device_t self, void *aux) { struct fwip_softc *sc = device_private(self); struct fw_attach_args *fwa = (struct fw_attach_args *)aux; struct fw_hwaddr *hwaddr; struct ifnet *ifp; aprint_naive("\n"); aprint_normal(": IP over IEEE1394\n"); sc->sc_fd.dev = self; sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if; hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr; ifp = sc->sc_eth.fwip_ifp; mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET); mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET); /* XXX */ sc->sc_dma_ch = -1; sc->sc_fd.fc = fwa->fc; if (tx_speed < 0) tx_speed = sc->sc_fd.fc->speed; sc->sc_fd.post_explore = NULL; sc->sc_fd.post_busreset = fwip_post_busreset; sc->sc_eth.fwip = sc; /* * Encode our hardware the way that arp likes it. */ hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi); hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo); hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec; hwaddr->sspd = sc->sc_fd.fc->speed; hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32)); hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO); /* fill the rest and attach interface */ ifp->if_softc = &sc->sc_eth; strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); ifp->if_start = fwip_start; ifp->if_ioctl = fwip_ioctl; ifp->if_init = fwip_init; ifp->if_stop = fwip_stop; ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST); IFQ_SET_READY(&ifp->if_snd); IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE); if_attach(ifp); ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr); if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); else pmf_class_network_register(self, ifp); FWIPDEBUG(ifp, "interface created\n"); return; } static int fwipdetach(device_t self, int flags) { struct fwip_softc *sc = device_private(self); struct ifnet *ifp = sc->sc_eth.fwip_ifp; fwip_stop(sc->sc_eth.fwip_ifp, 1); ieee1394_ifdetach(ifp); if_detach(ifp); mutex_destroy(&sc->sc_mtx); mutex_destroy(&sc->sc_fwb.fwb_mtx); return 0; } static int fwipactivate(device_t self, enum devact act) { struct fwip_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(sc->sc_eth.fwip_ifp); return 0; default: return EOPNOTSUPP; } } static void fwip_start(struct ifnet *ifp) { struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; FWIPDEBUG(ifp, "starting\n"); if (sc->sc_dma_ch < 0) { struct mbuf *m = NULL; FWIPDEBUG(ifp, "not ready\n"); do { IF_DEQUEUE(&ifp->if_snd, m); if (m != NULL) m_freem(m); ifp->if_oerrors++; } while (m != NULL); return; } ifp->if_flags |= IFF_OACTIVE; if (ifp->if_snd.ifq_len != 0) fwip_async_output(sc, ifp); ifp->if_flags &= ~IFF_OACTIVE; } static int fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data) { int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { case IFF_RUNNING: fwip_stop(ifp, 0); break; case IFF_UP: fwip_init(ifp); break; default: break; } break; case SIOCADDMULTI: case SIOCDELMULTI: break; default: error = ieee1394_ioctl(ifp, cmd, data); if (error == ENETRESET) error = 0; break; } splx(s); return error; } static int fwip_init(struct ifnet *ifp) { struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; struct firewire_comm *fc; struct fw_xferq *xferq; struct fw_xfer *xfer; struct mbuf *m; int i; FWIPDEBUG(ifp, "initializing\n"); fc = sc->sc_fd.fc; if (sc->sc_dma_ch < 0) { sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0); if (sc->sc_dma_ch < 0) return ENXIO; xferq = fc->ir[sc->sc_dma_ch]; xferq->flag |= FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM; xferq->flag &= ~0xff; xferq->flag |= broadcast_channel & 0xff; /* register fwip_input handler */ xferq->sc = (void *) sc; xferq->hand = fwip_stream_input; xferq->bnchunk = rx_queue_len; xferq->bnpacket = 1; xferq->psize = MCLBYTES; xferq->queued = 0; xferq->buf = NULL; xferq->bulkxfer = (struct fw_bulkxfer *) malloc( sizeof(struct fw_bulkxfer) * xferq->bnchunk, M_FW, M_WAITOK); if (xferq->bulkxfer == NULL) { aprint_error_ifnet(ifp, "if_fwip: malloc failed\n"); return ENOMEM; } STAILQ_INIT(&xferq->stvalid); STAILQ_INIT(&xferq->stfree); STAILQ_INIT(&xferq->stdma); xferq->stproc = NULL; for (i = 0; i < xferq->bnchunk; i++) { m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); xferq->bulkxfer[i].mbuf = m; if (m != NULL) { m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; STAILQ_INSERT_TAIL(&xferq->stfree, &xferq->bulkxfer[i], link); } else aprint_error_ifnet(ifp, "fwip_as_input: m_getcl failed\n"); } sc->sc_fwb.start = INET_FIFO; sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */ /* pre-allocate xfer */ STAILQ_INIT(&sc->sc_fwb.xferlist); for (i = 0; i < rx_queue_len; i++) { xfer = fw_xfer_alloc(M_FW); if (xfer == NULL) break; m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); xfer->recv.payload = mtod(m, uint32_t *); xfer->recv.pay_len = MCLBYTES; xfer->hand = fwip_unicast_input; xfer->fc = fc; xfer->sc = (void *) sc; xfer->mbuf = m; STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link); } fw_bindadd(fc, &sc->sc_fwb); STAILQ_INIT(&sc->sc_xferlist); for (i = 0; i < TX_MAX_QUEUE; i++) { xfer = fw_xfer_alloc(M_FW); if (xfer == NULL) break; xfer->send.spd = tx_speed; xfer->fc = sc->sc_fd.fc; xfer->sc = (void *)sc; xfer->hand = fwip_output_callback; STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); } } else xferq = fc->ir[sc->sc_dma_ch]; sc->sc_last_dest.hi = 0; sc->sc_last_dest.lo = 0; /* start dma */ if ((xferq->flag & FWXFERQ_RUNNING) == 0) fc->irx_enable(fc, sc->sc_dma_ch); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; #if 0 /* attempt to start output */ fwip_start(ifp); #endif return 0; } static void fwip_stop(struct ifnet *ifp, int disable) { struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; struct firewire_comm *fc = sc->sc_fd.fc; struct fw_xferq *xferq; struct fw_xfer *xfer, *next; int i; if (sc->sc_dma_ch >= 0) { xferq = fc->ir[sc->sc_dma_ch]; if (xferq->flag & FWXFERQ_RUNNING) fc->irx_disable(fc, sc->sc_dma_ch); xferq->flag &= ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM | FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK); xferq->hand = NULL; for (i = 0; i < xferq->bnchunk; i++) m_freem(xferq->bulkxfer[i].mbuf); free(xferq->bulkxfer, M_FW); fw_bindremove(fc, &sc->sc_fwb); for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL; xfer = next) { next = STAILQ_NEXT(xfer, link); fw_xfer_free(xfer); } for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL; xfer = next) { next = STAILQ_NEXT(xfer, link); fw_xfer_free(xfer); } xferq->bulkxfer = NULL; sc->sc_dma_ch = -1; } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } static void fwip_post_busreset(void *arg) { struct fwip_softc *sc = arg; struct crom_src *src; struct crom_chunk *root; src = sc->sc_fd.fc->crom_src; root = sc->sc_fd.fc->crom_root; /* RFC2734 IPv4 over IEEE1394 */ memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk)); crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR); crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF); crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA"); crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1); crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4"); /* RFC3146 IPv6 over IEEE1394 */ memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk)); crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR); crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF); crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA"); crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2); crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6"); sc->sc_last_dest.hi = 0; sc->sc_last_dest.lo = 0; ieee1394_drain(sc->sc_eth.fwip_ifp); } static void fwip_output_callback(struct fw_xfer *xfer) { struct fwip_softc *sc = (struct fwip_softc *)xfer->sc; struct ifnet *ifp; ifp = sc->sc_eth.fwip_ifp; /* XXX error check */ FWIPDEBUG(ifp, "resp = %d\n", xfer->resp); if (xfer->resp != 0) ifp->if_oerrors++; m_freem(xfer->mbuf); fw_xfer_unload(xfer); mutex_enter(&sc->sc_mtx); STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); mutex_exit(&sc->sc_mtx); /* for queue full */ if (ifp->if_snd.ifq_head != NULL) fwip_start(ifp); } /* Async. stream output */ static void fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp) { struct firewire_comm *fc = sc->sc_fd.fc; struct mbuf *m; struct m_tag *mtag; struct fw_hwaddr *destfw; struct fw_xfer *xfer; struct fw_xferq *xferq; struct fw_pkt *fp; uint16_t nodeid; int error; int i = 0; xfer = NULL; xferq = fc->atq; while ((xferq->queued < xferq->maxq - 1) && (ifp->if_snd.ifq_head != NULL)) { mutex_enter(&sc->sc_mtx); if (STAILQ_EMPTY(&sc->sc_xferlist)) { mutex_exit(&sc->sc_mtx); #if 0 aprint_normal("if_fwip: lack of xfer\n"); #endif break; } IF_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { mutex_exit(&sc->sc_mtx); break; } xfer = STAILQ_FIRST(&sc->sc_xferlist); STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link); mutex_exit(&sc->sc_mtx); /* * Dig out the link-level address which * firewire_output got via arp or neighbour * discovery. If we don't have a link-level address, * just stick the thing on the broadcast channel. */ mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR); if (mtag == NULL) destfw = 0; else destfw = (struct fw_hwaddr *) (mtag + 1); /* * Put the mbuf in the xfer early in case we hit an * error case below - fwip_output_callback will free * the mbuf. */ xfer->mbuf = m; /* * We use the arp result (if any) to add a suitable firewire * packet header before handing off to the bus. */ fp = &xfer->send.hdr; nodeid = FWLOCALBUS | fc->nodeid; if ((m->m_flags & M_BCAST) || !destfw) { /* * Broadcast packets are sent as GASP packets with * specifier ID 0x00005e, version 1 on the broadcast * channel. To be conservative, we send at the * slowest possible speed. */ uint32_t *p; M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT); p = mtod(m, uint32_t *); fp->mode.stream.len = m->m_pkthdr.len; fp->mode.stream.chtag = broadcast_channel; fp->mode.stream.tcode = FWTCODE_STREAM; fp->mode.stream.sy = 0; xfer->send.spd = 0; p[0] = htonl(nodeid << 16); p[1] = htonl((0x5e << 24) | 1); } else { /* * Unicast packets are sent as block writes to the * target's unicast fifo address. If we can't * find the node address, we just give up. We * could broadcast it but that might overflow * the packet size limitations due to the * extra GASP header. Note: the hardware * address is stored in network byte order to * make life easier for ARP. */ struct fw_device *fd; struct fw_eui64 eui; eui.hi = ntohl(destfw->sender_unique_ID_hi); eui.lo = ntohl(destfw->sender_unique_ID_lo); if (sc->sc_last_dest.hi != eui.hi || sc->sc_last_dest.lo != eui.lo) { fd = fw_noderesolve_eui64(fc, &eui); if (!fd) { /* error */ ifp->if_oerrors++; /* XXX set error code */ fwip_output_callback(xfer); continue; } sc->sc_last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst; sc->sc_last_hdr.mode.wreqb.tlrt = 0; sc->sc_last_hdr.mode.wreqb.tcode = FWTCODE_WREQB; sc->sc_last_hdr.mode.wreqb.pri = 0; sc->sc_last_hdr.mode.wreqb.src = nodeid; sc->sc_last_hdr.mode.wreqb.dest_hi = ntohs(destfw->sender_unicast_FIFO_hi); sc->sc_last_hdr.mode.wreqb.dest_lo = ntohl(destfw->sender_unicast_FIFO_lo); sc->sc_last_hdr.mode.wreqb.extcode = 0; sc->sc_last_dest = eui; } fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb; fp->mode.wreqb.len = m->m_pkthdr.len; xfer->send.spd = uimin(destfw->sspd, fc->speed); } xfer->send.pay_len = m->m_pkthdr.len; error = fw_asyreq(fc, -1, xfer); if (error == EAGAIN) { /* * We ran out of tlabels - requeue the packet * for later transmission. */ xfer->mbuf = 0; mutex_enter(&sc->sc_mtx); STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); mutex_exit(&sc->sc_mtx); IF_PREPEND(&ifp->if_snd, m); break; } if (error) { /* error */ ifp->if_oerrors++; /* XXX set error code */ fwip_output_callback(xfer); continue; } else { ifp->if_opackets++; i++; } } #if 0 if (i > 1) aprint_normal("%d queued\n", i); #endif if (i > 0) xferq->start(fc); } /* Async. stream output */ static void fwip_stream_input(struct fw_xferq *xferq) { struct mbuf *m, *m0; struct m_tag *mtag; struct ifnet *ifp; struct fwip_softc *sc; struct fw_bulkxfer *sxfer; struct fw_pkt *fp; uint16_t src; uint32_t *p; sc = (struct fwip_softc *)xferq->sc; ifp = sc->sc_eth.fwip_ifp; while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) { STAILQ_REMOVE_HEAD(&xferq->stvalid, link); fp = mtod(sxfer->mbuf, struct fw_pkt *); if (sc->sc_fd.fc->irx_post != NULL) sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld); m = sxfer->mbuf; /* insert new rbuf */ sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m0 != NULL) { m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size; STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link); } else aprint_error_ifnet(ifp, "fwip_as_input: m_getcl failed\n"); /* * We must have a GASP header - leave the * encapsulation sanity checks to the generic * code. Remeber that we also have the firewire async * stream header even though that isn't accounted for * in mode.stream.len. */ if (sxfer->resp != 0 || fp->mode.stream.len < 2 * sizeof(uint32_t)) { m_freem(m); ifp->if_ierrors++; continue; } m->m_len = m->m_pkthdr.len = fp->mode.stream.len + sizeof(fp->mode.stream); /* * If we received the packet on the broadcast channel, * mark it as broadcast, otherwise we assume it must * be multicast. */ if (fp->mode.stream.chtag == broadcast_channel) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; /* * Make sure we recognise the GASP specifier and * version. */ p = mtod(m, uint32_t *); if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e || (ntohl(p[2]) & 0xffffff) != 1) { FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n", ntohl(p[1]), ntohl(p[2])); m_freem(m); ifp->if_ierrors++; continue; } /* * Record the sender ID for possible BPF usage. */ src = ntohl(p[1]) >> 16; if (ifp->if_bpf) { mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID, 2 * sizeof(uint32_t), M_NOWAIT); if (mtag) { /* bpf wants it in network byte order */ struct fw_device *fd; uint32_t *p2 = (uint32_t *) (mtag + 1); fd = fw_noderesolve_nodeid(sc->sc_fd.fc, src & 0x3f); if (fd) { p2[0] = htonl(fd->eui.hi); p2[1] = htonl(fd->eui.lo); } else { p2[0] = 0; p2[1] = 0; } m_tag_prepend(m, mtag); } } /* * Trim off the GASP header */ m_adj(m, 3*sizeof(uint32_t)); m_set_rcvif(m, ifp); ieee1394_input(ifp, m, src); ifp->if_ipackets++; } if (STAILQ_FIRST(&xferq->stfree) != NULL) sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch); } static inline void fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer) { struct mbuf *m; /* * We have finished with a unicast xfer. Allocate a new * cluster and stick it on the back of the input queue. */ m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) aprint_error_dev(sc->sc_fd.dev, "fwip_unicast_input_recycle: m_getcl failed\n"); xfer->recv.payload = mtod(m, uint32_t *); xfer->recv.pay_len = MCLBYTES; xfer->mbuf = m; mutex_enter(&sc->sc_fwb.fwb_mtx); STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link); mutex_exit(&sc->sc_fwb.fwb_mtx); } static void fwip_unicast_input(struct fw_xfer *xfer) { uint64_t address; struct mbuf *m; struct m_tag *mtag; struct ifnet *ifp; struct fwip_softc *sc; struct fw_pkt *fp; int rtcode; sc = (struct fwip_softc *)xfer->sc; ifp = sc->sc_eth.fwip_ifp; m = xfer->mbuf; xfer->mbuf = 0; fp = &xfer->recv.hdr; /* * Check the fifo address - we only accept addresses of * exactly INET_FIFO. */ address = ((uint64_t)fp->mode.wreqb.dest_hi << 32) | fp->mode.wreqb.dest_lo; if (fp->mode.wreqb.tcode != FWTCODE_WREQB) { rtcode = FWRCODE_ER_TYPE; } else if (address != INET_FIFO) { rtcode = FWRCODE_ER_ADDR; } else { rtcode = FWRCODE_COMPLETE; } /* * Pick up a new mbuf and stick it on the back of the receive * queue. */ fwip_unicast_input_recycle(sc, xfer); /* * If we've already rejected the packet, give up now. */ if (rtcode != FWRCODE_COMPLETE) { m_freem(m); ifp->if_ierrors++; return; } if (ifp->if_bpf) { /* * Record the sender ID for possible BPF usage. */ mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID, 2 * sizeof(uint32_t), M_NOWAIT); if (mtag) { /* bpf wants it in network byte order */ struct fw_device *fd; uint32_t *p = (uint32_t *) (mtag + 1); fd = fw_noderesolve_nodeid(sc->sc_fd.fc, fp->mode.wreqb.src & 0x3f); if (fd) { p[0] = htonl(fd->eui.hi); p[1] = htonl(fd->eui.lo); } else { p[0] = 0; p[1] = 0; } m_tag_prepend(m, mtag); } } /* * Hand off to the generic encapsulation code. We don't use * ifp->if_input so that we can pass the source nodeid as an * argument to facilitate link-level fragment reassembly. */ m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len; m_set_rcvif(m, ifp); ieee1394_input(ifp, m, fp->mode.wreqb.src); ifp->if_ipackets++; }