/* $NetBSD: ffs_wapbl.c,v 1.48.4.1 2025/01/07 16:13:35 martin Exp $ */ /*- * Copyright (c) 2003,2006,2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ffs_wapbl.c,v 1.48.4.1 2025/01/07 16:13:35 martin Exp $"); #define WAPBL_INTERNAL #if defined(_KERNEL_OPT) #include "opt_ffs.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef WAPBL_DEBUG #ifdef WAPBL_DEBUG int ffs_wapbl_debug = 1; #define DPRINTF(fmt, args...) \ do { \ if (ffs_wapbl_debug) \ printf("%s:%d "fmt, __func__ , __LINE__, ##args); \ } while (/* CONSTCOND */0) #else #define DPRINTF(fmt, args...) \ do { \ /* nothing */ \ } while (/* CONSTCOND */0) #endif static int ffs_superblock_layout(struct fs *); static int wapbl_log_position(struct mount *, struct fs *, struct vnode *, daddr_t *, size_t *, size_t *, uint64_t *); static int wapbl_create_infs_log(struct mount *, struct fs *, struct vnode *, daddr_t *, size_t *, uint64_t *); static void wapbl_find_log_start(struct mount *, struct vnode *, off_t, daddr_t *, daddr_t *, size_t *); static int wapbl_remove_log(struct mount *); static int wapbl_allocate_log_file(struct mount *, struct vnode *, daddr_t *, size_t *, uint64_t *); /* * Return the super block layout format - UFS1 or UFS2. * WAPBL only works with UFS2 layout (which is still available * with FFSv1). * * XXX Should this be in ufs/ffs/fs.h? Same style of check is * also used in ffs_alloc.c in a few places. */ static int ffs_superblock_layout(struct fs *fs) { if ((fs->fs_magic == FS_UFS1_MAGIC) && ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) return 1; else return 2; } /* * This function is invoked after a log is replayed to * disk to perform logical cleanup actions as described by * the log */ void ffs_wapbl_replay_finish(struct mount *mp) { struct wapbl_replay *wr = mp->mnt_wapbl_replay; int i; int error; if (!wr) return; KDASSERT((mp->mnt_flag & MNT_RDONLY) == 0); for (i = 0; i < wr->wr_inodescnt; i++) { struct vnode *vp; struct inode *ip; error = VFS_VGET(mp, wr->wr_inodes[i].wr_inumber, LK_EXCLUSIVE, &vp); if (error) { printf("%s: %s: unable to cleanup inode %" PRIu32 "\n", __func__, VFSTOUFS(mp)->um_fs->fs_fsmnt, wr->wr_inodes[i].wr_inumber); continue; } ip = VTOI(vp); KDASSERT(wr->wr_inodes[i].wr_inumber == ip->i_number); #ifdef WAPBL_DEBUG printf("%s%s: %s: cleaning inode %" PRIu64 " size=%" PRIu64 " mode=%o nlink=%d\n", __func__, VFSTOUFS(mp)->um_fs->fs_fsmnt, ip->i_number, ip->i_size, ip->i_mode, ip->i_nlink); #endif KASSERT(ip->i_nlink == 0); /* * The journal may have left partially allocated inodes in mode * zero. This may occur if a crash occurs between the node * allocation in ffs_nodeallocg and when the node is properly * initialized in ufs_makeinode. If so, just deallocate them. */ if (ip->i_mode == 0) { error = UFS_WAPBL_BEGIN(mp); if (error) { printf("%s: %s: " "unable to cleanup inode %" PRIu32 "\n", __func__, VFSTOUFS(mp)->um_fs->fs_fsmnt, wr->wr_inodes[i].wr_inumber); } else { ffs_vfree(vp, ip->i_number, wr->wr_inodes[i].wr_imode); UFS_WAPBL_END(mp); } } vput(vp); } wapbl_replay_stop(wr); wapbl_replay_free(wr); mp->mnt_wapbl_replay = NULL; } /* Callback for wapbl */ void ffs_wapbl_sync_metadata(struct mount *mp, struct wapbl_dealloc *fdealloc) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; int error __diagused; struct wapbl_dealloc *wd; UFS_WAPBL_JLOCK_ASSERT(ump->um_mountp); for (wd = fdealloc; wd != NULL; wd = TAILQ_NEXT(wd, wd_entries)) { /* * blkfree errors are unreported, might silently fail * if it cannot read the cylinder group block */ ffs_blkfree(fs, ump->um_devvp, FFS_DBTOFSB(fs, wd->wd_blkno), wd->wd_len, -1); } mutex_enter(&ump->um_lock); if (fs->fs_fmod != 0) { fs->fs_fmod = 0; fs->fs_time = time_second; mutex_exit(&ump->um_lock); error = ffs_cgupdate(ump, 0); KASSERT(error == 0); } else { mutex_exit(&ump->um_lock); } } void ffs_wapbl_abort_sync_metadata(struct mount *mp, struct wapbl_dealloc *fdealloc) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; struct wapbl_dealloc *wd; for (wd = fdealloc; wd != NULL; wd = TAILQ_NEXT(wd, wd_entries)) { /* * Since the above blkfree may have failed, this blkalloc might * fail as well, so don't check its error. Note that if the * blkfree succeeded above, then this shouldn't fail because * the buffer will be locked in the current transaction. */ ffs_blkalloc_ump(ump, FFS_DBTOFSB(fs, wd->wd_blkno), wd->wd_len); } } static int wapbl_remove_log(struct mount *mp) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; struct vnode *vp; struct inode *ip; ino_t log_ino; int error; /* If super block layout is too old to support WAPBL, return */ if (ffs_superblock_layout(fs) < 2) return 0; /* If all the log locators are 0, just clean up */ if (fs->fs_journallocs[0] == 0 && fs->fs_journallocs[1] == 0 && fs->fs_journallocs[2] == 0 && fs->fs_journallocs[3] == 0) { DPRINTF("empty locators, just clear\n"); goto done; } switch (fs->fs_journal_location) { case UFS_WAPBL_JOURNALLOC_NONE: /* nothing! */ DPRINTF("no log\n"); break; case UFS_WAPBL_JOURNALLOC_IN_FILESYSTEM: log_ino = fs->fs_journallocs[UFS_WAPBL_INFS_INO]; DPRINTF("in-fs log, ino = %" PRId64 "\n",log_ino); /* if no existing log inode, just clear all fields and bail */ if (log_ino == 0) goto done; error = VFS_VGET(mp, log_ino, LK_EXCLUSIVE, &vp); if (error != 0) { printf("%s: %s: vget failed %d\n", __func__, fs->fs_fsmnt, error); /* clear out log info on error */ goto done; } ip = VTOI(vp); KASSERT(log_ino == ip->i_number); if ((ip->i_flags & SF_LOG) == 0) { printf("%s: %s: try to clear non-log inode " "%" PRId64 "\n", __func__, fs->fs_fsmnt, log_ino); vput(vp); /* clear out log info on error */ goto done; } /* * remove the log inode by setting its link count back * to zero and bail. */ ip->i_nlink = 0; DIP_ASSIGN(ip, nlink, 0); vput(vp); break; case UFS_WAPBL_JOURNALLOC_END_PARTITION: DPRINTF("end-of-partition log\n"); /* no extra work required */ break; default: printf("%s: %s: unknown journal type %d\n", __func__, fs->fs_fsmnt, fs->fs_journal_location); break; } done: /* Clear out all previous knowledge of journal */ fs->fs_journal_version = 0; fs->fs_journal_location = 0; fs->fs_journal_flags = 0; fs->fs_journallocs[0] = 0; fs->fs_journallocs[1] = 0; fs->fs_journallocs[2] = 0; fs->fs_journallocs[3] = 0; (void) ffs_sbupdate(ump, MNT_WAIT); return 0; } int ffs_wapbl_start(struct mount *mp) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; struct vnode *devvp = ump->um_devvp; daddr_t off; size_t count; size_t blksize; uint64_t extradata; int error; if (mp->mnt_wapbl == NULL) { if (fs->fs_journal_flags & UFS_WAPBL_FLAGS_CLEAR_LOG) { /* Clear out any existing journal file */ error = wapbl_remove_log(mp); if (error != 0) return error; } if (mp->mnt_flag & MNT_LOG) { KDASSERT(fs->fs_ronly == 0); /* WAPBL needs UFS2 format super block */ if (ffs_superblock_layout(fs) < 2) { printf("%s: %s: fs superblock in old format, " "not journaling\n", __func__, VFSTOUFS(mp)->um_fs->fs_fsmnt); mp->mnt_flag &= ~MNT_LOG; return EINVAL; } error = wapbl_log_position(mp, fs, devvp, &off, &count, &blksize, &extradata); if (error) return error; /* * Make sure we don't carry over any delayed write * buffers when updating to log. Need to turn off * async termporarily, to prevent ffs_sync() writes * themselves being turned into delayed writes. */ if (mp->mnt_flag & MNT_UPDATE) { int saveflag = mp->mnt_flag & MNT_ASYNC; mp->mnt_flag &= ~MNT_ASYNC; ffs_sync(mp, MNT_WAIT, FSCRED); mp->mnt_flag |= saveflag; } error = wapbl_start(&mp->mnt_wapbl, mp, devvp, off, count, blksize, mp->mnt_wapbl_replay, ffs_wapbl_sync_metadata, ffs_wapbl_abort_sync_metadata); if (error) return error; mp->mnt_wapbl_op = &wapbl_ops; #ifdef WAPBL_DEBUG printf("%s: %s: enabling logging\n", __func__, fs->fs_fsmnt); #endif if ((fs->fs_flags & FS_DOWAPBL) == 0) { fs->fs_flags |= FS_DOWAPBL; if ((error = UFS_WAPBL_BEGIN(mp)) != 0) goto out; error = ffs_sbupdate(ump, MNT_WAIT); if (error) { UFS_WAPBL_END(mp); goto out; } UFS_WAPBL_END(mp); error = wapbl_flush(mp->mnt_wapbl, 1); if (error) goto out; } /* * XXX discard interferes with block deallocation * registration and hence log consistency */ if (mp->mnt_flag & MNT_DISCARD) { CLR(mp->mnt_flag, MNT_DISCARD); printf("%s: %s: disabling discard to preserve log consistency\n", __func__, fs->fs_fsmnt); if (ump->um_discarddata != NULL) { ffs_discard_finish(ump->um_discarddata, 0); ump->um_discarddata = NULL; } } } else if (fs->fs_flags & FS_DOWAPBL) { fs->fs_fmod = 1; fs->fs_flags &= ~FS_DOWAPBL; } } /* * It is recommended that you finish replay with logging enabled. * However, even if logging is not enabled, the remaining log * replay should be safely recoverable with an fsck, so perform * it anyway. */ if ((fs->fs_ronly == 0) && mp->mnt_wapbl_replay) { int saveflag = mp->mnt_flag & MNT_RDONLY; /* * Make sure MNT_RDONLY is not set so that the inode * cleanup in ufs_inactive will actually do its work. */ mp->mnt_flag &= ~MNT_RDONLY; ffs_wapbl_replay_finish(mp); mp->mnt_flag |= saveflag; KASSERT(fs->fs_ronly == 0); } return 0; out: ffs_wapbl_stop(mp, MNT_FORCE); return error; } int ffs_wapbl_stop(struct mount *mp, int force) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; int error; if (mp->mnt_wapbl) { KDASSERT(fs->fs_ronly == 0); /* * Make sure turning off FS_DOWAPBL is only removed * as the only change in the final flush since otherwise * a transaction may reorder writes. */ error = wapbl_flush(mp->mnt_wapbl, 1); if (error && !force) return error; if (error && force) goto forceout; error = UFS_WAPBL_BEGIN(mp); if (error && !force) return error; if (error && force) goto forceout; KASSERT(fs->fs_flags & FS_DOWAPBL); fs->fs_flags &= ~FS_DOWAPBL; error = ffs_sbupdate(ump, MNT_WAIT); KASSERT(error == 0); /* XXX a bit drastic! */ UFS_WAPBL_END(mp); forceout: error = wapbl_stop(mp->mnt_wapbl, force); if (error) { KASSERT(!force); fs->fs_flags |= FS_DOWAPBL; return error; } fs->fs_flags &= ~FS_DOWAPBL; /* Repeat in case of forced error */ mp->mnt_wapbl = NULL; #ifdef WAPBL_DEBUG printf("%s: %s: disabled logging\n", __func__, fs->fs_fsmnt); #endif } return 0; } int ffs_wapbl_replay_start(struct mount *mp, struct fs *fs, struct vnode *devvp) { int error; daddr_t off; size_t count; size_t blksize; uint64_t extradata; /* * WAPBL needs UFS2 format super block, if we got here with a * UFS1 format super block something is amiss... */ if (ffs_superblock_layout(fs) < 2) return EINVAL; error = wapbl_log_position(mp, fs, devvp, &off, &count, &blksize, &extradata); if (error) return error; error = wapbl_replay_start(&mp->mnt_wapbl_replay, devvp, off, count, blksize); if (error) return error; mp->mnt_wapbl_op = &wapbl_ops; return 0; } /* * If the superblock doesn't already have a recorded journal location * then we allocate the journal in one of two positions: * * - At the end of the partition after the filesystem if there's * enough space. "Enough space" is defined as >= 1MB of journal * per 1GB of filesystem or 64MB, whichever is smaller. * * - Inside the filesystem. We try to allocate a contiguous journal * based on the total filesystem size - the target is 1MB of journal * per 1GB of filesystem, up to a maximum journal size of 64MB. As * a worst case allowing for fragmentation, we'll allocate a journal * 1/4 of the desired size but never smaller than 1MB. * * XXX In the future if we allow for non-contiguous journal files we * can tighten the above restrictions. * * XXX * These seems like a lot of duplication both here and in some of * the userland tools (fsck_ffs, dumpfs, tunefs) with similar * "switch (fs_journal_location)" constructs. Can we centralise * this sort of code somehow/somewhere? */ static int wapbl_log_position(struct mount *mp, struct fs *fs, struct vnode *devvp, daddr_t *startp, size_t *countp, size_t *blksizep, uint64_t *extradatap) { struct ufsmount *ump = VFSTOUFS(mp); daddr_t logstart, logend, desired_logsize; uint64_t numsecs; unsigned secsize; int error, location; if (fs->fs_journal_version == UFS_WAPBL_VERSION) { switch (fs->fs_journal_location) { case UFS_WAPBL_JOURNALLOC_END_PARTITION: DPRINTF("found existing end-of-partition log\n"); *startp = fs->fs_journallocs[UFS_WAPBL_EPART_ADDR]; *countp = fs->fs_journallocs[UFS_WAPBL_EPART_COUNT]; *blksizep = fs->fs_journallocs[UFS_WAPBL_EPART_BLKSZ]; DPRINTF(" start = %" PRId64 ", size = %zu, " "blksize = %zu\n", *startp, *countp, *blksizep); return 0; case UFS_WAPBL_JOURNALLOC_IN_FILESYSTEM: DPRINTF("found existing in-filesystem log\n"); *startp = fs->fs_journallocs[UFS_WAPBL_INFS_ADDR]; *countp = fs->fs_journallocs[UFS_WAPBL_INFS_COUNT]; *blksizep = fs->fs_journallocs[UFS_WAPBL_INFS_BLKSZ]; DPRINTF(" start = %" PRId64 ", size = %zu, " "blksize = %zu\n", *startp, *countp, *blksizep); return 0; default: printf("%s: %s: unknown journal type %d\n", __func__, fs->fs_fsmnt, fs->fs_journal_location); return EINVAL; } } desired_logsize = ffs_lfragtosize(fs, fs->fs_size) / UFS_WAPBL_JOURNAL_SCALE; DPRINTF("desired log size = %" PRId64 " kB\n", desired_logsize / 1024); desired_logsize = uimax(desired_logsize, UFS_WAPBL_MIN_JOURNAL_SIZE); desired_logsize = uimin(desired_logsize, UFS_WAPBL_MAX_JOURNAL_SIZE); DPRINTF("adjusted desired log size = %" PRId64 " kB\n", desired_logsize / 1024); /* Is there space after after filesystem on partition for log? */ logstart = FFS_FSBTODB(fs, fs->fs_size); error = getdisksize(devvp, &numsecs, &secsize); if (error) return error; KDASSERT(secsize != 0); logend = btodb(numsecs * secsize); if (dbtob(logend - logstart) >= desired_logsize) { DPRINTF("enough space, use end-of-partition log\n"); location = UFS_WAPBL_JOURNALLOC_END_PARTITION; *blksizep = secsize; *startp = logstart; *countp = (logend - logstart); *extradatap = 0; /* convert to physical block numbers */ *startp = dbtob(*startp) / secsize; *countp = dbtob(*countp) / secsize; fs->fs_journallocs[UFS_WAPBL_EPART_ADDR] = *startp; fs->fs_journallocs[UFS_WAPBL_EPART_COUNT] = *countp; fs->fs_journallocs[UFS_WAPBL_EPART_BLKSZ] = *blksizep; fs->fs_journallocs[UFS_WAPBL_EPART_UNUSED] = *extradatap; } else { DPRINTF("end-of-partition has only %" PRId64 " free\n", logend - logstart); location = UFS_WAPBL_JOURNALLOC_IN_FILESYSTEM; *blksizep = secsize; error = wapbl_create_infs_log(mp, fs, devvp, startp, countp, extradatap); ffs_sync(mp, MNT_WAIT, FSCRED); /* convert to physical block numbers */ *startp = dbtob(*startp) / secsize; *countp = dbtob(*countp) / secsize; fs->fs_journallocs[UFS_WAPBL_INFS_ADDR] = *startp; fs->fs_journallocs[UFS_WAPBL_INFS_COUNT] = *countp; fs->fs_journallocs[UFS_WAPBL_INFS_BLKSZ] = *blksizep; fs->fs_journallocs[UFS_WAPBL_INFS_INO] = *extradatap; } if (error == 0) { /* update superblock with log location */ fs->fs_journal_version = UFS_WAPBL_VERSION; fs->fs_journal_location = location; fs->fs_journal_flags = 0; error = ffs_sbupdate(ump, MNT_WAIT); } return error; } /* * Try to create a journal log inside the filesystem. */ static int wapbl_create_infs_log(struct mount *mp, struct fs *fs, struct vnode *devvp, daddr_t *startp, size_t *countp, uint64_t *extradatap) { struct vnode *vp, *rvp; struct vattr va; struct inode *ip; int error; if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rvp)) != 0) return error; vattr_null(&va); va.va_type = VREG; va.va_mode = 0; error = vcache_new(mp, rvp, &va, NOCRED, NULL, &vp); vput(rvp); if (error) return error; error = vn_lock(vp, LK_EXCLUSIVE); if (error) { vrele(vp); return error; } ip = VTOI(vp); ip->i_flags = SF_LOG; DIP_ASSIGN(ip, flags, ip->i_flags); ip->i_nlink = 1; DIP_ASSIGN(ip, nlink, 1); ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ffs_update(vp, NULL, NULL, UPDATE_WAIT); if ((error = wapbl_allocate_log_file(mp, vp, startp, countp, extradatap)) != 0) { /* * If we couldn't allocate the space for the log file, * remove the inode by setting its link count back to * zero and bail. */ ip->i_nlink = 0; DIP_ASSIGN(ip, nlink, 0); vput(vp); return error; } /* * Now that we have the place-holder inode for the journal, * we don't need the vnode ever again. */ vput(vp); return 0; } int wapbl_allocate_log_file(struct mount *mp, struct vnode *vp, daddr_t *startp, size_t *countp, uint64_t *extradatap) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; daddr_t addr, indir_addr; off_t logsize; size_t size; int error; logsize = 0; /* check if there's a suggested log size */ if (fs->fs_journal_flags & UFS_WAPBL_FLAGS_CREATE_LOG && fs->fs_journal_location == UFS_WAPBL_JOURNALLOC_IN_FILESYSTEM) logsize = fs->fs_journallocs[UFS_WAPBL_INFS_COUNT]; if (vp->v_size > 0) { printf("%s: %s: file size (%" PRId64 ") non zero\n", __func__, fs->fs_fsmnt, vp->v_size); return EEXIST; } wapbl_find_log_start(mp, vp, logsize, &addr, &indir_addr, &size); if (addr == 0) { printf("%s: %s: log not allocated, largest extent is " "%" PRId64 "MB\n", __func__, fs->fs_fsmnt, ffs_lblktosize(fs, size) / (1024 * 1024)); return ENOSPC; } logsize = ffs_lblktosize(fs, size); /* final log size */ VTOI(vp)->i_ffs_first_data_blk = addr; VTOI(vp)->i_ffs_first_indir_blk = indir_addr; error = GOP_ALLOC(vp, 0, logsize, B_CONTIG, FSCRED); if (error) { printf("%s: %s: GOP_ALLOC error %d\n", __func__, fs->fs_fsmnt, error); return error; } *startp = FFS_FSBTODB(fs, addr); *countp = btodb(logsize); *extradatap = VTOI(vp)->i_number; return 0; } /* * Find a suitable location for the journal in the filesystem. * * Our strategy here is to look for a contiguous block of free space * at least "logfile" MB in size (plus room for any indirect blocks). * We start at the middle of the filesystem and check each cylinder * group working outwards. If "logfile" MB is not available as a * single contigous chunk, then return the address and size of the * largest chunk found. * * XXX * At what stage does the search fail? Is if the largest space we could * find is less than a quarter the requested space reasonable? If the * search fails entirely, return a block address if "0" it indicate this. */ static void wapbl_find_log_start(struct mount *mp, struct vnode *vp, off_t logsize, daddr_t *addr, daddr_t *indir_addr, size_t *size) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; struct vnode *devvp = ump->um_devvp; struct cg *cgp; struct buf *bp; uint8_t *blksfree; daddr_t blkno, best_addr, start_addr; daddr_t desired_blks, min_desired_blks; daddr_t freeblks, best_blks; int bpcg, cg, error, fixedsize, indir_blks, n, s; const int needswap = UFS_FSNEEDSWAP(fs); if (logsize == 0) { fixedsize = 0; /* We can adjust the size if tight */ logsize = ffs_lfragtosize(fs, fs->fs_dsize) / UFS_WAPBL_JOURNAL_SCALE; DPRINTF("suggested log size = %" PRId64 "\n", logsize); logsize = uimax(logsize, UFS_WAPBL_MIN_JOURNAL_SIZE); logsize = uimin(logsize, UFS_WAPBL_MAX_JOURNAL_SIZE); DPRINTF("adjusted log size = %" PRId64 "\n", logsize); } else { fixedsize = 1; DPRINTF("fixed log size = %" PRId64 "\n", logsize); } desired_blks = logsize / fs->fs_bsize; DPRINTF("desired blocks = %" PRId64 "\n", desired_blks); /* add in number of indirect blocks needed */ indir_blks = 0; if (desired_blks >= UFS_NDADDR) { struct indir indirs[UFS_NIADDR + 2]; int num; error = ufs_getlbns(vp, desired_blks, indirs, &num); if (error) { printf("%s: %s: ufs_getlbns failed, error %d!\n", __func__, fs->fs_fsmnt, error); goto bad; } switch (num) { case 2: indir_blks = 1; /* 1st level indirect */ break; case 3: indir_blks = 1 + /* 1st level indirect */ 1 + /* 2nd level indirect */ indirs[1].in_off + 1; /* extra 1st level indirect */ break; default: printf("%s: %s: unexpected numlevels %d from " "ufs_getlbns\n", __func__, fs->fs_fsmnt, num); *size = 0; goto bad; } desired_blks += indir_blks; } DPRINTF("desired blocks = %" PRId64 " (including indirect)\n", desired_blks); /* * If a specific size wasn't requested, allow for a smaller log * if we're really tight for space... */ min_desired_blks = desired_blks; if (!fixedsize) min_desired_blks = desired_blks / 4; /* Look at number of blocks per CG. If it's too small, bail early. */ bpcg = ffs_fragstoblks(fs, fs->fs_fpg); if (min_desired_blks > bpcg) { printf("%s: %s: cylinder group size of %" PRId64 " MB " " is not big enough for journal\n", __func__, fs->fs_fsmnt, ffs_lblktosize(fs, bpcg) / (1024 * 1024)); goto bad; } /* * Start with the middle cylinder group, and search outwards in * both directions until we either find the requested log size * or reach the start/end of the file system. If we reach the * start/end without finding enough space for the full requested * log size, use the largest extent found if it is large enough * to satisfy the our minimum size. * * XXX * Can we just use the cluster contigsum stuff (esp on UFS2) * here to simplify this search code? */ best_addr = 0; best_blks = 0; for (cg = fs->fs_ncg / 2, s = 0, n = 1; best_blks < desired_blks && cg >= 0 && cg < fs->fs_ncg; s++, n = -n, cg += n * s) { DPRINTF("check cg %d of %d\n", cg, fs->fs_ncg); error = bread(devvp, FFS_FSBTODB(fs, cgtod(fs, cg)), fs->fs_cgsize, 0, &bp); if (error) { continue; } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) { brelse(bp, 0); continue; } blksfree = cg_blksfree(cgp, needswap); for (blkno = 0; blkno < bpcg;) { /* look for next free block */ /* XXX use scanc() and fragtbl[] here? */ for (; blkno < bpcg - min_desired_blks; blkno++) if (ffs_isblock(fs, blksfree, blkno)) break; /* past end of search space in this CG? */ if (blkno >= bpcg - min_desired_blks) break; /* count how many free blocks in this extent */ start_addr = blkno; for (freeblks = 0; blkno < bpcg; blkno++, freeblks++) if (!ffs_isblock(fs, blksfree, blkno)) break; if (freeblks > best_blks) { best_blks = freeblks; best_addr = ffs_blkstofrags(fs, start_addr) + cgbase(fs, cg); if (freeblks >= desired_blks) { DPRINTF("found len %" PRId64 " at offset %" PRId64 " in gc\n", freeblks, start_addr); break; } } } brelse(bp, 0); } DPRINTF("best found len = %" PRId64 ", wanted %" PRId64 " at addr %" PRId64 "\n", best_blks, desired_blks, best_addr); if (best_blks < min_desired_blks) { *addr = 0; *indir_addr = 0; } else { /* put indirect blocks at start, and data blocks after */ *addr = best_addr + ffs_blkstofrags(fs, indir_blks); *indir_addr = best_addr; } *size = uimin(desired_blks, best_blks) - indir_blks; return; bad: *addr = 0; *indir_addr = 0; *size = 0; return; }