/* $NetBSD: yds.c,v 1.68.6.1 2024/01/14 15:24:06 martin Exp $ */ /* * Copyright (c) 2000, 2001 Kazuki Sakamoto and Minoura Makoto. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Yamaha YMF724[B-F]/740[B-C]/744/754 * * Documentation links: * - ftp://ftp.alsa-project.org/pub/manuals/yamaha/ * - ftp://ftp.alsa-project.org/pub/manuals/yamaha/pci/ * * TODO: * - FM synth volume (difficult: mixed before ac97) * - Digital in/out (SPDIF) support * - Effect?? */ #include __KERNEL_RCSID(0, "$NetBSD: yds.c,v 1.68.6.1 2024/01/14 15:24:06 martin Exp $"); #include "mpu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Debug */ #undef YDS_USE_REC_SLOT #define YDS_USE_P44 #ifdef AUDIO_DEBUG # define DPRINTF(x) if (ydsdebug) printf x # define DPRINTFN(n,x) if (ydsdebug>(n)) printf x int ydsdebug = 0; #else # define DPRINTF(x) # define DPRINTFN(n,x) #endif #ifdef YDS_USE_REC_SLOT # define YDS_INPUT_SLOT 0 /* REC slot = ADC + loopbacks */ #else # define YDS_INPUT_SLOT 1 /* ADC slot */ #endif static int yds_match(device_t, cfdata_t, void *); static void yds_attach(device_t, device_t, void *); static int yds_intr(void *); #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) #define KERNADDR(p) ((void *)((p)->addr)) static int yds_allocmem(struct yds_softc *, size_t, size_t, struct yds_dma *); static int yds_freemem(struct yds_softc *, struct yds_dma *); #ifndef AUDIO_DEBUG #define YWRITE1(sc, r, x) bus_space_write_1((sc)->memt, (sc)->memh, (r), (x)) #define YWRITE2(sc, r, x) bus_space_write_2((sc)->memt, (sc)->memh, (r), (x)) #define YWRITE4(sc, r, x) bus_space_write_4((sc)->memt, (sc)->memh, (r), (x)) #define YREAD1(sc, r) bus_space_read_1((sc)->memt, (sc)->memh, (r)) #define YREAD2(sc, r) bus_space_read_2((sc)->memt, (sc)->memh, (r)) #define YREAD4(sc, r) bus_space_read_4((sc)->memt, (sc)->memh, (r)) #else static uint16_t YREAD2(struct yds_softc *sc, bus_size_t r) { DPRINTFN(5, (" YREAD2(0x%lX)\n", (unsigned long)r)); return bus_space_read_2(sc->memt, sc->memh, r); } static uint32_t YREAD4(struct yds_softc *sc, bus_size_t r) { DPRINTFN(5, (" YREAD4(0x%lX)\n", (unsigned long)r)); return bus_space_read_4(sc->memt, sc->memh, r); } #ifdef notdef static void YWRITE1(struct yds_softc *sc, bus_size_t r, uint8_t x) { DPRINTFN(5, (" YWRITE1(0x%lX,0x%lX)\n", (unsigned long)r, (unsigned long)x)); bus_space_write_1(sc->memt, sc->memh, r, x); } #endif static void YWRITE2(struct yds_softc *sc, bus_size_t r, uint16_t x) { DPRINTFN(5, (" YWRITE2(0x%lX,0x%lX)\n", (unsigned long)r, (unsigned long)x)); bus_space_write_2(sc->memt, sc->memh, r, x); } static void YWRITE4(struct yds_softc *sc, bus_size_t r, uint32_t x) { DPRINTFN(5, (" YWRITE4(0x%lX,0x%lX)\n", (unsigned long)r, (unsigned long)x)); bus_space_write_4(sc->memt, sc->memh, r, x); } #endif #define YWRITEREGION4(sc, r, x, c) \ bus_space_write_region_4((sc)->memt, (sc)->memh, (r), (x), (c) / 4) CFATTACH_DECL_NEW(yds, sizeof(struct yds_softc), yds_match, yds_attach, NULL, NULL); static int yds_open(void *, int); static void yds_close(void *); static int yds_query_format(void *, audio_format_query_t *); static int yds_set_format(void *, int, const audio_params_t *, const audio_params_t *, audio_filter_reg_t *, audio_filter_reg_t *); static int yds_round_blocksize(void *, int, int, const audio_params_t *); static int yds_trigger_output(void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); static int yds_trigger_input(void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); static int yds_halt_output(void *); static int yds_halt_input(void *); static int yds_getdev(void *, struct audio_device *); static int yds_mixer_set_port(void *, mixer_ctrl_t *); static int yds_mixer_get_port(void *, mixer_ctrl_t *); static void * yds_malloc(void *, int, size_t); static void yds_free(void *, void *, size_t); static size_t yds_round_buffersize(void *, int, size_t); static int yds_get_props(void *); static int yds_query_devinfo(void *, mixer_devinfo_t *); static void yds_get_locks(void *, kmutex_t **, kmutex_t **); static int yds_attach_codec(void *, struct ac97_codec_if *); static int yds_read_codec(void *, uint8_t, uint16_t *); static int yds_write_codec(void *, uint8_t, uint16_t); static int yds_reset_codec(void *); static u_int yds_get_dstype(int); static int yds_download_mcode(struct yds_softc *); static int yds_allocate_slots(struct yds_softc *); static void yds_configure_legacy(device_t); static void yds_enable_dsp(struct yds_softc *); static int yds_disable_dsp(struct yds_softc *); static int yds_ready_codec(struct yds_codec_softc *); static int yds_halt(struct yds_softc *); static uint32_t yds_get_lpfq(u_int); static uint32_t yds_get_lpfk(u_int); static struct yds_dma *yds_find_dma(struct yds_softc *, void *); static int yds_init(struct yds_softc *); #ifdef AUDIO_DEBUG static void yds_dump_play_slot(struct yds_softc *, int); #define YDS_DUMP_PLAY_SLOT(n, sc, bank) \ if (ydsdebug > (n)) yds_dump_play_slot(sc, bank) #else #define YDS_DUMP_PLAY_SLOT(n, sc, bank) #endif /* AUDIO_DEBUG */ static const struct audio_hw_if yds_hw_if = { .open = yds_open, .close = yds_close, .query_format = yds_query_format, .set_format = yds_set_format, .round_blocksize = yds_round_blocksize, .commit_settings = NULL, .init_output = NULL, .init_input = NULL, .start_output = NULL, .start_input = NULL, .halt_output = yds_halt_output, .halt_input = yds_halt_input, .speaker_ctl = NULL, .getdev = yds_getdev, .set_port = yds_mixer_set_port, .get_port = yds_mixer_get_port, .query_devinfo = yds_query_devinfo, .allocm = yds_malloc, .freem = yds_free, .round_buffersize = yds_round_buffersize, .get_props = yds_get_props, .trigger_output = yds_trigger_output, .trigger_input = yds_trigger_input, .dev_ioctl = NULL, .get_locks = yds_get_locks, }; static const struct audio_device yds_device = { .name = "Yamaha DS-1", .version = "", .config = "yds" }; static const struct { uint id; u_int flags; #define YDS_CAP_MCODE_1 0x0001 #define YDS_CAP_MCODE_1E 0x0002 #define YDS_CAP_LEGACY_SELECTABLE 0x0004 #define YDS_CAP_LEGACY_FLEXIBLE 0x0008 #define YDS_CAP_HAS_P44 0x0010 } yds_chip_capabliity_list[] = { { PCI_PRODUCT_YAMAHA_YMF724, YDS_CAP_MCODE_1|YDS_CAP_LEGACY_SELECTABLE }, /* 740[C] has only 32 slots. But anyway we use only 2 */ { PCI_PRODUCT_YAMAHA_YMF740, YDS_CAP_MCODE_1|YDS_CAP_LEGACY_SELECTABLE }, /* XXX NOT TESTED */ { PCI_PRODUCT_YAMAHA_YMF740C, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_SELECTABLE }, { PCI_PRODUCT_YAMAHA_YMF724F, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_SELECTABLE }, { PCI_PRODUCT_YAMAHA_YMF744B, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_FLEXIBLE }, { PCI_PRODUCT_YAMAHA_YMF754, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_FLEXIBLE|YDS_CAP_HAS_P44 }, { 0, 0 } }; #ifdef AUDIO_DEBUG #define YDS_CAP_BITS "\020\005P44\004LEGFLEX\003LEGSEL\002MCODE1E\001MCODE1" #endif static const struct audio_format yds_formats[] = { { .mode = AUMODE_PLAY | AUMODE_RECORD, .encoding = AUDIO_ENCODING_SLINEAR_LE, .validbits = 16, .precision = 16, .channels = 2, .channel_mask = AUFMT_STEREO, .frequency_type = 8, .frequency = { 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000 }, }, }; #define YDS_NFORMATS (sizeof(yds_formats) / sizeof(struct audio_format)) #ifdef AUDIO_DEBUG static void yds_dump_play_slot(struct yds_softc *sc, int bank) { int i, j; uint32_t *p; uint32_t num; bus_addr_t pa; for (i = 0; i < N_PLAY_SLOTS; i++) { printf("pbankp[%d] = %p,", i*2, sc->pbankp[i*2]); printf("pbankp[%d] = %p\n", i*2+1, sc->pbankp[i*2+1]); } pa = DMAADDR(&sc->sc_ctrldata) + sc->pbankoff; p = sc->ptbl; printf("ptbl + 0: %d\n", *p++); for (i = 0; i < N_PLAY_SLOTS; i++) { printf("ptbl + %d: %#x, should be %#" PRIxPADDR "\n", i+1, *p, pa + i * sizeof(struct play_slot_ctrl_bank) * N_PLAY_SLOT_CTRL_BANK); p++; } num = le32toh(*(uint32_t*)sc->ptbl); printf("numofplay = %d\n", num); for (i = 0; i < num; i++) { p = (uint32_t *)sc->pbankp[i*2]; printf(" pbankp[%d], bank 0 : %p\n", i*2, p); for (j = 0; j < sizeof(struct play_slot_ctrl_bank) / sizeof(uint32_t); j++) { printf(" 0x%02x: 0x%08x\n", (unsigned)(j * sizeof(uint32_t)), (unsigned)*p++); } p = (uint32_t *)sc->pbankp[i*2 + 1]; printf(" pbankp[%d], bank 1 : %p\n", i*2 + 1, p); for (j = 0; j < sizeof(struct play_slot_ctrl_bank) / sizeof(uint32_t); j++) { printf(" 0x%02x: 0x%08x\n", (unsigned)(j * sizeof(uint32_t)), (unsigned)*p++); } } } #endif /* AUDIO_DEBUG */ static u_int yds_get_dstype(int id) { int i; for (i = 0; yds_chip_capabliity_list[i].id; i++) { if (PCI_PRODUCT(id) == yds_chip_capabliity_list[i].id) return yds_chip_capabliity_list[i].flags; } return -1; } static int yds_download_mcode(struct yds_softc *sc) { static struct { const uint32_t *mcode; size_t size; } ctrls[] = { {yds_ds1_ctrl_mcode, sizeof(yds_ds1_ctrl_mcode)}, {yds_ds1e_ctrl_mcode, sizeof(yds_ds1e_ctrl_mcode)}, }; u_int ctrl; const uint32_t *p; size_t size; int dstype; if (sc->sc_flags & YDS_CAP_MCODE_1) dstype = YDS_DS_1; else if (sc->sc_flags & YDS_CAP_MCODE_1E) dstype = YDS_DS_1E; else return 1; /* unknown */ if (yds_disable_dsp(sc)) return 1; /* Software reset */ YWRITE4(sc, YDS_MODE, YDS_MODE_RESET); YWRITE4(sc, YDS_MODE, 0); YWRITE4(sc, YDS_MAPOF_REC, 0); YWRITE4(sc, YDS_MAPOF_EFFECT, 0); YWRITE4(sc, YDS_PLAY_CTRLBASE, 0); YWRITE4(sc, YDS_REC_CTRLBASE, 0); YWRITE4(sc, YDS_EFFECT_CTRLBASE, 0); YWRITE4(sc, YDS_WORK_BASE, 0); ctrl = YREAD2(sc, YDS_GLOBAL_CONTROL); YWRITE2(sc, YDS_GLOBAL_CONTROL, ctrl & ~0x0007); /* Download DSP microcode. */ p = yds_dsp_mcode; size = sizeof(yds_dsp_mcode); YWRITEREGION4(sc, YDS_DSP_INSTRAM, p, size); /* Download CONTROL microcode. */ p = ctrls[dstype].mcode; size = ctrls[dstype].size; YWRITEREGION4(sc, YDS_CTRL_INSTRAM, p, size); yds_enable_dsp(sc); delay(10 * 1000); /* nessesary on my 724F (??) */ return 0; } static int yds_allocate_slots(struct yds_softc *sc) { size_t pcs, rcs, ecs, ws, memsize; void *mp; uint32_t da; /* DMA address */ char *va; /* KVA */ off_t cb; int i; struct yds_dma *p; /* Alloc DSP Control Data */ pcs = YREAD4(sc, YDS_PLAY_CTRLSIZE) * sizeof(uint32_t); rcs = YREAD4(sc, YDS_REC_CTRLSIZE) * sizeof(uint32_t); ecs = YREAD4(sc, YDS_EFFECT_CTRLSIZE) * sizeof(uint32_t); ws = WORK_SIZE; YWRITE4(sc, YDS_WORK_SIZE, ws / sizeof(uint32_t)); DPRINTF(("play control size : %d\n", (unsigned int)pcs)); DPRINTF(("rec control size : %d\n", (unsigned int)rcs)); DPRINTF(("eff control size : %d\n", (unsigned int)ecs)); #ifndef AUDIO_DEBUG __USE(ecs); #endif DPRINTF(("work size : %d\n", (unsigned int)ws)); #ifdef DIAGNOSTIC if (pcs != sizeof(struct play_slot_ctrl_bank)) { aprint_error_dev(sc->sc_dev, "invalid play slot ctrldata %d != %d\n", (unsigned int)pcs, (unsigned int)sizeof(struct play_slot_ctrl_bank)); if (rcs != sizeof(struct rec_slot_ctrl_bank)) aprint_error_dev(sc->sc_dev, "invalid rec slot ctrldata %d != %d\n", (unsigned int)rcs, (unsigned int)sizeof(struct rec_slot_ctrl_bank)); } #endif memsize = N_PLAY_SLOTS*N_PLAY_SLOT_CTRL_BANK*pcs + N_REC_SLOT_CTRL*N_REC_SLOT_CTRL_BANK*rcs + ws; memsize += (N_PLAY_SLOTS+1)*sizeof(uint32_t); p = &sc->sc_ctrldata; if (KERNADDR(p) == NULL) { i = yds_allocmem(sc, memsize, 16, p); if (i) { aprint_error_dev(sc->sc_dev, "couldn't alloc/map DSP DMA buffer, reason %d\n", i); return 1; } } mp = KERNADDR(p); da = DMAADDR(p); DPRINTF(("mp:%p, DMA addr:%#" PRIxPADDR "\n", mp, sc->sc_ctrldata.map->dm_segs[0].ds_addr)); memset(mp, 0, memsize); /* Work space */ cb = 0; va = (uint8_t *)mp; YWRITE4(sc, YDS_WORK_BASE, da + cb); cb += ws; /* Play control data table */ sc->ptbl = (uint32_t *)(va + cb); sc->ptbloff = cb; YWRITE4(sc, YDS_PLAY_CTRLBASE, da + cb); cb += (N_PLAY_SLOT_CTRL + 1) * sizeof(uint32_t); /* Record slot control data */ sc->rbank = (struct rec_slot_ctrl_bank *)(va + cb); YWRITE4(sc, YDS_REC_CTRLBASE, da + cb); sc->rbankoff = cb; cb += N_REC_SLOT_CTRL * N_REC_SLOT_CTRL_BANK * rcs; #if 0 /* Effect slot control data -- unused */ YWRITE4(sc, YDS_EFFECT_CTRLBASE, da + cb); cb += N_EFFECT_SLOT_CTRL * N_EFFECT_SLOT_CTRL_BANK * ecs; #endif /* Play slot control data */ sc->pbankoff = cb; for (i=0; i < N_PLAY_SLOT_CTRL; i++) { sc->pbankp[i*2] = (struct play_slot_ctrl_bank *)(va + cb); *(sc->ptbl + i+1) = htole32(da + cb); cb += pcs; sc->pbankp[i*2+1] = (struct play_slot_ctrl_bank *)(va + cb); cb += pcs; } /* Sync play control data table */ bus_dmamap_sync(sc->sc_dmatag, p->map, sc->ptbloff, (N_PLAY_SLOT_CTRL+1) * sizeof(uint32_t), BUS_DMASYNC_PREWRITE); return 0; } static void yds_enable_dsp(struct yds_softc *sc) { YWRITE4(sc, YDS_CONFIG, YDS_DSP_SETUP); } static int yds_disable_dsp(struct yds_softc *sc) { int to; uint32_t data; data = YREAD4(sc, YDS_CONFIG); if (data) YWRITE4(sc, YDS_CONFIG, YDS_DSP_DISABLE); for (to = 0; to < YDS_WORK_TIMEOUT; to++) { if ((YREAD4(sc, YDS_STATUS) & YDS_STAT_WORK) == 0) return 0; delay(1); } return 1; } static int yds_match(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa; pa = (struct pci_attach_args *)aux; switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_YAMAHA: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_YAMAHA_YMF724: case PCI_PRODUCT_YAMAHA_YMF740: case PCI_PRODUCT_YAMAHA_YMF740C: case PCI_PRODUCT_YAMAHA_YMF724F: case PCI_PRODUCT_YAMAHA_YMF744B: case PCI_PRODUCT_YAMAHA_YMF754: return 1; } break; } return 0; } /* * This routine is called after all the ISA devices are configured, * to avoid conflict. */ static void yds_configure_legacy(device_t self) #define FLEXIBLE (sc->sc_flags & YDS_CAP_LEGACY_FLEXIBLE) #define SELECTABLE (sc->sc_flags & YDS_CAP_LEGACY_SELECTABLE) { static const bus_addr_t opl_addrs[] = {0x388, 0x398, 0x3A0, 0x3A8}; static const bus_addr_t mpu_addrs[] = {0x330, 0x300, 0x332, 0x334}; struct yds_softc *sc; pcireg_t reg; device_t dev; int i; sc = device_private(self); if (!FLEXIBLE && !SELECTABLE) return; reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY); reg &= ~0x8133c03f; /* these bits are out of interest */ reg |= ((YDS_PCI_EX_LEGACY_IMOD) | (YDS_PCI_LEGACY_FMEN | YDS_PCI_LEGACY_MEN /*| YDS_PCI_LEGACY_MIEN*/)); reg |= YDS_PCI_EX_LEGACY_SMOD_DISABLE; if (FLEXIBLE) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg); delay(100*1000); } /* Look for OPL */ dev = 0; for (i = 0; i < sizeof(opl_addrs) / sizeof(bus_addr_t); i++) { if (SELECTABLE) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg | (i << (0+16))); delay(100*1000); /* wait 100ms */ } else pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_FM_BA, opl_addrs[i]); if (bus_space_map(sc->sc_opl_iot, opl_addrs[i], 4, 0, &sc->sc_opl_ioh) == 0) { struct audio_attach_args aa; aa.type = AUDIODEV_TYPE_OPL; aa.hwif = aa.hdl = NULL; dev = config_found(self, &aa, audioprint, CFARGS(.iattr = "yds")); if (dev == 0) bus_space_unmap(sc->sc_opl_iot, sc->sc_opl_ioh, 4); else { if (SELECTABLE) reg |= (i << (0+16)); break; } } } if (dev == 0) { reg &= ~YDS_PCI_LEGACY_FMEN; pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg); } else { /* Max. volume */ YWRITE4(sc, YDS_LEGACY_OUT_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_LEGACY_REC_VOLUME, 0x3fff3fff); } /* Look for MPU */ dev = NULL; for (i = 0; i < sizeof(mpu_addrs) / sizeof(bus_addr_t); i++) { if (SELECTABLE) pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg | (i << (4+16))); else pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_MPU_BA, mpu_addrs[i]); if (bus_space_map(sc->sc_mpu_iot, mpu_addrs[i], 2, 0, &sc->sc_mpu_ioh) == 0) { struct audio_attach_args aa; aa.type = AUDIODEV_TYPE_MPU; aa.hwif = aa.hdl = NULL; dev = config_found(self, &aa, audioprint, CFARGS(.iattr = "yds")); if (dev == 0) bus_space_unmap(sc->sc_mpu_iot, sc->sc_mpu_ioh, 2); else { if (SELECTABLE) reg |= (i << (4+16)); break; } } } if (dev == 0) { reg &= ~(YDS_PCI_LEGACY_MEN | YDS_PCI_LEGACY_MIEN); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg); } sc->sc_mpu = dev; } #undef FLEXIBLE #undef SELECTABLE static int yds_init(struct yds_softc *sc) { uint32_t reg; DPRINTF(("yds_init()\n")); /* Download microcode */ if (yds_download_mcode(sc)) { aprint_error_dev(sc->sc_dev, "download microcode failed\n"); return 1; } /* Allocate DMA buffers */ if (yds_allocate_slots(sc)) { aprint_error_dev(sc->sc_dev, "could not allocate slots\n"); return 1; } /* Warm reset */ reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg | YDS_DSCTRL_WRST); delay(50000); return 0; } static bool yds_suspend(device_t dv, const pmf_qual_t *qual) { struct yds_softc *sc = device_private(dv); pci_chipset_tag_t pc = sc->sc_pc; pcitag_t tag = sc->sc_pcitag; mutex_enter(&sc->sc_lock); mutex_spin_enter(&sc->sc_intr_lock); sc->sc_enabled = 0; sc->sc_dsctrl = pci_conf_read(pc, tag, YDS_PCI_DSCTRL); sc->sc_legacy = pci_conf_read(pc, tag, YDS_PCI_LEGACY); sc->sc_ba[0] = pci_conf_read(pc, tag, YDS_PCI_FM_BA); sc->sc_ba[1] = pci_conf_read(pc, tag, YDS_PCI_MPU_BA); mutex_spin_exit(&sc->sc_intr_lock); mutex_exit(&sc->sc_lock); return true; } static bool yds_resume(device_t dv, const pmf_qual_t *qual) { struct yds_softc *sc = device_private(dv); pci_chipset_tag_t pc = sc->sc_pc; pcitag_t tag = sc->sc_pcitag; pcireg_t reg; /* Disable legacy mode */ mutex_enter(&sc->sc_lock); mutex_spin_enter(&sc->sc_intr_lock); reg = pci_conf_read(pc, tag, YDS_PCI_LEGACY); pci_conf_write(pc, tag, YDS_PCI_LEGACY, reg & YDS_PCI_LEGACY_LAD); /* Enable the device. */ reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); reg |= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE); pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, reg); reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); mutex_spin_exit(&sc->sc_intr_lock); if (yds_init(sc)) { aprint_error_dev(dv, "reinitialize failed\n"); mutex_exit(&sc->sc_lock); return false; } pci_conf_write(pc, tag, YDS_PCI_DSCTRL, sc->sc_dsctrl); sc->sc_enabled = 1; sc->sc_codec[0].codec_if->vtbl->restore_ports(sc->sc_codec[0].codec_if); mutex_exit(&sc->sc_lock); return true; } static void yds_attach(device_t parent, device_t self, void *aux) { struct yds_softc *sc; struct pci_attach_args *pa; pci_chipset_tag_t pc; char const *intrstr; pci_intr_handle_t ih; pcireg_t reg; struct yds_codec_softc *codec; int i, r, to; int revision; int ac97_id2; char intrbuf[PCI_INTRSTR_LEN]; sc = device_private(self); sc->sc_dev = self; pa = (struct pci_attach_args *)aux; pc = pa->pa_pc; revision = PCI_REVISION(pa->pa_class); pci_aprint_devinfo(pa, NULL); /* Map register to memory */ if (pci_mapreg_map(pa, YDS_PCI_MBA, PCI_MAPREG_TYPE_MEM, 0, &sc->memt, &sc->memh, NULL, NULL)) { aprint_error_dev(self, "can't map memory space\n"); return; } /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "couldn't map interrupt\n"); return; } mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, yds_intr, sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); sc->sc_enabled = 0; sc->sc_dmatag = pa->pa_dmat; sc->sc_pc = pc; sc->sc_pcitag = pa->pa_tag; sc->sc_id = pa->pa_id; sc->sc_revision = revision; sc->sc_flags = yds_get_dstype(sc->sc_id); #ifdef AUDIO_DEBUG if (ydsdebug) { char bits[80]; snprintb(bits, sizeof(bits), YDS_CAP_BITS, sc->sc_flags); printf("%s: chip has %s\n", device_xname(self), bits); } #endif /* Disable legacy mode */ reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_LEGACY); pci_conf_write(pc, pa->pa_tag, YDS_PCI_LEGACY, reg & YDS_PCI_LEGACY_LAD); /* Enable the device. */ reg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); reg |= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE); pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg); reg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); /* Mute all volumes */ for (i = 0x80; i < 0xc0; i += 2) YWRITE2(sc, i, 0); /* Initialize the device */ if (yds_init(sc)) { aprint_error_dev(self, "initialize failed\n"); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); return; } /* * Detect primary/secondary AC97 * YMF754 Hardware Specification Rev 1.01 page 24 */ reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_DSCTRL); pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg & ~YDS_DSCTRL_CRST); delay(400000); /* Needed for 740C. */ /* Primary */ for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR1) & AC97_BUSY) == 0) break; delay(1); } if (to == AC97_TIMEOUT) { aprint_error_dev(self, "no AC97 available\n"); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); return; } /* Secondary */ /* Secondary AC97 is used for 4ch audio. Currently unused. */ ac97_id2 = -1; if ((YREAD2(sc, YDS_ACTIVITY) & YDS_ACTIVITY_DOCKA) == 0) goto detected; #if 0 /* reset secondary... */ YWRITE2(sc, YDS_GPIO_OCTRL, YREAD2(sc, YDS_GPIO_OCTRL) & ~YDS_GPIO_GPO2); YWRITE2(sc, YDS_GPIO_FUNCE, (YREAD2(sc, YDS_GPIO_FUNCE)&(~YDS_GPIO_GPC2))|YDS_GPIO_GPE2); #endif for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR2) & AC97_BUSY) == 0) break; delay(1); } if (to < AC97_TIMEOUT) { /* detect id */ for (ac97_id2 = 1; ac97_id2 < 4; ac97_id2++) { YWRITE2(sc, AC97_CMD_ADDR, AC97_CMD_READ | AC97_ID(ac97_id2) | 0x28); for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR2) & AC97_BUSY) == 0) goto detected; delay(1); } } if (ac97_id2 == 4) ac97_id2 = -1; detected: ; } pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg | YDS_DSCTRL_CRST); delay (20); pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg & ~YDS_DSCTRL_CRST); delay (400000); for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR1) & AC97_BUSY) == 0) break; delay(1); } /* * Attach ac97 codec */ for (i = 0; i < 2; i++) { static struct { int data; int addr; } statregs[] = { {AC97_STAT_DATA1, AC97_STAT_ADDR1}, {AC97_STAT_DATA2, AC97_STAT_ADDR2}, }; if (i == 1 && ac97_id2 == -1) break; /* secondary ac97 not available */ codec = &sc->sc_codec[i]; codec->sc = sc; codec->id = i == 1 ? ac97_id2 : 0; codec->status_data = statregs[i].data; codec->status_addr = statregs[i].addr; codec->host_if.arg = codec; codec->host_if.attach = yds_attach_codec; codec->host_if.read = yds_read_codec; codec->host_if.write = yds_write_codec; codec->host_if.reset = yds_reset_codec; r = ac97_attach(&codec->host_if, self, &sc->sc_lock); if (r != 0) { aprint_error_dev(self, "can't attach codec (error 0x%X)\n", r); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); return; } } audio_attach_mi(&yds_hw_if, sc, self); sc->sc_legacy_iot = pa->pa_iot; config_defer(self, yds_configure_legacy); if (!pmf_device_register(self, yds_suspend, yds_resume)) aprint_error_dev(self, "couldn't establish power handler\n"); mutex_spin_enter(&sc->sc_intr_lock); sc->sc_enabled = 1; mutex_spin_exit(&sc->sc_intr_lock); } static int yds_attach_codec(void *sc_, struct ac97_codec_if *codec_if) { struct yds_codec_softc *sc; sc = sc_; sc->codec_if = codec_if; return 0; } static int yds_ready_codec(struct yds_codec_softc *sc) { int to; for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc->sc, sc->status_addr) & AC97_BUSY) == 0) return 0; delay(1); } return 1; } static int yds_read_codec(void *sc_, uint8_t reg, uint16_t *data) { struct yds_codec_softc *sc; sc = sc_; YWRITE2(sc->sc, AC97_CMD_ADDR, AC97_CMD_READ | AC97_ID(sc->id) | reg); if (yds_ready_codec(sc)) { aprint_error_dev(sc->sc->sc_dev, "yds_read_codec timeout\n"); return EIO; } if (PCI_PRODUCT(sc->sc->sc_id) == PCI_PRODUCT_YAMAHA_YMF744B && sc->sc->sc_revision < 2) { int i; for (i=0; i<600; i++) (void)YREAD2(sc->sc, sc->status_data); } *data = YREAD2(sc->sc, sc->status_data); return 0; } static int yds_write_codec(void *sc_, uint8_t reg, uint16_t data) { struct yds_codec_softc *sc; sc = sc_; YWRITE2(sc->sc, AC97_CMD_ADDR, AC97_CMD_WRITE | AC97_ID(sc->id) | reg); YWRITE2(sc->sc, AC97_CMD_DATA, data); if (yds_ready_codec(sc)) { aprint_error_dev(sc->sc->sc_dev, "yds_write_codec timeout\n"); return EIO; } return 0; } /* * XXX: Must handle the secondary differntly!! */ static int yds_reset_codec(void *sc_) { struct yds_codec_softc *codec; struct yds_softc *sc; pcireg_t reg; codec = sc_; sc = codec->sc; /* reset AC97 codec */ reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL); if (reg & 0x03) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg & ~0x03); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg | 0x03); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg & ~0x03); delay(50000); } yds_ready_codec(sc_); return 0; } static int yds_intr(void *p) { struct yds_softc *sc = p; #if NMPU > 0 struct mpu_softc *sc_mpu = device_private(sc->sc_mpu); #endif u_int status; mutex_spin_enter(&sc->sc_intr_lock); if (!sc->sc_enabled) { mutex_spin_exit(&sc->sc_intr_lock); return 0; } status = YREAD4(sc, YDS_STATUS); DPRINTFN(1, ("yds_intr: status=%08x\n", status)); if ((status & (YDS_STAT_INT|YDS_STAT_TINT)) == 0) { #if NMPU > 0 if (sc_mpu) return mpu_intr(sc_mpu); #endif mutex_spin_exit(&sc->sc_intr_lock); return 0; } if (status & YDS_STAT_TINT) { YWRITE4(sc, YDS_STATUS, YDS_STAT_TINT); printf ("yds_intr: timeout!\n"); } /* * XXX * An interrupt in YMF754 occurs when next hardware frame is * requested, not when current hardware frame processing is * completed. According to the datasheet, only access to the * inactive bank is permitted, but in fact, fields in inactive * bank that the chip should write to may or may not be filled * at that time. On the other hand, both the CPU and the device * must guarantee that the fields in active bank are determined * at the beginning of the interrupt. * Therefore, we read active bank. */ if (status & YDS_STAT_INT) { int nbank; u_int pdma = 0; u_int rdma = 0; /* nbank is bank number that YDS is processing now. */ nbank = YREAD4(sc, YDS_CONTROL_SELECT) & 1; /* Clear interrupt flag */ YWRITE4(sc, YDS_STATUS, YDS_STAT_INT); /* Read current data offset before ACTV2 */ if (sc->sc_play.intr) { /* Sync play slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->pbankoff, sizeof(struct play_slot_ctrl_bank)* le32toh(*sc->ptbl)* N_PLAY_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE| BUS_DMASYNC_POSTREAD); /* start offset of current processing bank */ pdma = le32toh(sc->pbankp[nbank]->pgstart) * sc->sc_play.factor; } if (sc->sc_rec.intr) { /* Sync rec slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->rbankoff, sizeof(struct rec_slot_ctrl_bank)* N_REC_SLOT_CTRL* N_REC_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE| BUS_DMASYNC_POSTREAD); /* start offset of current processing bank */ rdma = le32toh( sc->rbank[YDS_INPUT_SLOT * 2 + nbank].pgstartadr); } /* Buffer for the next frame is always ready. */ YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV2); if (sc->sc_play.intr) { if (pdma < sc->sc_play.offset) pdma += sc->sc_play.length; if (pdma >= sc->sc_play.offset + sc->sc_play.blksize) { /* We can fill the next block */ /* Sync ring buffer for previous write */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map, 0, sc->sc_play.length, BUS_DMASYNC_POSTWRITE); sc->sc_play.intr(sc->sc_play.intr_arg); sc->sc_play.offset += sc->sc_play.blksize; if (sc->sc_play.offset >= sc->sc_play.length) { sc->sc_play.offset -= sc->sc_play.length; #ifdef DIAGNOSTIC if (sc->sc_play.offset != 0) printf ("Audio ringbuffer botch\n"); #endif } /* Sync ring buffer for next write */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map, 0, sc->sc_play.length, BUS_DMASYNC_PREWRITE); } } if (sc->sc_rec.intr) { if (rdma < sc->sc_rec.offset) rdma += sc->sc_rec.length; if (rdma >= sc->sc_rec.offset + sc->sc_rec.blksize) { /* We can drain the current block */ /* Sync ring buffer first */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map, 0, sc->sc_rec.length, BUS_DMASYNC_POSTREAD); sc->sc_rec.intr(sc->sc_rec.intr_arg); sc->sc_rec.offset += sc->sc_rec.blksize; if (sc->sc_rec.offset >= sc->sc_rec.length) { sc->sc_rec.offset -= sc->sc_rec.length; #ifdef DIAGNOSTIC if (sc->sc_rec.offset != 0) printf ("Audio ringbuffer botch\n"); #endif } /* Sync ring buffer for next read */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map, 0, sc->sc_rec.length, BUS_DMASYNC_PREREAD); } } } mutex_spin_exit(&sc->sc_intr_lock); return 1; } static int yds_allocmem(struct yds_softc *sc, size_t size, size_t align, struct yds_dma *p) { int error; p->size = size; error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nsegs, BUS_DMA_WAITOK); if (error) return error; error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT); if (error) goto free; error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 0, BUS_DMA_WAITOK, &p->map); if (error) goto unmap; error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, BUS_DMA_WAITOK); if (error) goto destroy; return 0; destroy: bus_dmamap_destroy(sc->sc_dmatag, p->map); unmap: bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); free: bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return error; } static int yds_freemem(struct yds_softc *sc, struct yds_dma *p) { bus_dmamap_unload(sc->sc_dmatag, p->map); bus_dmamap_destroy(sc->sc_dmatag, p->map); bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return 0; } static int yds_open(void *addr, int flags) { struct yds_softc *sc; uint32_t mode; sc = addr; /* Select bank 0. */ YWRITE4(sc, YDS_CONTROL_SELECT, 0); /* Start the DSP operation. */ mode = YREAD4(sc, YDS_MODE); mode |= YDS_MODE_ACTV; mode &= ~YDS_MODE_ACTV2; YWRITE4(sc, YDS_MODE, mode); return 0; } static void yds_close(void *addr) { yds_halt(addr); } static int yds_query_format(void *addr, audio_format_query_t *afp) { return audio_query_format(yds_formats, YDS_NFORMATS, afp); } static int yds_set_format(void *addr, int setmode, const audio_params_t *play, const audio_params_t *rec, audio_filter_reg_t *pfil, audio_filter_reg_t *rfil) { return 0; } static int yds_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param) { /* * Block size must be bigger than a frame. * That is 1024bytes at most, i.e. for 48000Hz, 16bit, 2ch. */ if (blk < 1024) blk = 1024; return blk; } static uint32_t yds_get_lpfq(u_int sample_rate) { int i; static struct lpfqt { u_int rate; uint32_t lpfq; } lpfqt[] = { {8000, 0x32020000}, {11025, 0x31770000}, {16000, 0x31390000}, {22050, 0x31c90000}, {32000, 0x33d00000}, {48000, 0x40000000}, {0, 0} }; if (sample_rate == 44100) /* for P44 slot? */ return 0x370A0000; for (i = 0; lpfqt[i].rate != 0; i++) if (sample_rate <= lpfqt[i].rate) break; return lpfqt[i].lpfq; } static uint32_t yds_get_lpfk(u_int sample_rate) { int i; static struct lpfkt { u_int rate; uint32_t lpfk; } lpfkt[] = { {8000, 0x18b20000}, {11025, 0x20930000}, {16000, 0x2b9a0000}, {22050, 0x35a10000}, {32000, 0x3eaa0000}, {48000, 0x40000000}, {0, 0} }; if (sample_rate == 44100) /* for P44 slot? */ return 0x46460000; for (i = 0; lpfkt[i].rate != 0; i++) if (sample_rate <= lpfkt[i].rate) break; return lpfkt[i].lpfk; } static int yds_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, const audio_params_t *param) #define P44 (sc->sc_flags & YDS_CAP_HAS_P44) { struct yds_softc *sc; struct yds_dma *p; struct play_slot_ctrl_bank *psb; const u_int gain = 0x40000000; bus_addr_t s; size_t l; int i; int p44, channels; uint32_t format; sc = addr; #ifdef DIAGNOSTIC if (sc->sc_play.intr) panic("yds_trigger_output: already running"); #endif sc->sc_play.intr = intr; sc->sc_play.intr_arg = arg; sc->sc_play.offset = 0; sc->sc_play.blksize = blksize; DPRINTFN(1, ("yds_trigger_output: sc=%p start=%p end=%p " "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); p = yds_find_dma(sc, start); if (!p) { printf("yds_trigger_output: bad addr %p\n", start); return EINVAL; } sc->sc_play.dma = p; #ifdef YDS_USE_P44 /* The document says the P44 SRC supports only stereo, 16bit PCM. */ if (P44) p44 = ((param->sample_rate == 44100) && (param->channels == 2) && (param->precision == 16)); else #endif p44 = 0; channels = p44 ? 1 : param->channels; s = DMAADDR(p); l = ((char *)end - (char *)start); sc->sc_play.length = l; *sc->ptbl = htole32(channels); /* Num of play */ sc->sc_play.factor = 1; if (param->channels == 2) sc->sc_play.factor *= 2; if (param->precision != 8) sc->sc_play.factor *= 2; l /= sc->sc_play.factor; format = ((channels == 2 ? PSLT_FORMAT_STEREO : 0) | (param->precision == 8 ? PSLT_FORMAT_8BIT : 0) | (p44 ? PSLT_FORMAT_SRC441 : 0)); psb = sc->pbankp[0]; memset(psb, 0, sizeof(*psb)); psb->format = htole32(format); psb->pgbase = htole32(s); psb->pgloopend = htole32(l); if (!p44) { psb->pgdeltaend = htole32((param->sample_rate * 65536 / 48000) << 12); psb->lpfkend = htole32(yds_get_lpfk(param->sample_rate)); psb->eggainend = htole32(gain); psb->lpfq = htole32(yds_get_lpfq(param->sample_rate)); psb->pgdelta = htole32(psb->pgdeltaend); psb->lpfk = htole32(yds_get_lpfk(param->sample_rate)); psb->eggain = htole32(gain); } for (i = 0; i < channels; i++) { /* i == 0: left or mono, i == 1: right */ psb = sc->pbankp[i*2]; if (i) /* copy from left */ *psb = *(sc->pbankp[0]); if (channels == 2) { /* stereo */ if (i == 0) { psb->lchgain = psb->lchgainend = htole32(gain); } else { psb->lchgain = psb->lchgainend = 0; psb->rchgain = psb->rchgainend = htole32(gain); psb->format |= htole32(PSLT_FORMAT_RCH); } } else if (!p44) { /* mono */ psb->lchgain = psb->rchgain = htole32(gain); psb->lchgainend = psb->rchgainend = htole32(gain); } /* copy to the other bank */ *(sc->pbankp[i*2+1]) = *psb; } YDS_DUMP_PLAY_SLOT(5, sc, 0); YDS_DUMP_PLAY_SLOT(5, sc, 1); if (p44) YWRITE4(sc, YDS_P44_OUT_VOLUME, 0x3fff3fff); else YWRITE4(sc, YDS_DAC_OUT_VOLUME, 0x3fff3fff); /* Now the play slot for the next frame is set up!! */ /* Sync play slot control data for both directions */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->pbankoff, sizeof(struct play_slot_ctrl_bank) * channels * N_PLAY_SLOT_CTRL_BANK, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, p->map, 0, blksize, BUS_DMASYNC_PREWRITE); /* HERE WE GO!! */ YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV | YDS_MODE_ACTV2); return 0; } #undef P44 static int yds_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct yds_softc *sc; struct yds_dma *p; u_int srate, format; struct rec_slot_ctrl_bank *rsb; bus_addr_t s; size_t l; sc = addr; #ifdef DIAGNOSTIC if (sc->sc_rec.intr) panic("yds_trigger_input: already running"); #endif sc->sc_rec.intr = intr; sc->sc_rec.intr_arg = arg; sc->sc_rec.offset = 0; sc->sc_rec.blksize = blksize; DPRINTFN(1, ("yds_trigger_input: " "sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); DPRINTFN(1, (" parameters: rate=%u, precision=%u, channels=%u\n", param->sample_rate, param->precision, param->channels)); p = yds_find_dma(sc, start); if (!p) { printf("yds_trigger_input: bad addr %p\n", start); return EINVAL; } sc->sc_rec.dma = p; s = DMAADDR(p); l = ((char *)end - (char *)start); sc->sc_rec.length = l; sc->sc_rec.factor = 1; if (param->channels == 2) sc->sc_rec.factor *= 2; if (param->precision != 8) sc->sc_rec.factor *= 2; rsb = &sc->rbank[0]; memset(rsb, 0, sizeof(*rsb)); rsb->pgbase = htole32(s); rsb->pgloopendadr = htole32(l); /* Seems all 4 banks must be set up... */ sc->rbank[1] = *rsb; sc->rbank[2] = *rsb; sc->rbank[3] = *rsb; YWRITE4(sc, YDS_ADC_IN_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_REC_IN_VOLUME, 0x3fff3fff); srate = 48000 * 4096 / param->sample_rate - 1; format = ((param->precision == 8 ? YDS_FORMAT_8BIT : 0) | (param->channels == 2 ? YDS_FORMAT_STEREO : 0)); DPRINTF(("srate=%d, format=%08x\n", srate, format)); #ifdef YDS_USE_REC_SLOT YWRITE4(sc, YDS_DAC_REC_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_P44_REC_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_MAPOF_REC, YDS_RECSLOT_VALID); YWRITE4(sc, YDS_REC_SAMPLE_RATE, srate); YWRITE4(sc, YDS_REC_FORMAT, format); #else YWRITE4(sc, YDS_MAPOF_REC, YDS_ADCSLOT_VALID); YWRITE4(sc, YDS_ADC_SAMPLE_RATE, srate); YWRITE4(sc, YDS_ADC_FORMAT, format); #endif /* Now the rec slot for the next frame is set up!! */ /* Sync record slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->rbankoff, sizeof(struct rec_slot_ctrl_bank)* N_REC_SLOT_CTRL* N_REC_SLOT_CTRL_BANK, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, p->map, 0, blksize, BUS_DMASYNC_PREREAD); /* HERE WE GO!! */ YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV | YDS_MODE_ACTV2); return 0; } static int yds_halt(struct yds_softc *sc) { uint32_t mode; /* Stop the DSP operation. */ mode = YREAD4(sc, YDS_MODE); YWRITE4(sc, YDS_MODE, mode & ~(YDS_MODE_ACTV|YDS_MODE_ACTV2)); /* Paranoia... mute all */ YWRITE4(sc, YDS_P44_OUT_VOLUME, 0); YWRITE4(sc, YDS_DAC_OUT_VOLUME, 0); YWRITE4(sc, YDS_ADC_IN_VOLUME, 0); YWRITE4(sc, YDS_REC_IN_VOLUME, 0); YWRITE4(sc, YDS_DAC_REC_VOLUME, 0); YWRITE4(sc, YDS_P44_REC_VOLUME, 0); return 0; } static int yds_halt_output(void *addr) { struct yds_softc *sc; DPRINTF(("yds: yds_halt_output\n")); sc = addr; if (sc->sc_play.intr) { sc->sc_play.intr = 0; /* Sync play slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->pbankoff, sizeof(struct play_slot_ctrl_bank)* (*sc->ptbl)*N_PLAY_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD); /* Stop the play slot operation */ sc->pbankp[0]->status = sc->pbankp[1]->status = sc->pbankp[2]->status = sc->pbankp[3]->status = 1; /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map, 0, sc->sc_play.length, BUS_DMASYNC_POSTWRITE); } return 0; } static int yds_halt_input(void *addr) { struct yds_softc *sc; DPRINTF(("yds: yds_halt_input\n")); sc = addr; if (sc->sc_rec.intr) { sc->sc_rec.intr = NULL; /* Stop the rec slot operation */ YWRITE4(sc, YDS_MAPOF_REC, 0); /* Sync rec slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->rbankoff, sizeof(struct rec_slot_ctrl_bank)* N_REC_SLOT_CTRL*N_REC_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD); /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map, 0, sc->sc_rec.length, BUS_DMASYNC_POSTREAD); } return 0; } static int yds_getdev(void *addr, struct audio_device *retp) { *retp = yds_device; return 0; } static int yds_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct yds_softc *sc; sc = addr; return sc->sc_codec[0].codec_if->vtbl->mixer_set_port( sc->sc_codec[0].codec_if, cp); } static int yds_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct yds_softc *sc; sc = addr; return sc->sc_codec[0].codec_if->vtbl->mixer_get_port( sc->sc_codec[0].codec_if, cp); } static int yds_query_devinfo(void *addr, mixer_devinfo_t *dip) { struct yds_softc *sc; sc = addr; return sc->sc_codec[0].codec_if->vtbl->query_devinfo( sc->sc_codec[0].codec_if, dip); } static void * yds_malloc(void *addr, int direction, size_t size) { struct yds_softc *sc; struct yds_dma *p; int error; p = kmem_alloc(sizeof(*p), KM_SLEEP); sc = addr; error = yds_allocmem(sc, size, 16, p); if (error) { kmem_free(p, sizeof(*p)); return NULL; } p->next = sc->sc_dmas; sc->sc_dmas = p; return KERNADDR(p); } static void yds_free(void *addr, void *ptr, size_t size) { struct yds_softc *sc; struct yds_dma **pp, *p; sc = addr; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { if (KERNADDR(p) == ptr) { yds_freemem(sc, p); *pp = p->next; kmem_free(p, sizeof(*p)); return; } } } static struct yds_dma * yds_find_dma(struct yds_softc *sc, void *addr) { struct yds_dma *p; for (p = sc->sc_dmas; p && KERNADDR(p) != addr; p = p->next) continue; return p; } static size_t yds_round_buffersize(void *addr, int direction, size_t size) { /* * Buffer size should be at least twice as bigger as a frame. */ if (size < 1024 * 3) size = 1024 * 3; return size; } static int yds_get_props(void *addr) { return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; } static void yds_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) { struct yds_softc *sc; sc = addr; *intr = &sc->sc_intr_lock; *thread = &sc->sc_lock; }