/* $NetBSD: ubsec.c,v 1.62.4.1 2023/08/11 14:35:24 martin Exp $ */ /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */ /* $OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$ */ /* * Copyright (c) 2000 Jason L. Wright (jason@thought.net) * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * */ #include __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.62.4.1 2023/08/11 14:35:24 martin Exp $"); #undef UBSEC_DEBUG /* * uBsec 5[56]01, 58xx hardware crypto accelerator */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define UBSEC_NO_RNG /* hangs on attach */ #define letoh16 htole16 #define letoh32 htole32 /* * Prototypes and count for the pci_device structure */ static int ubsec_probe(device_t, cfdata_t, void *); static void ubsec_attach(device_t, device_t, void *); static int ubsec_detach(device_t, int); static void ubsec_reset_board(struct ubsec_softc *); static void ubsec_init_board(struct ubsec_softc *); static void ubsec_init_pciregs(struct pci_attach_args *pa); static void ubsec_cleanchip(struct ubsec_softc *); static void ubsec_totalreset(struct ubsec_softc *); static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *); CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, ubsec_detach, NULL); extern struct cfdriver ubsec_cd; /* patchable */ #ifdef UBSEC_DEBUG extern int ubsec_debug; int ubsec_debug=1; #endif static int ubsec_intr(void *); static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *); static void ubsec_freesession(void*, u_int64_t); static int ubsec_process(void*, struct cryptop *, int hint); static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *); static void ubsec_feed(struct ubsec_softc *); static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int); static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *); static void ubsec_feed2(struct ubsec_softc *); static void ubsec_feed4(struct ubsec_softc *); #ifndef UBSEC_NO_RNG static void ubsec_rng(void *); static void ubsec_rng_locked(void *); static void ubsec_rng_get(size_t, void *); #endif /* UBSEC_NO_RNG */ static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t, struct ubsec_dma_alloc *, int); static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *); static int ubsec_dmamap_aligned(bus_dmamap_t); static int ubsec_kprocess(void*, struct cryptkop *, int); static void ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int); static void ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int); static void ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int); static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *); static int ubsec_ksigbits(struct crparam *); static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int); static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int); #ifdef UBSEC_DEBUG static void ubsec_dump_pb(volatile struct ubsec_pktbuf *); static void ubsec_dump_mcr(struct ubsec_mcr *); static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *); #endif #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) #define SWAP32(x) (x) = htole32(ntohl((x))) #ifndef HTOLE32 #define HTOLE32(x) (x) = htole32(x) #endif struct ubsec_stats ubsecstats; /* * ubsec_maxbatch controls the number of crypto ops to voluntarily * collect into one submission to the hardware. This batching happens * when ops are dispatched from the crypto subsystem with a hint that * more are to follow immediately. These ops must also not be marked * with a ``no delay'' flag. */ static int ubsec_maxbatch = 1; /* * ubsec_maxaggr controls the number of crypto ops to submit to the * hardware as a unit. This aggregation reduces the number of interrupts * to the host at the expense of increased latency (for all but the last * operation). For network traffic setting this to one yields the highest * performance but at the expense of more interrupt processing. */ static int ubsec_maxaggr = 1; static const struct ubsec_product { pci_vendor_id_t ubsec_vendor; pci_product_id_t ubsec_product; int ubsec_flags; int ubsec_statmask; int ubsec_maxaggr; const char *ubsec_name; } ubsec_products[] = { { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501, 0, BS_STAT_MCR1_DONE | BS_STAT_DMAERR, UBS_MIN_AGGR, "Bluesteel 5501" }, { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601, UBS_FLAGS_KEY | UBS_FLAGS_RNG, BS_STAT_MCR1_DONE | BS_STAT_DMAERR, UBS_MIN_AGGR, "Bluesteel 5601" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801, 0, BS_STAT_MCR1_DONE | BS_STAT_DMAERR, UBS_MIN_AGGR, "Broadcom BCM5801" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802, UBS_FLAGS_KEY | UBS_FLAGS_RNG, BS_STAT_MCR1_DONE | BS_STAT_DMAERR, UBS_MIN_AGGR, "Broadcom BCM5802" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805, UBS_FLAGS_KEY | UBS_FLAGS_RNG, BS_STAT_MCR1_DONE | BS_STAT_DMAERR, UBS_MIN_AGGR, "Broadcom BCM5805" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, BS_STAT_MCR1_DONE | BS_STAT_DMAERR, UBS_MIN_AGGR, "Broadcom BCM5820" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, UBS_MIN_AGGR, "Broadcom BCM5821" }, { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, UBS_MIN_AGGR, "Sun Crypto Accelerator 1000" }, { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, UBS_MIN_AGGR, "Broadcom BCM5821 (Sun)" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, UBS_MIN_AGGR, "Broadcom BCM5822" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, UBS_MIN_AGGR, "Broadcom BCM5823" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825, UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, UBS_MIN_AGGR, "Broadcom BCM5825" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860, UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | UBS_FLAGS_LONGCTX | UBS_FLAGS_RNG | UBS_FLAGS_RNG4 | UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY, UBS_MAX_AGGR, "Broadcom BCM5860" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861, UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | UBS_FLAGS_LONGCTX | UBS_FLAGS_RNG | UBS_FLAGS_RNG4 | UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY, UBS_MAX_AGGR, "Broadcom BCM5861" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862, UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | UBS_FLAGS_LONGCTX | UBS_FLAGS_RNG | UBS_FLAGS_RNG4 | UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES, BS_STAT_MCR1_DONE | BS_STAT_DMAERR | BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY, UBS_MAX_AGGR, "Broadcom BCM5862" }, { 0, 0, 0, 0, 0, NULL } }; static const struct ubsec_product * ubsec_lookup(const struct pci_attach_args *pa) { const struct ubsec_product *up; for (up = ubsec_products; up->ubsec_name != NULL; up++) { if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor && PCI_PRODUCT(pa->pa_id) == up->ubsec_product) return (up); } return (NULL); } static int ubsec_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (ubsec_lookup(pa) != NULL) return (1); return (0); } static void ubsec_attach(device_t parent, device_t self, void *aux) { struct ubsec_softc *sc = device_private(self); struct pci_attach_args *pa = aux; const struct ubsec_product *up; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; pcireg_t memtype; struct ubsec_dma *dmap; u_int32_t cmd, i; char intrbuf[PCI_INTRSTR_LEN]; sc->sc_dev = self; sc->sc_pct = pc; up = ubsec_lookup(pa); if (up == NULL) { printf("\n"); panic("ubsec_attach: impossible"); } pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1); SIMPLEQ_INIT(&sc->sc_queue); SIMPLEQ_INIT(&sc->sc_qchip); SIMPLEQ_INIT(&sc->sc_queue2); SIMPLEQ_INIT(&sc->sc_qchip2); SIMPLEQ_INIT(&sc->sc_queue4); SIMPLEQ_INIT(&sc->sc_qchip4); SIMPLEQ_INIT(&sc->sc_q2free); sc->sc_flags = up->ubsec_flags; sc->sc_statmask = up->ubsec_statmask; sc->sc_maxaggr = up->ubsec_maxaggr; cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); cmd |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR); if (pci_mapreg_map(pa, BS_BAR, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) { aprint_error_dev(self, "can't find mem space"); return; } sc->sc_dmat = pa->pa_dmat; if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); sc->sc_cid = crypto_get_driverid(0); if (sc->sc_cid < 0) { aprint_error_dev(self, "couldn't get crypto driver id\n"); pci_intr_disestablish(pc, sc->sc_ih); return; } mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM); SIMPLEQ_INIT(&sc->sc_freequeue); dmap = sc->sc_dmaa; for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) { struct ubsec_q *q; q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK); if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk), &dmap->d_alloc, 0)) { aprint_error_dev(self, "can't allocate dma buffers\n"); free(q, M_DEVBUF); break; } dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr; q->q_dma = dmap; sc->sc_queuea[i] = q; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); } crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0, ubsec_newsession, ubsec_freesession, ubsec_process, sc); crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0, ubsec_newsession, ubsec_freesession, ubsec_process, sc); crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0, ubsec_newsession, ubsec_freesession, ubsec_process, sc); crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0, ubsec_newsession, ubsec_freesession, ubsec_process, sc); if (sc->sc_flags & UBS_FLAGS_AES) { crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0, ubsec_newsession, ubsec_freesession, ubsec_process, sc); } /* * Reset Broadcom chip */ ubsec_reset_board(sc); /* * Init Broadcom specific PCI settings */ ubsec_init_pciregs(pa); /* * Init Broadcom chip */ ubsec_init_board(sc); #ifndef UBSEC_NO_RNG if (sc->sc_flags & UBS_FLAGS_RNG) { if (sc->sc_flags & UBS_FLAGS_RNG4) sc->sc_statmask |= BS_STAT_MCR4_DONE; else sc->sc_statmask |= BS_STAT_MCR2_DONE; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &sc->sc_rng.rng_q.q_mcr, 0)) goto skip_rng; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass), &sc->sc_rng.rng_q.q_ctx, 0)) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); goto skip_rng; } if (ubsec_dma_malloc(sc, sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); goto skip_rng; } if (hz >= 100) sc->sc_rnghz = hz / 100; else sc->sc_rnghz = 1; callout_init(&sc->sc_rngto, 0); callout_setfunc(&sc->sc_rngto, ubsec_rng, sc); rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc); rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev), RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB); skip_rng: if (sc->sc_rnghz) aprint_normal_dev(self, "random number generator enabled\n"); else aprint_error_dev(self, "WARNING: random number generator disabled\n"); } #endif /* UBSEC_NO_RNG */ if (sc->sc_flags & UBS_FLAGS_KEY) { sc->sc_statmask |= BS_STAT_MCR2_DONE; crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0, ubsec_kprocess, sc); #if 0 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0, ubsec_kprocess, sc); #endif } } static int ubsec_detach(device_t self, int flags) { struct ubsec_softc *sc = device_private(self); struct ubsec_q *q, *qtmp; volatile u_int32_t ctrl; /* disable interrupts */ /* XXX wait/abort current ops? where is DMAERR enabled? */ ctrl = READ_REG(sc, BS_CTRL); ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR); if (sc->sc_flags & UBS_FLAGS_MULTIMCR) ctrl &= ~BS_CTRL_MCR4INT; WRITE_REG(sc, BS_CTRL, ctrl); #ifndef UBSEC_NO_RNG if (sc->sc_flags & UBS_FLAGS_RNG) { callout_halt(&sc->sc_rngto, NULL); ubsec_dma_free(sc, &sc->sc_rng.rng_buf); ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); rnd_detach_source(&sc->sc_rnd_source); } #endif /* UBSEC_NO_RNG */ crypto_unregister_all(sc->sc_cid); mutex_spin_enter(&sc->sc_mtx); ubsec_totalreset(sc); /* XXX leaves the chip running */ SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) { ubsec_dma_free(sc, &q->q_dma->d_alloc); if (q->q_src_map != NULL) bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); if (q->q_cached_dst_map != NULL) bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map); free(q, M_DEVBUF); } mutex_spin_exit(&sc->sc_mtx); if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_ih); sc->sc_ih = NULL; } if (sc->sc_memsize != 0) { bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize); sc->sc_memsize = 0; } return 0; } MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto"); #ifdef _MODULE #include "ioconf.c" #endif static int ubsec_modcmd(modcmd_t cmd, void *data) { int error = 0; switch (cmd) { case MODULE_CMD_INIT: #ifdef _MODULE error = config_init_component(cfdriver_ioconf_ubsec, cfattach_ioconf_ubsec, cfdata_ioconf_ubsec); #endif return error; case MODULE_CMD_FINI: #ifdef _MODULE error = config_fini_component(cfdriver_ioconf_ubsec, cfattach_ioconf_ubsec, cfdata_ioconf_ubsec); #endif return error; default: return ENOTTY; } } SYSCTL_SETUP(ubsec_sysctl_init, "ubsec sysctl") { const struct sysctlnode *node = NULL; sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ubsec", SYSCTL_DESCR("ubsec opetions"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "maxbatch", SYSCTL_DESCR("max ops to batch w/o interrupt"), NULL, 0, &ubsec_maxbatch, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "maxaggr", SYSCTL_DESCR("max ops to aggregate under one interrupt"), NULL, 0, &ubsec_maxaggr, 0, CTL_CREATE, CTL_EOL); return; } /* * UBSEC Interrupt routine */ static int ubsec_intr(void *arg) { struct ubsec_softc *sc = arg; volatile u_int32_t stat; struct ubsec_q *q; struct ubsec_dma *dmap; int flags; int npkts = 0, i; mutex_spin_enter(&sc->sc_mtx); stat = READ_REG(sc, BS_STAT); stat &= sc->sc_statmask; if (stat == 0) { mutex_spin_exit(&sc->sc_mtx); return (0); } WRITE_REG(sc, BS_STAT, stat); /* IACK */ /* * Check to see if we have any packets waiting for us */ if ((stat & BS_STAT_MCR1_DONE)) { while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); dmap = q->q_dma; if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0) break; q = SIMPLEQ_FIRST(&sc->sc_qchip); SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next); npkts = q->q_nstacked_mcrs; sc->sc_nqchip -= 1+npkts; /* * search for further sc_qchip ubsec_q's that share * the same MCR, and complete them too, they must be * at the top. */ for (i = 0; i < npkts; i++) { if(q->q_stacked_mcr[i]) ubsec_callback(sc, q->q_stacked_mcr[i]); else break; } ubsec_callback(sc, q); } /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed(sc); } /* * Check to see if we have any key setups/rng's waiting for us */ if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) && (stat & BS_STAT_MCR2_DONE)) { struct ubsec_q2 *q2; struct ubsec_mcr *mcr; while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) { q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; /* A bug in new devices requires to swap this field */ if (sc->sc_flags & UBS_FLAGS_MULTIMCR) flags = htole16(mcr->mcr_flags); else flags = mcr->mcr_flags; if ((flags & htole16(UBS_MCR_DONE)) == 0) { bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); break; } q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next); ubsec_callback2(sc, q2); /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed2(sc); } } if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) { struct ubsec_q2 *q2; struct ubsec_mcr *mcr; while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) { q2 = SIMPLEQ_FIRST(&sc->sc_qchip4); bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; /* A bug in new devices requires to swap this field */ flags = htole16(mcr->mcr_flags); if ((flags & htole16(UBS_MCR_DONE)) == 0) { bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); break; } SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next); ubsec_callback2(sc, q2); /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed4(sc); } } /* * Check to see if we got any DMA Error */ if (stat & BS_STAT_DMAERR) { #ifdef UBSEC_DEBUG if (ubsec_debug) { volatile u_int32_t a = READ_REG(sc, BS_ERR); printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev), (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR); } #endif /* UBSEC_DEBUG */ ubsecstats.hst_dmaerr++; ubsec_totalreset(sc); ubsec_feed(sc); } if (sc->sc_needwakeup) { /* XXX check high watermark */ int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev), sc->sc_needwakeup); #endif /* UBSEC_DEBUG */ sc->sc_needwakeup &= ~wkeup; crypto_unblock(sc->sc_cid, wkeup); } mutex_spin_exit(&sc->sc_mtx); return (1); } /* * ubsec_feed() - aggregate and post requests to chip * OpenBSD comments: * It is assumed that the caller set splnet() */ static void ubsec_feed(struct ubsec_softc *sc) { struct ubsec_q *q, *q2; int npkts, i; void *v; u_int32_t stat; #ifdef UBSEC_DEBUG static int max; #endif /* UBSEC_DEBUG */ npkts = sc->sc_nqueue; if (npkts > ubsecstats.hst_maxqueue) ubsecstats.hst_maxqueue = npkts; if (npkts < 2) goto feed1; /* * Decide how many ops to combine in a single MCR. We cannot * aggregate more than UBS_MAX_AGGR because this is the number * of slots defined in the data structure. Otherwise we clamp * based on the tunable parameter ubsec_maxaggr. Note that * aggregation can happen in two ways: either by batching ops * from above or because the h/w backs up and throttles us. * Aggregating ops reduces the number of interrupts to the host * but also (potentially) increases the latency for processing * completed ops as we only get an interrupt when all aggregated * ops have completed. */ if (npkts > sc->sc_maxaggr) npkts = sc->sc_maxaggr; if (npkts > ubsec_maxaggr) npkts = ubsec_maxaggr; if (npkts > ubsecstats.hst_maxbatch) ubsecstats.hst_maxbatch = npkts; if (npkts < 2) goto feed1; ubsecstats.hst_totbatch += npkts-1; if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { if (stat & BS_STAT_DMAERR) { ubsec_totalreset(sc); ubsecstats.hst_dmaerr++; } else { ubsecstats.hst_mcr1full++; } return; } #ifdef UBSEC_DEBUG if (ubsec_debug) printf("merging %d records\n", npkts); /* XXX temporary aggregation statistics reporting code */ if (max < npkts) { max = npkts; printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max); } #endif /* UBSEC_DEBUG */ q = SIMPLEQ_FIRST(&sc->sc_queue); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next); --sc->sc_nqueue; bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (q->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */ for (i = 0; i < q->q_nstacked_mcrs; i++) { q2 = SIMPLEQ_FIRST(&sc->sc_queue); bus_dmamap_sync(sc->sc_dmat, q2->q_src_map, 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (q2->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map, 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); q2= SIMPLEQ_FIRST(&sc->sc_queue); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next); --sc->sc_nqueue; v = ((void *)&q2->q_dma->d_dma->d_mcr); v = (char*)v + (sizeof(struct ubsec_mcr) - sizeof(struct ubsec_mcr_add)); memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add)); q->q_stacked_mcr[i] = q2; } q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts); SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); sc->sc_nqchip += npkts; if (sc->sc_nqchip > ubsecstats.hst_maxqchip) ubsecstats.hst_maxqchip = sc->sc_nqchip; bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 0, q->q_dma->d_alloc.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_mcr)); return; feed1: while (!SIMPLEQ_EMPTY(&sc->sc_queue)) { if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { if (stat & BS_STAT_DMAERR) { ubsec_totalreset(sc); ubsecstats.hst_dmaerr++; } else { ubsecstats.hst_mcr1full++; } break; } q = SIMPLEQ_FIRST(&sc->sc_queue); bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (q->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 0, q->q_dma->d_alloc.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_mcr)); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("feed: q->chip %p %08x stat %08x\n", q, (u_int32_t)q->q_dma->d_alloc.dma_paddr, stat); #endif /* UBSEC_DEBUG */ q = SIMPLEQ_FIRST(&sc->sc_queue); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next); --sc->sc_nqueue; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); sc->sc_nqchip++; } if (sc->sc_nqchip > ubsecstats.hst_maxqchip) ubsecstats.hst_maxqchip = sc->sc_nqchip; } /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ static int ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri) { struct cryptoini *c, *encini = NULL, *macini = NULL; struct ubsec_softc *sc = arg; struct ubsec_session *ses = NULL; MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i, sesn; for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC_96 || c->cri_alg == CRYPTO_SHA1_HMAC_96) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC || c->cri_alg == CRYPTO_AES_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (encini && encini->cri_alg == CRYPTO_AES_CBC) { switch (encini->cri_klen) { case 128: case 192: case 256: break; default: return (EINVAL); } } if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct ubsec_session *)malloc( sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = (struct ubsec_session *)malloc((sesn + 1) * sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); memcpy(ses, sc->sc_sessions, sesn * sizeof(struct ubsec_session)); memset(sc->sc_sessions, 0, sesn * sizeof(struct ubsec_session)); free(sc->sc_sessions, M_DEVBUF); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } memset(ses, 0, sizeof(struct ubsec_session)); ses->ses_used = 1; if (encini) { /* Go ahead and compute key in ubsec's byte order */ if (encini->cri_alg == CRYPTO_AES_CBC) { memcpy(ses->ses_key, encini->cri_key, encini->cri_klen / 8); } if (encini->cri_alg == CRYPTO_DES_CBC) { memcpy(&ses->ses_key[0], encini->cri_key, 8); memcpy(&ses->ses_key[2], encini->cri_key, 8); memcpy(&ses->ses_key[4], encini->cri_key, 8); } else memcpy(ses->ses_key, encini->cri_key, 24); SWAP32(ses->ses_key[0]); SWAP32(ses->ses_key[1]); SWAP32(ses->ses_key[2]); SWAP32(ses->ses_key[3]); SWAP32(ses->ses_key[4]); SWAP32(ses->ses_key[5]); } if (macini) { for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_IPAD_VAL; if (macini->cri_alg == CRYPTO_MD5_HMAC_96) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); memcpy(ses->ses_hminner, md5ctx.state, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); memcpy(ses->ses_hminner, sha1ctx.state, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (macini->cri_alg == CRYPTO_MD5_HMAC_96) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); memcpy(ses->ses_hmouter, md5ctx.state, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); memcpy(ses->ses_hmouter, sha1ctx.state, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_OPAD_VAL; } *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn); return (0); } /* * Deallocate a session. */ static void ubsec_freesession(void *arg, u_int64_t tid) { struct ubsec_softc *sc = arg; int session; u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; session = UBSEC_SESSION(sid); KASSERTMSG(session >= 0, "session=%d", session); KASSERTMSG(session < sc->sc_nsessions, "session=%d nsessions=%d", session, sc->sc_nsessions); memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session])); } #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */ static void ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error) { struct ubsec_operand *op = arg; KASSERT(nsegs <= UBS_MAX_SCATTER /*, ("Too many DMA segments returned when mapping operand")*/); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("ubsec_op_cb: mapsize %u nsegs %d\n", (u_int) mapsize, nsegs); #endif op->mapsize = mapsize; op->nsegs = nsegs; memcpy(op->segs, seg, nsegs * sizeof (seg[0])); } #endif static int ubsec_process(void *arg, struct cryptop *crp, int hint) { struct ubsec_q *q = NULL; int err = 0, i, j, nicealign; struct ubsec_softc *sc = arg; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int encoffset = 0, macoffset = 0, cpskip, cpoffset; int sskip, dskip, stheend, dtheend; int16_t coffset; struct ubsec_session *ses, key; struct ubsec_dma *dmap = NULL; u_int16_t flags = 0; int ivlen = 0, keylen = 0; KASSERTMSG(UBSEC_SESSION(crp->crp_sid) < sc->sc_nsessions, "invalid session id 0x%"PRIx64", nsessions=%d", crp->crp_sid, sc->sc_nsessions); mutex_spin_enter(&sc->sc_mtx); if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) { ubsecstats.hst_queuefull++; mutex_spin_exit(&sc->sc_mtx); err = ERESTART; goto errout; } q = SIMPLEQ_FIRST(&sc->sc_freequeue); SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next); mutex_spin_exit(&sc->sc_mtx); dmap = q->q_dma; /* Save dma pointer */ /* don't lose the cached dmamaps q_src_map and q_cached_dst_map */ memset(q, 0, offsetof(struct ubsec_q, q_src_map)); memset(&key, 0, sizeof(key)); q->q_sesn = UBSEC_SESSION(crp->crp_sid); q->q_dma = dmap; ses = &sc->sc_sessions[q->q_sesn]; if (crp->crp_flags & CRYPTO_F_IMBUF) { q->q_src_m = (struct mbuf *)crp->crp_buf; q->q_dst_m = (struct mbuf *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { q->q_src_io = (struct uio *)crp->crp_buf; q->q_dst_io = (struct uio *)crp->crp_buf; } else { ubsecstats.hst_badflags++; err = EINVAL; goto errout; /* XXX we don't handle contiguous blocks! */ } memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr)); dmap->d_dma->d_mcr.mcr_pkts = htole16(1); dmap->d_dma->d_mcr.mcr_flags = 0; q->q_crp = crp; crd1 = crp->crp_desc; if (crd1 == NULL) { ubsecstats.hst_nodesc++; err = EINVAL; goto errout; } crd2 = crd1->crd_next; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 || crd1->crd_alg == CRYPTO_SHA1_HMAC_96) { maccrd = crd1; enccrd = NULL; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC) { maccrd = NULL; enccrd = crd1; } else { ubsecstats.hst_badalg++; err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 || crd1->crd_alg == CRYPTO_SHA1_HMAC_96) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC || crd2->crd_alg == CRYPTO_AES_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC_96 || crd2->crd_alg == CRYPTO_SHA1_HMAC_96) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { /* * We cannot order the ubsec as requested */ ubsecstats.hst_badalg++; err = EINVAL; goto errout; } } if (enccrd) { if (enccrd->crd_alg == CRYPTO_AES_CBC) { if ((sc->sc_flags & UBS_FLAGS_AES) == 0) { /* * We cannot order the ubsec as requested */ ubsecstats.hst_badalg++; err = EINVAL; goto errout; } flags |= htole16(UBS_PKTCTX_ENC_AES); switch (enccrd->crd_klen) { case 128: case 192: case 256: keylen = enccrd->crd_klen / 8; break; default: err = EINVAL; goto errout; } ivlen = 16; } else { flags |= htole16(UBS_PKTCTX_ENC_3DES); ivlen = 8; keylen = 24; } encoffset = enccrd->crd_skip; if (enccrd->crd_flags & CRD_F_ENCRYPT) { if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) memcpy(key.ses_iv, enccrd->crd_iv, ivlen); else cprng_fast(key.ses_iv, ivlen); if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback(q->q_src_m, enccrd->crd_inject, ivlen, (void *)key.ses_iv); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copyback(q->q_src_io, enccrd->crd_inject, ivlen, (void *)key.ses_iv); } } else { flags |= htole16(UBS_PKTCTX_INBOUND); if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) memcpy(key.ses_iv, enccrd->crd_iv, ivlen); else if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata(q->q_src_m, enccrd->crd_inject, ivlen, (void *)key.ses_iv); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copydata(q->q_src_io, enccrd->crd_inject, 8, (void *)key.ses_iv); } for (i = 0; i < (keylen / 4); i++) key.ses_key[i] = ses->ses_key[i]; for (i = 0; i < (ivlen / 4); i++) SWAP32(key.ses_iv[i]); } if (maccrd) { macoffset = maccrd->crd_skip; if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96) flags |= htole16(UBS_PKTCTX_AUTH_MD5); else flags |= htole16(UBS_PKTCTX_AUTH_SHA1); for (i = 0; i < 5; i++) { key.ses_hminner[i] = ses->ses_hminner[i]; key.ses_hmouter[i] = ses->ses_hmouter[i]; HTOLE32(key.ses_hminner[i]); HTOLE32(key.ses_hmouter[i]); } } if (enccrd && maccrd) { /* * ubsec cannot handle packets where the end of encryption * and authentication are not the same, or where the * encrypted part begins before the authenticated part. */ if ((encoffset + enccrd->crd_len) != (macoffset + maccrd->crd_len)) { ubsecstats.hst_lenmismatch++; err = EINVAL; goto errout; } if (enccrd->crd_skip < maccrd->crd_skip) { ubsecstats.hst_skipmismatch++; err = EINVAL; goto errout; } sskip = maccrd->crd_skip; cpskip = dskip = enccrd->crd_skip; stheend = maccrd->crd_len; dtheend = enccrd->crd_len; coffset = enccrd->crd_skip - maccrd->crd_skip; cpoffset = cpskip + dtheend; #ifdef UBSEC_DEBUG if (ubsec_debug) { printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("src: skip %d, len %d\n", sskip, stheend); printf("dst: skip %d, len %d\n", dskip, dtheend); printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n", coffset, stheend, cpskip, cpoffset); } #endif } else { cpskip = dskip = sskip = macoffset + encoffset; dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; cpoffset = cpskip + dtheend; coffset = 0; } if (q->q_src_map == NULL) { /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */ if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) { err = ENOMEM; goto errout; } } if (crp->crp_flags & CRYPTO_F_IMBUF) { if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map, q->q_src_m, BUS_DMA_NOWAIT) != 0) { ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IOV) { if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map, q->q_src_io, BUS_DMA_NOWAIT) != 0) { ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } nicealign = ubsec_dmamap_aligned(q->q_src_map); dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("src skip: %d nicealign: %u\n", sskip, nicealign); #endif for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) { struct ubsec_pktbuf *pb; bus_size_t packl = q->q_src_map->dm_segs[i].ds_len; bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr; if (sskip >= packl) { sskip -= packl; continue; } packl -= sskip; packp += sskip; sskip = 0; if (packl > 0xfffc) { err = EIO; goto errout; } if (j == 0) pb = &dmap->d_dma->d_mcr.mcr_ipktbuf; else pb = &dmap->d_dma->d_sbuf[j - 1]; pb->pb_addr = htole32(packp); if (stheend) { if (packl > stheend) { pb->pb_len = htole32(stheend); stheend = 0; } else { pb->pb_len = htole32(packl); stheend -= packl; } } else pb->pb_len = htole32(packl); if ((i + 1) == q->q_src_map->dm_nsegs) pb->pb_next = 0; else pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_sbuf[j])); j++; } if (enccrd == NULL && maccrd != NULL) { dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0; dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0; dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_macbuf[0])); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("opkt: %x %x %x\n", dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr, dmap->d_dma->d_mcr.mcr_opktbuf.pb_len, dmap->d_dma->d_mcr.mcr_opktbuf.pb_next); #endif } else { if (crp->crp_flags & CRYPTO_F_IOV) { if (!nicealign) { ubsecstats.hst_iovmisaligned++; err = EINVAL; goto errout; } if (q->q_dst_map == NULL) { if (q->q_cached_dst_map == NULL) { /* * XXX: ``what the heck's that'' * 0xfff0? */ if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_cached_dst_map) != 0) { ubsecstats.hst_nomap++; err = ENOMEM; goto errout; } } q->q_dst_map = q->q_cached_dst_map; } if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map, q->q_dst_io, BUS_DMA_NOWAIT) != 0) { ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IMBUF) { if (nicealign) { q->q_dst_m = q->q_src_m; q->q_dst_map = q->q_src_map; } else { int totlen, len; struct mbuf *m, *top, **mp; ubsecstats.hst_unaligned++; totlen = q->q_src_map->dm_mapsize; if (q->q_src_m->m_flags & M_PKTHDR) { len = MHLEN; MGETHDR(m, M_DONTWAIT, MT_DATA); /*XXX FIXME: m_dup_pkthdr */ if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) { m_free(m); m = NULL; } } else { len = MLEN; MGET(m, M_DONTWAIT, MT_DATA); } if (m == NULL) { ubsecstats.hst_nombuf++; err = sc->sc_nqueue ? ERESTART : ENOMEM; goto errout; } if (len == MHLEN) /*XXX was M_DUP_PKTHDR*/ m_copy_pkthdr(m, q->q_src_m); if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); ubsecstats.hst_nomcl++; err = sc->sc_nqueue ? ERESTART : ENOMEM; goto errout; } len = MCLBYTES; } m->m_len = len; top = NULL; mp = ⊤ while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(top); ubsecstats.hst_nombuf++; err = sc->sc_nqueue ? ERESTART : ENOMEM; goto errout; } len = MLEN; } if (top && totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { *mp = m; m_freem(top); ubsecstats.hst_nomcl++; err = sc->sc_nqueue ? ERESTART : ENOMEM; goto errout; } len = MCLBYTES; } m->m_len = len = uimin(totlen, len); totlen -= len; *mp = m; mp = &m->m_next; } q->q_dst_m = top; ubsec_mcopy(q->q_src_m, q->q_dst_m, cpskip, cpoffset); if (q->q_dst_map == NULL) { if (q->q_cached_dst_map == NULL) { /* XXX again, what the heck is that 0xfff0? */ if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_cached_dst_map) != 0) { ubsecstats.hst_nomap++; err = ENOMEM; goto errout; } } q->q_dst_map = q->q_cached_dst_map; } if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_dst_map, q->q_dst_m, BUS_DMA_NOWAIT) != 0) { ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } } else { ubsecstats.hst_badflags++; err = EINVAL; goto errout; } #ifdef UBSEC_DEBUG if (ubsec_debug) printf("dst skip: %d\n", dskip); #endif for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) { struct ubsec_pktbuf *pb; bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len; bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr; if (dskip >= packl) { dskip -= packl; continue; } packl -= dskip; packp += dskip; dskip = 0; if (packl > 0xfffc) { err = EIO; goto errout; } if (j == 0) pb = &dmap->d_dma->d_mcr.mcr_opktbuf; else pb = &dmap->d_dma->d_dbuf[j - 1]; pb->pb_addr = htole32(packp); if (dtheend) { if (packl > dtheend) { pb->pb_len = htole32(dtheend); dtheend = 0; } else { pb->pb_len = htole32(packl); dtheend -= packl; } } else pb->pb_len = htole32(packl); if ((i + 1) == q->q_dst_map->dm_nsegs) { if (maccrd) pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_macbuf[0])); else pb->pb_next = 0; } else pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_dbuf[j])); j++; } } dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_ctx)); if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) { struct ubsec_pktctx_aes128 *aes128; struct ubsec_pktctx_aes192 *aes192; struct ubsec_pktctx_aes256 *aes256; struct ubsec_pktctx_hdr *ph; u_int8_t *ctx; ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) + offsetof(struct ubsec_dmachunk, d_ctx); ph = (struct ubsec_pktctx_hdr *)ctx; ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES); ph->ph_flags = flags; ph->ph_offset = htole16(coffset >> 2); switch (enccrd->crd_klen) { case 128: aes128 = (struct ubsec_pktctx_aes128 *)ctx; ph->ph_len = htole16(sizeof(*aes128)); ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128); for (i = 0; i < 4; i++) aes128->pc_aeskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) aes128->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) aes128->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 4; i++) aes128->pc_iv[i] = key.ses_iv[i]; break; case 192: aes192 = (struct ubsec_pktctx_aes192 *)ctx; ph->ph_len = htole16(sizeof(*aes192)); ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192); for (i = 0; i < 6; i++) aes192->pc_aeskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) aes192->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) aes192->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 4; i++) aes192->pc_iv[i] = key.ses_iv[i]; break; case 256: aes256 = (struct ubsec_pktctx_aes256 *)ctx; ph->ph_len = htole16(sizeof(*aes256)); ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256); for (i = 0; i < 8; i++) aes256->pc_aeskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) aes256->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) aes256->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 4; i++) aes256->pc_iv[i] = key.ses_iv[i]; break; } } else if (sc->sc_flags & UBS_FLAGS_LONGCTX) { struct ubsec_pktctx_3des *ctx; struct ubsec_pktctx_hdr *ph; ctx = (struct ubsec_pktctx_3des *) ((u_int8_t *)(dmap->d_alloc.dma_vaddr) + offsetof(struct ubsec_dmachunk, d_ctx)); ph = (struct ubsec_pktctx_hdr *)ctx; ph->ph_len = htole16(sizeof(*ctx)); ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES); ph->ph_flags = flags; ph->ph_offset = htole16(coffset >> 2); for (i = 0; i < 6; i++) ctx->pc_deskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) ctx->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) ctx->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 2; i++) ctx->pc_iv[i] = key.ses_iv[i]; } else { struct ubsec_pktctx *ctx = (struct ubsec_pktctx *) ((u_int8_t *)dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx)); ctx->pc_flags = flags; ctx->pc_offset = htole16(coffset >> 2); for (i = 0; i < 6; i++) ctx->pc_deskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) ctx->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) ctx->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 2; i++) ctx->pc_iv[i] = key.ses_iv[i]; } mutex_spin_enter(&sc->sc_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); sc->sc_nqueue++; ubsecstats.hst_ipackets++; ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize; if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch) ubsec_feed(sc); mutex_spin_exit(&sc->sc_mtx); return 0; errout: if (q != NULL) { if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); } if (q->q_src_map != NULL) { bus_dmamap_unload(sc->sc_dmat, q->q_src_map); } if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); mutex_spin_enter(&sc->sc_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); mutex_spin_exit(&sc->sc_mtx); } if (err == ERESTART) { mutex_spin_enter(&sc->sc_mtx); sc->sc_needwakeup |= CRYPTO_SYMQ; mutex_spin_exit(&sc->sc_mtx); return ERESTART; } crp->crp_etype = err; crypto_done(crp); return 0; } static void ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q) { struct cryptop *crp = (struct cryptop *)q->q_crp; struct cryptodesc *crd; struct ubsec_dma *dmap = q->q_dma; ubsecstats.hst_opackets++; ubsecstats.hst_obytes += dmap->d_alloc.dma_size; bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0, dmap->d_alloc.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); } bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, q->q_src_map); if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { m_freem(q->q_src_m); crp->crp_buf = (void *)q->q_dst_m; } for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (crd->crd_alg != CRYPTO_MD5_HMAC_96 && crd->crd_alg != CRYPTO_SHA1_HMAC_96) continue; if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback((struct mbuf *)crp->crp_buf, crd->crd_inject, 12, (void *)dmap->d_dma->d_macbuf); else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) bcopy((void *)dmap->d_dma->d_macbuf, crp->crp_mac, 12); break; } SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); crypto_done(crp); } static void ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset) { int i, j, dlen, slen; char *dptr, *sptr; j = 0; sptr = srcm->m_data; slen = srcm->m_len; dptr = dstm->m_data; dlen = dstm->m_len; while (1) { for (i = 0; i < uimin(slen, dlen); i++) { if (j < hoffset || j >= toffset) *dptr++ = *sptr++; slen--; dlen--; j++; } if (slen == 0) { srcm = srcm->m_next; if (srcm == NULL) return; sptr = srcm->m_data; slen = srcm->m_len; } if (dlen == 0) { dstm = dstm->m_next; if (dstm == NULL) return; dptr = dstm->m_data; dlen = dstm->m_len; } } } /* * feed the key generator, must be called at splnet() or higher. */ static void ubsec_feed2(struct ubsec_softc *sc) { struct ubsec_q2 *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue2); bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, q->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr); q = SIMPLEQ_FIRST(&sc->sc_queue2); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next); --sc->sc_nqueue2; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next); } } /* * feed the RNG (used instead of ubsec_feed2() on 5827+ devices) */ void ubsec_feed4(struct ubsec_softc *sc) { struct ubsec_q2 *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue4); bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, q->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next); --sc->sc_nqueue4; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next); } } /* * Callback for handling random numbers */ static void ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q) { struct cryptkop *krp; struct ubsec_ctx_keyop *ctx; ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr; bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); switch (q->q_type) { #ifndef UBSEC_NO_RNG case UBS_CTXOP_RNGSHA1: case UBS_CTXOP_RNGBYPASS: { struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q; u_int32_t *p; int i; bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); p = (u_int32_t *)rng->rng_buf.dma_vaddr; i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t); rnd_add_data_intr(&sc->sc_rnd_source, (char *)p, i, i * NBBY); sc->sc_rng_need -= i; rng->rng_used = 0; if (sc->sc_rng_need > 0) { callout_schedule(&sc->sc_rngto, sc->sc_rnghz); } break; } #endif case UBS_CTXOP_MODEXP: { struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; u_int rlen, clen; krp = me->me_krp; rlen = (me->me_modbits + 7) / 8; clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8; bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); if (clen < rlen) krp->krp_status = E2BIG; else { if (sc->sc_flags & UBS_FLAGS_HWNORM) { memset(krp->krp_param[krp->krp_iparams].crp_p, 0, (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8); bcopy(me->me_C.dma_vaddr, krp->krp_param[krp->krp_iparams].crp_p, (me->me_modbits + 7) / 8); } else ubsec_kshift_l(me->me_shiftbits, me->me_C.dma_vaddr, me->me_normbits, krp->krp_param[krp->krp_iparams].crp_p, krp->krp_param[krp->krp_iparams].crp_nbits); } crypto_kdone(krp); /* bzero all potentially sensitive data */ memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); /* Can't free here, so put us on the free list. */ SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next); break; } case UBS_CTXOP_RSAPRIV: { struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; u_int len; krp = rp->rpr_krp; bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8; bcopy(rp->rpr_msgout.dma_vaddr, krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len); crypto_kdone(krp); memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size); memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size); memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size); /* Can't free here, so put us on the free list. */ SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next); break; } default: printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev), letoh16(ctx->ctx_op)); break; } } #ifndef UBSEC_NO_RNG static void ubsec_rng_get(size_t bytes, void *vsc) { struct ubsec_softc *sc = vsc; mutex_spin_enter(&sc->sc_mtx); sc->sc_rng_need = bytes; ubsec_rng_locked(sc); mutex_spin_exit(&sc->sc_mtx); } static void ubsec_rng(void *vsc) { struct ubsec_softc *sc = vsc; mutex_spin_enter(&sc->sc_mtx); ubsec_rng_locked(sc); mutex_spin_exit(&sc->sc_mtx); } static void ubsec_rng_locked(void *vsc) { struct ubsec_softc *sc = vsc; struct ubsec_q2_rng *rng = &sc->sc_rng; struct ubsec_mcr *mcr; struct ubsec_ctx_rngbypass *ctx; int *nqueue; /* Caller is responsible to lock and release sc_mtx. */ KASSERT(mutex_owned(&sc->sc_mtx)); if (rng->rng_used) { return; } if (sc->sc_rng_need < 1) { callout_stop(&sc->sc_rngto); return; } if (sc->sc_flags & UBS_FLAGS_RNG4) nqueue = &sc->sc_nqueue4; else nqueue = &sc->sc_nqueue2; (*nqueue)++; if (*nqueue >= UBS_MAX_NQUEUE) goto out; mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr; ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr; mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr); mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0; mcr->mcr_ipktbuf.pb_len = 0; mcr->mcr_reserved = mcr->mcr_pktlen = 0; mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr); mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) & UBS_PKTBUF_LEN); mcr->mcr_opktbuf.pb_next = 0; ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass)); ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1); rng->rng_q.q_type = UBS_CTXOP_RNGSHA1; bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); if (sc->sc_flags & UBS_FLAGS_RNG4) { SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next); ubsec_feed4(sc); } else { SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next); ubsec_feed2(sc); } rng->rng_used = 1; ubsecstats.hst_rng++; return; out: /* * Something weird happened, generate our own call back. */ (*nqueue)--; callout_schedule(&sc->sc_rngto, sc->sc_rnghz); } #endif /* UBSEC_NO_RNG */ static int ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size, struct ubsec_dma_alloc *dma,int mapflags) { int r; if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0) goto fail_0; if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) goto fail_1; if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->dma_map)) != 0) goto fail_2; if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto fail_3; dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; dma->dma_size = size; return (0); fail_3: bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); fail_1: bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); fail_0: dma->dma_map = NULL; return (r); } static void ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma) { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); } /* * Resets the board. Values in the regesters are left as is * from the reset (i.e. initial values are assigned elsewhere). */ static void ubsec_reset_board(struct ubsec_softc *sc) { volatile u_int32_t ctrl; ctrl = READ_REG(sc, BS_CTRL); ctrl |= BS_CTRL_RESET; WRITE_REG(sc, BS_CTRL, ctrl); /* * Wait approx. 30 PCI clocks = 900 ns = 0.9 us */ DELAY(10); /* Enable RNG and interrupts on newer devices */ if (sc->sc_flags & UBS_FLAGS_MULTIMCR) { #ifndef UBSEC_NO_RNG WRITE_REG(sc, BS_CFG, BS_CFG_RNG); #endif WRITE_REG(sc, BS_INT, BS_INT_DMAINT); } } /* * Init Broadcom registers */ static void ubsec_init_board(struct ubsec_softc *sc) { u_int32_t ctrl; ctrl = READ_REG(sc, BS_CTRL); ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64); ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT; /* * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)). * anyone got hw docs? */ if (sc->sc_flags & UBS_FLAGS_KEY) ctrl |= BS_CTRL_MCR2INT; else ctrl &= ~BS_CTRL_MCR2INT; if (sc->sc_flags & UBS_FLAGS_HWNORM) ctrl &= ~BS_CTRL_SWNORM; if (sc->sc_flags & UBS_FLAGS_MULTIMCR) { ctrl |= BS_CTRL_BSIZE240; ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */ if (sc->sc_flags & UBS_FLAGS_RNG4) ctrl |= BS_CTRL_MCR4INT; else ctrl &= ~BS_CTRL_MCR4INT; } WRITE_REG(sc, BS_CTRL, ctrl); } /* * Init Broadcom PCI registers */ static void ubsec_init_pciregs(struct pci_attach_args *pa) { pci_chipset_tag_t pc = pa->pa_pc; u_int32_t misc; /* * This will set the cache line size to 1, this will * force the BCM58xx chip just to do burst read/writes. * Cache line read/writes are to slow */ misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG); misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT)) | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT); pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc); } /* * Clean up after a chip crash. * It is assumed that the caller in splnet() */ static void ubsec_cleanchip(struct ubsec_softc *sc) { struct ubsec_q *q; while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next); ubsec_free_q(sc, q); } sc->sc_nqchip = 0; } /* * free a ubsec_q * It is assumed that the caller is within splnet() */ static int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q) { struct ubsec_q *q2; struct cryptop *crp; int npkts; int i; npkts = q->q_nstacked_mcrs; for (i = 0; i < npkts; i++) { if(q->q_stacked_mcr[i]) { q2 = q->q_stacked_mcr[i]; if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m)) m_freem(q2->q_dst_m); crp = (struct cryptop *)q2->q_crp; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next); crp->crp_etype = EFAULT; crypto_done(crp); } else { break; } } /* * Free header MCR */ if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); crp = (struct cryptop *)q->q_crp; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); crp->crp_etype = EFAULT; crypto_done(crp); return(0); } /* * Routine to reset the chip and clean up. * It is assumed that the caller is in splnet() */ static void ubsec_totalreset(struct ubsec_softc *sc) { ubsec_reset_board(sc); ubsec_init_board(sc); ubsec_cleanchip(sc); } static int ubsec_dmamap_aligned(bus_dmamap_t map) { int i; for (i = 0; i < map->dm_nsegs; i++) { if (map->dm_segs[i].ds_addr & 3) return (0); if ((i != (map->dm_nsegs - 1)) && (map->dm_segs[i].ds_len & 3)) return (0); } return (1); } static void ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q) { switch (q->q_type) { case UBS_CTXOP_MODEXP: { struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; ubsec_dma_free(sc, &me->me_q.q_mcr); ubsec_dma_free(sc, &me->me_q.q_ctx); ubsec_dma_free(sc, &me->me_M); ubsec_dma_free(sc, &me->me_E); ubsec_dma_free(sc, &me->me_C); ubsec_dma_free(sc, &me->me_epb); free(me, M_DEVBUF); break; } case UBS_CTXOP_RSAPRIV: { struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; ubsec_dma_free(sc, &rp->rpr_q.q_mcr); ubsec_dma_free(sc, &rp->rpr_q.q_ctx); ubsec_dma_free(sc, &rp->rpr_msgin); ubsec_dma_free(sc, &rp->rpr_msgout); free(rp, M_DEVBUF); break; } default: printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev), q->q_type); break; } } static int ubsec_kprocess(void *arg, struct cryptkop *krp, int hint) { struct ubsec_softc *sc = arg; while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) { struct ubsec_q2 *q; q = SIMPLEQ_FIRST(&sc->sc_q2free); SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next); ubsec_kfree(sc, q); } switch (krp->krp_op) { case CRK_MOD_EXP: if (sc->sc_flags & UBS_FLAGS_HWNORM) ubsec_kprocess_modexp_hw(sc, krp, hint); else ubsec_kprocess_modexp_sw(sc, krp, hint); break; case CRK_MOD_EXP_CRT: ubsec_kprocess_rsapriv(sc, krp, hint); break; default: printf("%s: kprocess: invalid op 0x%x\n", device_xname(sc->sc_dev), krp->krp_op); krp->krp_status = EOPNOTSUPP; crypto_kdone(krp); } return 0; } /* * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization) */ static void ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint) { struct ubsec_q2_modexp *me; struct ubsec_mcr *mcr; struct ubsec_ctx_modexp *ctx; struct ubsec_pktbuf *epb; int err = 0; u_int nbits, normbits, mbits, shiftbits, ebits; me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); if (me == NULL) { err = ENOMEM; goto errout; } memset(me, 0, sizeof *me); me->me_krp = krp; me->me_q.q_type = UBS_CTXOP_MODEXP; nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); if (nbits <= 512) normbits = 512; else if (nbits <= 768) normbits = 768; else if (nbits <= 1024) normbits = 1024; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) normbits = 1536; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) normbits = 2048; else { err = E2BIG; goto errout; } shiftbits = normbits - nbits; me->me_modbits = nbits; me->me_shiftbits = shiftbits; me->me_normbits = normbits; /* Sanity check: result bits must be >= true modulus bits. */ if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { err = ERANGE; goto errout; } if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &me->me_q.q_mcr, 0)) { err = ENOMEM; goto errout; } mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), &me->me_q.q_ctx, 0)) { err = ENOMEM; goto errout; } mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); if (mbits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { err = ENOMEM; goto errout; } ubsec_kshift_r(shiftbits, krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits, me->me_M.dma_vaddr, normbits); if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { err = ENOMEM; goto errout; } memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); if (ebits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { err = ENOMEM; goto errout; } ubsec_kshift_r(shiftbits, krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits, me->me_E.dma_vaddr, normbits); if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), &me->me_epb, 0)) { err = ENOMEM; goto errout; } epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; epb->pb_addr = htole32(me->me_E.dma_paddr); epb->pb_next = 0; epb->pb_len = htole32(normbits / 8); #ifdef UBSEC_DEBUG if (ubsec_debug) { printf("Epb "); ubsec_dump_pb(epb); } #endif mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); mcr->mcr_reserved = 0; mcr->mcr_pktlen = 0; mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); mcr->mcr_opktbuf.pb_next = 0; mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); #ifdef DIAGNOSTIC /* Misaligned output buffer will hang the chip. */ if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr)); if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len)); #endif ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; memset(ctx, 0, sizeof(*ctx)); ubsec_kshift_r(shiftbits, krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits, ctx->me_N, normbits); ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); ctx->me_op = htole16(UBS_CTXOP_MODEXP); ctx->me_E_len = htole16(nbits); ctx->me_N_len = htole16(nbits); #ifdef UBSEC_DEBUG if (ubsec_debug) { ubsec_dump_mcr(mcr); ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); } #endif /* * ubsec_feed2 will sync mcr and ctx, we just need to sync * everything else. */ bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Enqueue and we're done... */ mutex_spin_enter(&sc->sc_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); ubsec_feed2(sc); ubsecstats.hst_modexp++; mutex_spin_exit(&sc->sc_mtx); return; errout: if (me != NULL) { if (me->me_q.q_mcr.dma_map != NULL) ubsec_dma_free(sc, &me->me_q.q_mcr); if (me->me_q.q_ctx.dma_map != NULL) { memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); ubsec_dma_free(sc, &me->me_q.q_ctx); } if (me->me_M.dma_map != NULL) { memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); ubsec_dma_free(sc, &me->me_M); } if (me->me_E.dma_map != NULL) { memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); ubsec_dma_free(sc, &me->me_E); } if (me->me_C.dma_map != NULL) { memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); ubsec_dma_free(sc, &me->me_C); } if (me->me_epb.dma_map != NULL) ubsec_dma_free(sc, &me->me_epb); free(me, M_DEVBUF); } krp->krp_status = err; crypto_kdone(krp); } /* * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization) */ static void ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint) { struct ubsec_q2_modexp *me; struct ubsec_mcr *mcr; struct ubsec_ctx_modexp *ctx; struct ubsec_pktbuf *epb; int err = 0; u_int nbits, normbits, mbits, shiftbits, ebits; me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); if (me == NULL) { err = ENOMEM; goto errout; } memset(me, 0, sizeof *me); me->me_krp = krp; me->me_q.q_type = UBS_CTXOP_MODEXP; nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); if (nbits <= 512) normbits = 512; else if (nbits <= 768) normbits = 768; else if (nbits <= 1024) normbits = 1024; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) normbits = 1536; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) normbits = 2048; else { err = E2BIG; goto errout; } shiftbits = normbits - nbits; /* XXX ??? */ me->me_modbits = nbits; me->me_shiftbits = shiftbits; me->me_normbits = normbits; /* Sanity check: result bits must be >= true modulus bits. */ if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { err = ERANGE; goto errout; } if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &me->me_q.q_mcr, 0)) { err = ENOMEM; goto errout; } mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), &me->me_q.q_ctx, 0)) { err = ENOMEM; goto errout; } mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); if (mbits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { err = ENOMEM; goto errout; } memset(me->me_M.dma_vaddr, 0, normbits / 8); bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p, me->me_M.dma_vaddr, (mbits + 7) / 8); if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { err = ENOMEM; goto errout; } memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); if (ebits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { err = ENOMEM; goto errout; } memset(me->me_E.dma_vaddr, 0, normbits / 8); bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p, me->me_E.dma_vaddr, (ebits + 7) / 8); if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), &me->me_epb, 0)) { err = ENOMEM; goto errout; } epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; epb->pb_addr = htole32(me->me_E.dma_paddr); epb->pb_next = 0; epb->pb_len = htole32((ebits + 7) / 8); #ifdef UBSEC_DEBUG if (ubsec_debug) { printf("Epb "); ubsec_dump_pb(epb); } #endif mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); mcr->mcr_reserved = 0; mcr->mcr_pktlen = 0; mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); mcr->mcr_opktbuf.pb_next = 0; mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); #ifdef DIAGNOSTIC /* Misaligned output buffer will hang the chip. */ if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr)); if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len)); #endif ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; memset(ctx, 0, sizeof(*ctx)); memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p, (nbits + 7) / 8); ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); ctx->me_op = htole16(UBS_CTXOP_MODEXP); ctx->me_E_len = htole16(ebits); ctx->me_N_len = htole16(nbits); #ifdef UBSEC_DEBUG if (ubsec_debug) { ubsec_dump_mcr(mcr); ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); } #endif /* * ubsec_feed2 will sync mcr and ctx, we just need to sync * everything else. */ bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Enqueue and we're done... */ mutex_spin_enter(&sc->sc_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); ubsec_feed2(sc); mutex_spin_exit(&sc->sc_mtx); return; errout: if (me != NULL) { if (me->me_q.q_mcr.dma_map != NULL) ubsec_dma_free(sc, &me->me_q.q_mcr); if (me->me_q.q_ctx.dma_map != NULL) { memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); ubsec_dma_free(sc, &me->me_q.q_ctx); } if (me->me_M.dma_map != NULL) { memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); ubsec_dma_free(sc, &me->me_M); } if (me->me_E.dma_map != NULL) { memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); ubsec_dma_free(sc, &me->me_E); } if (me->me_C.dma_map != NULL) { memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); ubsec_dma_free(sc, &me->me_C); } if (me->me_epb.dma_map != NULL) ubsec_dma_free(sc, &me->me_epb); free(me, M_DEVBUF); } krp->krp_status = err; crypto_kdone(krp); } static void ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint) { struct ubsec_q2_rsapriv *rp = NULL; struct ubsec_mcr *mcr; struct ubsec_ctx_rsapriv *ctx; int err = 0; u_int padlen, msglen; msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]); padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]); if (msglen > padlen) padlen = msglen; if (padlen <= 256) padlen = 256; else if (padlen <= 384) padlen = 384; else if (padlen <= 512) padlen = 512; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768) padlen = 768; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024) padlen = 1024; else { err = E2BIG; goto errout; } if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) { err = E2BIG; goto errout; } if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) { err = E2BIG; goto errout; } if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) { err = E2BIG; goto errout; } rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO); if (rp == NULL) { err = ENOMEM; goto errout; } rp->rpr_krp = krp; rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &rp->rpr_q.q_mcr, 0)) { err = ENOMEM; goto errout; } mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv), &rp->rpr_q.q_ctx, 0)) { err = ENOMEM; goto errout; } ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr; memset(ctx, 0, sizeof *ctx); /* Copy in p */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p, &ctx->rpr_buf[0 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8); /* Copy in q */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p, &ctx->rpr_buf[1 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8); /* Copy in dp */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p, &ctx->rpr_buf[2 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8); /* Copy in dq */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p, &ctx->rpr_buf[3 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8); /* Copy in pinv */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p, &ctx->rpr_buf[4 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8); msglen = padlen * 2; /* Copy in input message (aligned buffer/length). */ if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) { /* Is this likely? */ err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) { err = ENOMEM; goto errout; } memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8); bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p, rp->rpr_msgin.dma_vaddr, (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8); /* Prepare space for output message (aligned buffer/length). */ if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) { /* Is this likely? */ err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) { err = ENOMEM; goto errout; } memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8); mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr); mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr); mcr->mcr_ipktbuf.pb_next = 0; mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size); mcr->mcr_reserved = 0; mcr->mcr_pktlen = htole16(msglen); mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr); mcr->mcr_opktbuf.pb_next = 0; mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size); #ifdef DIAGNOSTIC if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) { panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)", device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr, (u_long) rp->rpr_msgin.dma_size); } if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) { panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)", device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr, (u_long) rp->rpr_msgout.dma_size); } #endif ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8)); ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV); ctx->rpr_q_len = htole16(padlen); ctx->rpr_p_len = htole16(padlen); /* * ubsec_feed2 will sync mcr and ctx, we just need to sync * everything else. */ bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); /* Enqueue and we're done... */ mutex_spin_enter(&sc->sc_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next); ubsec_feed2(sc); ubsecstats.hst_modexpcrt++; mutex_spin_exit(&sc->sc_mtx); return; errout: if (rp != NULL) { if (rp->rpr_q.q_mcr.dma_map != NULL) ubsec_dma_free(sc, &rp->rpr_q.q_mcr); if (rp->rpr_msgin.dma_map != NULL) { memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size); ubsec_dma_free(sc, &rp->rpr_msgin); } if (rp->rpr_msgout.dma_map != NULL) { memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size); ubsec_dma_free(sc, &rp->rpr_msgout); } free(rp, M_DEVBUF); } krp->krp_status = err; crypto_kdone(krp); } #ifdef UBSEC_DEBUG static void ubsec_dump_pb(volatile struct ubsec_pktbuf *pb) { printf("addr 0x%x (0x%x) next 0x%x\n", pb->pb_addr, pb->pb_len, pb->pb_next); } static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c) { printf("CTX (0x%x):\n", c->ctx_len); switch (letoh16(c->ctx_op)) { case UBS_CTXOP_RNGBYPASS: case UBS_CTXOP_RNGSHA1: break; case UBS_CTXOP_MODEXP: { struct ubsec_ctx_modexp *cx = (void *)c; int i, len; printf(" Elen %u, Nlen %u\n", letoh16(cx->me_E_len), letoh16(cx->me_N_len)); len = (cx->me_N_len + 7)/8; for (i = 0; i < len; i++) printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]); printf("\n"); break; } default: printf("unknown context: %x\n", c->ctx_op); } printf("END CTX\n"); } static void ubsec_dump_mcr(struct ubsec_mcr *mcr) { volatile struct ubsec_mcr_add *ma; int i; printf("MCR:\n"); printf(" pkts: %u, flags 0x%x\n", letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags)); ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp; for (i = 0; i < letoh16(mcr->mcr_pkts); i++) { printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i, letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen), letoh16(ma->mcr_reserved)); printf(" %d: ipkt ", i); ubsec_dump_pb(&ma->mcr_ipktbuf); printf(" %d: opkt ", i); ubsec_dump_pb(&ma->mcr_opktbuf); ma++; } printf("END MCR\n"); } #endif /* UBSEC_DEBUG */ /* * Return the number of significant bits of a big number. */ static int ubsec_ksigbits(struct crparam *cr) { u_int plen = (cr->crp_nbits + 7) / 8; int i, sig = plen * 8; u_int8_t c, *p = cr->crp_p; for (i = plen - 1; i >= 0; i--) { c = p[i]; if (c != 0) { while ((c & 0x80) == 0) { sig--; c <<= 1; } break; } sig -= 8; } return (sig); } static void ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits, u_int8_t *dst, u_int dstbits) { u_int slen, dlen; int i, si, di, n; slen = (srcbits + 7) / 8; dlen = (dstbits + 7) / 8; for (i = 0; i < slen; i++) dst[i] = src[i]; for (i = 0; i < dlen - slen; i++) dst[slen + i] = 0; n = shiftbits / 8; if (n != 0) { si = dlen - n - 1; di = dlen - 1; while (si >= 0) dst[di--] = dst[si--]; while (di >= 0) dst[di--] = 0; } n = shiftbits % 8; if (n != 0) { for (i = dlen - 1; i > 0; i--) dst[i] = (dst[i] << n) | (dst[i - 1] >> (8 - n)); dst[0] = dst[0] << n; } } static void ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits, u_int8_t *dst, u_int dstbits) { int slen, dlen, i, n; slen = (srcbits + 7) / 8; dlen = (dstbits + 7) / 8; n = shiftbits / 8; for (i = 0; i < slen; i++) dst[i] = src[i + n]; for (i = 0; i < dlen - slen; i++) dst[slen + i] = 0; n = shiftbits % 8; if (n != 0) { for (i = 0; i < (dlen - 1); i++) dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n)); dst[dlen - 1] = dst[dlen - 1] >> n; } }