/* $NetBSD: igc_i225.c,v 1.2.2.2 2023/10/08 13:19:34 martin Exp $ */ /* $OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $ */ /*- * Copyright 2021 Intel Corp * Copyright 2021 Rubicon Communications, LLC (Netgate) * SPDX-License-Identifier: BSD-3-Clause */ #include __KERNEL_RCSID(0, "$NetBSD: igc_i225.c,v 1.2.2.2 2023/10/08 13:19:34 martin Exp $"); #include int igc_init_nvm_params_i225(struct igc_hw *); int igc_init_mac_params_i225(struct igc_hw *); int igc_init_phy_params_i225(struct igc_hw *); int igc_reset_hw_i225(struct igc_hw *); int igc_acquire_nvm_i225(struct igc_hw *); void igc_release_nvm_i225(struct igc_hw *); int igc_get_hw_semaphore_i225(struct igc_hw *); int __igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *); int igc_pool_flash_update_done_i225(struct igc_hw *); /** * igc_init_nvm_params_i225 - Init NVM func ptrs. * @hw: pointer to the HW structure **/ int igc_init_nvm_params_i225(struct igc_hw *hw) { struct igc_nvm_info *nvm = &hw->nvm; uint32_t eecd = IGC_READ_REG(hw, IGC_EECD); uint16_t size; DEBUGFUNC("igc_init_nvm_params_i225"); size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >> IGC_EECD_SIZE_EX_SHIFT); /* * Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* Just in case size is out of range, cap it to the largest * EEPROM size supported. */ if (size > 15) size = 15; nvm->word_size = 1 << size; nvm->opcode_bits = 8; nvm->delay_usec = 1; nvm->type = igc_nvm_eeprom_spi; nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8; if (nvm->word_size == (1 << 15)) nvm->page_size = 128; nvm->ops.acquire = igc_acquire_nvm_i225; nvm->ops.release = igc_release_nvm_i225; if (igc_get_flash_presence_i225(hw)) { hw->nvm.type = igc_nvm_flash_hw; nvm->ops.read = igc_read_nvm_srrd_i225; nvm->ops.write = igc_write_nvm_srwr_i225; nvm->ops.validate = igc_validate_nvm_checksum_i225; nvm->ops.update = igc_update_nvm_checksum_i225; } else { hw->nvm.type = igc_nvm_invm; nvm->ops.write = igc_null_write_nvm; nvm->ops.validate = igc_null_ops_generic; nvm->ops.update = igc_null_ops_generic; } return IGC_SUCCESS; } /** * igc_init_mac_params_i225 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ int igc_init_mac_params_i225(struct igc_hw *hw) { struct igc_mac_info *mac = &hw->mac; struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225; DEBUGFUNC("igc_init_mac_params_i225"); /* Initialize function pointer */ igc_init_mac_ops_generic(hw); /* Set media type */ hw->phy.media_type = igc_media_type_copper; /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = IGC_RAR_ENTRIES_BASE; /* reset */ mac->ops.reset_hw = igc_reset_hw_i225; /* hw initialization */ mac->ops.init_hw = igc_init_hw_i225; /* link setup */ mac->ops.setup_link = igc_setup_link_generic; /* check for link */ mac->ops.check_for_link = igc_check_for_link_i225; /* link info */ mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic; /* acquire SW_FW sync */ mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; /* release SW_FW sync */ mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; /* Allow a single clear of the SW semaphore on I225 */ dev_spec->clear_semaphore_once = true; mac->ops.setup_physical_interface = igc_setup_copper_link_i225; /* Set if part includes ASF firmware */ mac->asf_firmware_present = true; /* multicast address update */ mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic; mac->ops.write_vfta = igc_write_vfta_generic; return IGC_SUCCESS; } /** * igc_init_phy_params_i225 - Init PHY func ptrs. * @hw: pointer to the HW structure **/ int igc_init_phy_params_i225(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; int ret_val = IGC_SUCCESS; DEBUGFUNC("igc_init_phy_params_i225"); if (hw->phy.media_type != igc_media_type_copper) { phy->type = igc_phy_none; goto out; } phy->ops.power_up = igc_power_up_phy_copper; phy->ops.power_down = igc_power_down_phy_copper_base; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500; phy->reset_delay_us = 100; phy->ops.acquire = igc_acquire_phy_base; phy->ops.check_reset_block = igc_check_reset_block_generic; phy->ops.release = igc_release_phy_base; phy->ops.reset = igc_phy_hw_reset_generic; phy->ops.read_reg = igc_read_phy_reg_gpy; phy->ops.write_reg = igc_write_phy_reg_gpy; /* Make sure the PHY is in a good state. Several people have reported * firmware leaving the PHY's page select register set to something * other than the default of zero, which causes the PHY ID read to * access something other than the intended register. */ ret_val = hw->phy.ops.reset(hw); if (ret_val) goto out; ret_val = igc_get_phy_id(hw); phy->type = igc_phy_i225; out: return ret_val; } /** * igc_reset_hw_i225 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. **/ int igc_reset_hw_i225(struct igc_hw *hw) { uint32_t ctrl; int ret_val; DEBUGFUNC("igc_reset_hw_i225"); /* * Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = igc_disable_pcie_master_generic(hw); if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); DEBUGOUT("Masking off all interrupts\n"); IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); IGC_WRITE_REG(hw, IGC_RCTL, 0); IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP); IGC_WRITE_FLUSH(hw); msec_delay(10); ctrl = IGC_READ_REG(hw, IGC_CTRL); DEBUGOUT("Issuing a global reset to MAC\n"); IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST); ret_val = igc_get_auto_rd_done_generic(hw); if (ret_val) { /* * When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ DEBUGOUT("Auto Read Done did not complete\n"); } /* Clear any pending interrupt events. */ IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); IGC_READ_REG(hw, IGC_ICR); /* Install any alternate MAC address into RAR0 */ ret_val = igc_check_alt_mac_addr_generic(hw); return ret_val; } /* igc_acquire_nvm_i225 - Request for access to EEPROM * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -IGC_ERR_NVM (-1). */ int igc_acquire_nvm_i225(struct igc_hw *hw) { int ret_val; DEBUGFUNC("igc_acquire_nvm_i225"); ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); return ret_val; } /* igc_release_nvm_i225 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. */ void igc_release_nvm_i225(struct igc_hw *hw) { DEBUGFUNC("igc_release_nvm_i225"); igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); } /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. */ int igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) { uint32_t swfw_sync; uint32_t swmask = mask; uint32_t fwmask = mask << 16; int ret_val = IGC_SUCCESS; int i = 0, timeout = 200; /* FIXME: find real value to use here */ DEBUGFUNC("igc_acquire_swfw_sync_i225"); while (i < timeout) { if (igc_get_hw_semaphore_i225(hw)) { ret_val = -IGC_ERR_SWFW_SYNC; goto out; } swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; /* Firmware currently using resource (fwmask) * or other software thread using resource (swmask) */ igc_put_hw_semaphore_generic(hw); msec_delay(5); i++; } if (i == timeout) { DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); ret_val = -IGC_ERR_SWFW_SYNC; goto out; } swfw_sync |= swmask; IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); igc_put_hw_semaphore_generic(hw); out: return ret_val; } /* igc_release_swfw_sync_i225 - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. */ void igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) { uint32_t swfw_sync; DEBUGFUNC("igc_release_swfw_sync_i225"); while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS) ; /* Empty */ swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); swfw_sync &= ~mask; IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); igc_put_hw_semaphore_generic(hw); } /* * igc_setup_copper_link_i225 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. */ int igc_setup_copper_link_i225(struct igc_hw *hw) { uint32_t ctrl, phpm_reg; int ret_val; DEBUGFUNC("igc_setup_copper_link_i225"); ctrl = IGC_READ_REG(hw, IGC_CTRL); ctrl |= IGC_CTRL_SLU; ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX); IGC_WRITE_REG(hw, IGC_CTRL, ctrl); phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM); phpm_reg &= ~IGC_I225_PHPM_GO_LINKD; IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg); ret_val = igc_setup_copper_link_generic(hw); return ret_val; } /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM */ int igc_get_hw_semaphore_i225(struct igc_hw *hw) { uint32_t swsm; int timeout = hw->nvm.word_size + 1; int i = 0; DEBUGFUNC("igc_get_hw_semaphore_i225"); /* Get the SW semaphore */ while (i < timeout) { swsm = IGC_READ_REG(hw, IGC_SWSM); if (!(swsm & IGC_SWSM_SMBI)) break; DELAY(50); i++; } if (i == timeout) { /* In rare circumstances, the SW semaphore may already be held * unintentionally. Clear the semaphore once before giving up. */ if (hw->dev_spec._i225.clear_semaphore_once) { hw->dev_spec._i225.clear_semaphore_once = false; igc_put_hw_semaphore_generic(hw); for (i = 0; i < timeout; i++) { swsm = IGC_READ_REG(hw, IGC_SWSM); if (!(swsm & IGC_SWSM_SMBI)) break; DELAY(50); } } /* If we do not have the semaphore here, we have to give up. */ if (i == timeout) { DEBUGOUT("Driver can't access device -\n"); DEBUGOUT("SMBI bit is set.\n"); return -IGC_ERR_NVM; } } /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { swsm = IGC_READ_REG(hw, IGC_SWSM); IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI) break; DELAY(50); } if (i == timeout) { /* Release semaphores */ igc_put_hw_semaphore_generic(hw); DEBUGOUT("Driver can't access the NVM\n"); return -IGC_ERR_NVM; } return IGC_SUCCESS; } /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the Shadow Ram to read * @words: number of words to read * @data: word read from the Shadow Ram * * Reads a 16 bit word from the Shadow Ram using the EERD register. * Uses necessary synchronization semaphores. */ int igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, uint16_t *data) { uint16_t i, count; int status = IGC_SUCCESS; DEBUGFUNC("igc_read_nvm_srrd_i225"); /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to read in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? IGC_EERD_EEWR_MAX_COUNT : (words - i); if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { status = igc_read_nvm_eerd(hw, offset, count, data + i); hw->nvm.ops.release(hw); } else { status = IGC_ERR_SWFW_SYNC; } if (status != IGC_SUCCESS) break; } return status; } /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow RAM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the Shadow RAM * * Writes data to Shadow RAM at offset using EEWR register. * * If igc_update_nvm_checksum is not called after this function , the * data will not be committed to FLASH and also Shadow RAM will most likely * contain an invalid checksum. * * If error code is returned, data and Shadow RAM may be inconsistent - buffer * partially written. */ int igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, uint16_t *data) { uint16_t i, count; int status = IGC_SUCCESS; DEBUGFUNC("igc_write_nvm_srwr_i225"); /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to write in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? IGC_EERD_EEWR_MAX_COUNT : (words - i); if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { status = __igc_write_nvm_srwr(hw, offset, count, data + i); hw->nvm.ops.release(hw); } else status = IGC_ERR_SWFW_SYNC; if (status != IGC_SUCCESS) break; } return status; } /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow Ram to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the Shadow Ram * * Writes data to Shadow Ram at offset using EEWR register. * * If igc_update_nvm_checksum is not called after this function , the * Shadow Ram will most likely contain an invalid checksum. */ int __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words, uint16_t *data) { struct igc_nvm_info *nvm = &hw->nvm; uint32_t i, k, eewr = 0; uint32_t attempts = 100000; int ret_val = IGC_SUCCESS; DEBUGFUNC("__igc_write_nvm_srwr"); /* A check for invalid values: offset too large, too many words, * too many words for the offset, and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -IGC_ERR_NVM; goto out; } for (i = 0; i < words; i++) { eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START; IGC_WRITE_REG(hw, IGC_SRWR, eewr); for (k = 0; k < attempts; k++) { if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) { ret_val = IGC_SUCCESS; break; } DELAY(5); } if (ret_val != IGC_SUCCESS) { DEBUGOUT("Shadow RAM write EEWR timed out\n"); break; } } out: return ret_val; } /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. */ int igc_validate_nvm_checksum_i225(struct igc_hw *hw) { int status = IGC_SUCCESS; int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *); DEBUGFUNC("igc_validate_nvm_checksum_i225"); if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { /* Replace the read function with semaphore grabbing with * the one that skips this for a while. * We have semaphore taken already here. */ read_op_ptr = hw->nvm.ops.read; hw->nvm.ops.read = igc_read_nvm_eerd; status = igc_validate_nvm_checksum_generic(hw); /* Revert original read operation. */ hw->nvm.ops.read = read_op_ptr; hw->nvm.ops.release(hw); } else { status = IGC_ERR_SWFW_SYNC; } return status; } /* igc_update_nvm_checksum_i225 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. Next commit EEPROM data onto the Flash. */ int igc_update_nvm_checksum_i225(struct igc_hw *hw) { uint16_t checksum = 0; uint16_t i, nvm_data; int ret_val; DEBUGFUNC("igc_update_nvm_checksum_i225"); /* Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); if (ret_val != IGC_SUCCESS) { DEBUGOUT("EEPROM read failed\n"); goto out; } if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { /* Do not use hw->nvm.ops.write, hw->nvm.ops.read * because we do not want to take the synchronization * semaphores twice here. */ for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); if (ret_val) { hw->nvm.ops.release(hw); DEBUGOUT("NVM Read Error while updating\n"); DEBUGOUT("checksum.\n"); goto out; } checksum += nvm_data; } checksum = (uint16_t)NVM_SUM - checksum; ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val != IGC_SUCCESS) { hw->nvm.ops.release(hw); DEBUGOUT("NVM Write Error while updating checksum.\n"); goto out; } hw->nvm.ops.release(hw); ret_val = igc_update_flash_i225(hw); } else { ret_val = IGC_ERR_SWFW_SYNC; } out: return ret_val; } /* igc_get_flash_presence_i225 - Check if flash device is detected. * @hw: pointer to the HW structure */ bool igc_get_flash_presence_i225(struct igc_hw *hw) { uint32_t eec = 0; bool ret_val = false; DEBUGFUNC("igc_get_flash_presence_i225"); eec = IGC_READ_REG(hw, IGC_EECD); if (eec & IGC_EECD_FLASH_DETECTED_I225) ret_val = true; return ret_val; } /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst * Counter in FLSWCNT register. * * @hw: pointer to the HW structure * @burst_counter: size in bytes of the Flash burst to read or write */ int igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter) { int ret_val = IGC_SUCCESS; DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225"); /* Validate input data */ if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) { /* Write FLSWCNT - burst counter */ IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter); } else { ret_val = IGC_ERR_INVALID_ARGUMENT; } return ret_val; } /* igc_write_erase_flash_command_i225 - write/erase to a sector * region on a given address. * * @hw: pointer to the HW structure * @opcode: opcode to be used for the write command * @address: the offset to write into the FLASH image */ int igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode, uint32_t address) { uint32_t flswctl = 0; int timeout = IGC_NVM_GRANT_ATTEMPTS; int ret_val = IGC_SUCCESS; DEBUGFUNC("igc_write_erase_flash_command_i225"); flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); /* Polling done bit on FLSWCTL register */ while (timeout) { if (flswctl & IGC_FLSWCTL_DONE) break; DELAY(5); flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); timeout--; } if (!timeout) { DEBUGOUT("Flash transaction was not done\n"); return -IGC_ERR_NVM; } /* Build and issue command on FLSWCTL register */ flswctl = address | opcode; IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl); /* Check if issued command is valid on FLSWCTL register */ flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); if (!(flswctl & IGC_FLSWCTL_CMDV)) { DEBUGOUT("Write flash command failed\n"); ret_val = IGC_ERR_INVALID_ARGUMENT; } return ret_val; } /* igc_update_flash_i225 - Commit EEPROM to the flash * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC * register makes the FW load the internal shadow RAM into the flash. * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0 * then FW is not active so the SW is responsible shadow RAM dump. * * @hw: pointer to the HW structure */ int igc_update_flash_i225(struct igc_hw *hw) { uint32_t block_sw_protect = 1; uint32_t i, flup, fw_valid_bit; uint16_t current_offset; uint16_t base_address = 0x0; uint16_t current_offset_data = 0; int ret_val = 0; DEBUGFUNC("igc_update_flash_i225"); block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) & IGC_FLSECU_BLK_SW_ACCESS_I225; fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225; if (fw_valid_bit) { ret_val = igc_pool_flash_update_done_i225(hw); if (ret_val == -IGC_ERR_NVM) { DEBUGOUT("Flash update time out\n"); goto out; } flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225; IGC_WRITE_REG(hw, IGC_EECD, flup); ret_val = igc_pool_flash_update_done_i225(hw); if (ret_val == IGC_SUCCESS) DEBUGOUT("Flash update complete\n"); else DEBUGOUT("Flash update time out\n"); } else if (!block_sw_protect) { /* FW is not active and security protection is disabled. * therefore, SW is in charge of shadow RAM dump. * Check which sector is valid. if sector 0 is valid, * base address remains 0x0. otherwise, sector 1 is * valid and its base address is 0x1000 */ if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225) base_address = 0x1000; /* Valid sector erase */ ret_val = igc_write_erase_flash_command_i225(hw, IGC_I225_ERASE_CMD_OPCODE, base_address); if (!ret_val) { DEBUGOUT("Sector erase failed\n"); goto out; } current_offset = base_address; /* Write */ for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) { /* Set burst write length */ ret_val = igc_set_flsw_flash_burst_counter_i225(hw, 0x2); if (ret_val != IGC_SUCCESS) break; /* Set address and opcode */ ret_val = igc_write_erase_flash_command_i225(hw, IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset); if (ret_val != IGC_SUCCESS) break; ret_val = igc_read_nvm_eerd(hw, current_offset, 1, ¤t_offset_data); if (ret_val) { DEBUGOUT("Failed to read from EEPROM\n"); goto out; } /* Write CurrentOffseData to FLSWDATA register */ IGC_WRITE_REG(hw, IGC_I225_FLSWDATA, current_offset_data); current_offset++; /* Wait till operation has finished */ ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ); if (ret_val) break; DELAY(1000); } } out: return ret_val; } /* igc_pool_flash_update_done_i225 - Pool FLUDONE status. * @hw: pointer to the HW structure */ int igc_pool_flash_update_done_i225(struct igc_hw *hw) { uint32_t i, reg; int ret_val = -IGC_ERR_NVM; DEBUGFUNC("igc_pool_flash_update_done_i225"); for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { reg = IGC_READ_REG(hw, IGC_EECD); if (reg & IGC_EECD_FLUDONE_I225) { ret_val = IGC_SUCCESS; break; } DELAY(5); } return ret_val; } /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds. * @hw: pointer to the HW structure * @link: bool indicating link status * * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC * settings, otherwise specify that there is no LTR requirement. */ int igc_set_ltr_i225(struct igc_hw *hw, bool link) { uint16_t speed, duplex; uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; int size; DEBUGFUNC("igc_set_ltr_i225"); /* If we do not have link, LTR thresholds are zero. */ if (link) { hw->mac.ops.get_link_up_info(hw, &speed, &duplex); /* Check if using copper interface with EEE enabled or if the * link speed is 10 Mbps. */ if ((hw->phy.media_type == igc_media_type_copper) && !(hw->dev_spec._i225.eee_disable) && (speed != SPEED_10)) { /* EEE enabled, so send LTRMAX threshold. */ ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN; IGC_WRITE_REG(hw, IGC_LTRC, ltrc); /* Calculate tw_system (nsec). */ if (speed == SPEED_100) { tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) & IGC_TW_SYSTEM_100_MASK) >> IGC_TW_SYSTEM_100_SHIFT) * 500; } else { tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) & IGC_TW_SYSTEM_1000_MASK) * 500; } } else { tw_system = 0; } /* Get the Rx packet buffer size. */ size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK; /* Calculations vary based on DMAC settings. */ if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) { size -= (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT; /* Convert size to bits. */ size *= 1024 * 8; } else { /* Convert size to bytes, subtract the MTU, and then * convert the size to bits. */ size *= 1024; size -= hw->dev_spec._i225.mtu; size *= 8; } if (size < 0) { DEBUGOUT1("Invalid effective Rx buffer size %d\n", size); return -IGC_ERR_CONFIG; } /* Calculate the thresholds. Since speed is in Mbps, simplify * the calculation by multiplying size/speed by 1000 for result * to be in nsec before dividing by the scale in nsec. Set the * scale such that the LTR threshold fits in the register. */ ltr_min = (1000 * size) / speed; ltr_max = ltr_min + tw_system; scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : IGC_LTRMINV_SCALE_32768; scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : IGC_LTRMAXV_SCALE_32768; ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; /* Only write the LTR thresholds if they differ from before. */ ltrv = IGC_READ_REG(hw, IGC_LTRMINV); if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | (scale_min << IGC_LTRMINV_SCALE_SHIFT); IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv); } ltrv = IGC_READ_REG(hw, IGC_LTRMAXV); if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | (scale_min << IGC_LTRMAXV_SCALE_SHIFT); IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv); } } return IGC_SUCCESS; } /* igc_check_for_link_i225 - Check for link * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. */ int igc_check_for_link_i225(struct igc_hw *hw) { struct igc_mac_info *mac = &hw->mac; int ret_val; bool link = false; DEBUGFUNC("igc_check_for_link_i225"); /* We only want to go out to the PHY registers to see if * Auto-Neg has completed and/or if our link status has * changed. The get_link_status flag is set upon receiving * a Link Status Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) { ret_val = IGC_SUCCESS; goto out; } /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) goto out; if (!link) goto out; /* No link detected */ /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) goto out; if (!link) goto out; /* No link detected */ mac->get_link_status = false; /* Check if there was DownShift, must be checked * immediately after link-up */ igc_check_downshift_generic(hw); /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) goto out; /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = igc_config_fc_after_link_up_generic(hw); if (ret_val) DEBUGOUT("Error configuring flow control\n"); out: /* Now that we are aware of our link settings, we can set the LTR * thresholds. */ ret_val = igc_set_ltr_i225(hw, link); return ret_val; } /* igc_init_function_pointers_i225 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. */ void igc_init_function_pointers_i225(struct igc_hw *hw) { igc_init_mac_ops_generic(hw); igc_init_phy_ops_generic(hw); igc_init_nvm_ops_generic(hw); hw->mac.ops.init_params = igc_init_mac_params_i225; hw->nvm.ops.init_params = igc_init_nvm_params_i225; hw->phy.ops.init_params = igc_init_phy_params_i225; } /* igc_init_hw_i225 - Init hw for I225 * @hw: pointer to the HW structure * * Called to initialize hw for i225 hw family. */ int igc_init_hw_i225(struct igc_hw *hw) { int ret_val; DEBUGFUNC("igc_init_hw_i225"); ret_val = igc_init_hw_base(hw); return ret_val; } /** * igc_set_eee_i225 - Enable/disable EEE support * @hw: pointer to the HW structure * @adv2p5G: boolean flag enabling 2.5G EEE advertisement * @adv1G: boolean flag enabling 1G EEE advertisement * @adv100M: boolean flag enabling 100M EEE advertisement * * Enable/disable EEE based on setting in dev_spec structure. * **/ int igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, bool adv100M) { uint32_t ipcnfg, eeer; DEBUGFUNC("igc_set_eee_i225"); if (hw->mac.type != igc_i225 || hw->phy.media_type != igc_media_type_copper) goto out; ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG); eeer = IGC_READ_REG(hw, IGC_EEER); /* enable or disable per user setting */ if (!(hw->dev_spec._i225.eee_disable)) { uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU); if (adv100M) ipcnfg |= IGC_IPCNFG_EEE_100M_AN; else ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; if (adv1G) ipcnfg |= IGC_IPCNFG_EEE_1G_AN; else ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; if (adv2p5G) ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; else ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | IGC_EEER_LPI_FC); /* This bit should not be set in normal operation. */ if (eee_su & IGC_EEE_SU_LPI_CLK_STP) DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); } else { ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | IGC_IPCNFG_EEE_100M_AN); eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | IGC_EEER_LPI_FC); } IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg); IGC_WRITE_REG(hw, IGC_EEER, eeer); IGC_READ_REG(hw, IGC_IPCNFG); IGC_READ_REG(hw, IGC_EEER); out: return IGC_SUCCESS; }