/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include "anv_private.h" #include "util/hash_table.h" #include "util/simple_mtx.h" #ifdef HAVE_VALGRIND #define VG_NOACCESS_READ(__ptr) ({ \ VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \ __typeof(*(__ptr)) __val = *(__ptr); \ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\ __val; \ }) #define VG_NOACCESS_WRITE(__ptr, __val) ({ \ VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \ *(__ptr) = (__val); \ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \ }) #else #define VG_NOACCESS_READ(__ptr) (*(__ptr)) #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val)) #endif /* Design goals: * * - Lock free (except when resizing underlying bos) * * - Constant time allocation with typically only one atomic * * - Multiple allocation sizes without fragmentation * * - Can grow while keeping addresses and offset of contents stable * * - All allocations within one bo so we can point one of the * STATE_BASE_ADDRESS pointers at it. * * The overall design is a two-level allocator: top level is a fixed size, big * block (8k) allocator, which operates out of a bo. Allocation is done by * either pulling a block from the free list or growing the used range of the * bo. Growing the range may run out of space in the bo which we then need to * grow. Growing the bo is tricky in a multi-threaded, lockless environment: * we need to keep all pointers and contents in the old map valid. GEM bos in * general can't grow, but we use a trick: we create a memfd and use ftruncate * to grow it as necessary. We mmap the new size and then create a gem bo for * it using the new gem userptr ioctl. Without heavy-handed locking around * our allocation fast-path, there isn't really a way to munmap the old mmap, * so we just keep it around until garbage collection time. While the block * allocator is lockless for normal operations, we block other threads trying * to allocate while we're growing the map. It sholdn't happen often, and * growing is fast anyway. * * At the next level we can use various sub-allocators. The state pool is a * pool of smaller, fixed size objects, which operates much like the block * pool. It uses a free list for freeing objects, but when it runs out of * space it just allocates a new block from the block pool. This allocator is * intended for longer lived state objects such as SURFACE_STATE and most * other persistent state objects in the API. We may need to track more info * with these object and a pointer back to the CPU object (eg VkImage). In * those cases we just allocate a slightly bigger object and put the extra * state after the GPU state object. * * The state stream allocator works similar to how the i965 DRI driver streams * all its state. Even with Vulkan, we need to emit transient state (whether * surface state base or dynamic state base), and for that we can just get a * block and fill it up. These cases are local to a command buffer and the * sub-allocator need not be thread safe. The streaming allocator gets a new * block when it runs out of space and chains them together so they can be * easily freed. */ /* Allocations are always at least 64 byte aligned, so 1 is an invalid value. * We use it to indicate the free list is empty. */ #define EMPTY UINT32_MAX #define PAGE_SIZE 4096 struct anv_mmap_cleanup { void *map; size_t size; uint32_t gem_handle; }; #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0}) #ifndef HAVE_MEMFD_CREATE static inline int memfd_create(const char *name, unsigned int flags) { return syscall(SYS_memfd_create, name, flags); } #endif static inline uint32_t ilog2_round_up(uint32_t value) { assert(value != 0); return 32 - __builtin_clz(value - 1); } static inline uint32_t round_to_power_of_two(uint32_t value) { return 1 << ilog2_round_up(value); } struct anv_state_table_cleanup { void *map; size_t size; }; #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0}) #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry)) static VkResult anv_state_table_expand_range(struct anv_state_table *table, uint32_t size); VkResult anv_state_table_init(struct anv_state_table *table, struct anv_device *device, uint32_t initial_entries) { VkResult result; table->device = device; table->fd = memfd_create("state table", MFD_CLOEXEC); if (table->fd == -1) return vk_error(VK_ERROR_INITIALIZATION_FAILED); /* Just make it 2GB up-front. The Linux kernel won't actually back it * with pages until we either map and fault on one of them or we use * userptr and send a chunk of it off to the GPU. */ if (ftruncate(table->fd, BLOCK_POOL_MEMFD_SIZE) == -1) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } if (!u_vector_init(&table->cleanups, round_to_power_of_two(sizeof(struct anv_state_table_cleanup)), 128)) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } table->state.next = 0; table->state.end = 0; table->size = 0; uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE; result = anv_state_table_expand_range(table, initial_size); if (result != VK_SUCCESS) goto fail_cleanups; return VK_SUCCESS; fail_cleanups: u_vector_finish(&table->cleanups); fail_fd: close(table->fd); return result; } static VkResult anv_state_table_expand_range(struct anv_state_table *table, uint32_t size) { void *map; struct anv_state_table_cleanup *cleanup; /* Assert that we only ever grow the pool */ assert(size >= table->state.end); /* Make sure that we don't go outside the bounds of the memfd */ if (size > BLOCK_POOL_MEMFD_SIZE) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); cleanup = u_vector_add(&table->cleanups); if (!cleanup) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); *cleanup = ANV_STATE_TABLE_CLEANUP_INIT; /* Just leak the old map until we destroy the pool. We can't munmap it * without races or imposing locking on the block allocate fast path. On * the whole the leaked maps adds up to less than the size of the * current map. MAP_POPULATE seems like the right thing to do, but we * should try to get some numbers. */ map = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, table->fd, 0); if (map == MAP_FAILED) { return vk_errorf(table->device->instance, table->device, VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m"); } cleanup->map = map; cleanup->size = size; table->map = map; table->size = size; return VK_SUCCESS; } static VkResult anv_state_table_grow(struct anv_state_table *table) { VkResult result = VK_SUCCESS; uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE, PAGE_SIZE); uint32_t old_size = table->size; /* The block pool is always initialized to a nonzero size and this function * is always called after initialization. */ assert(old_size > 0); uint32_t required = MAX2(used, old_size); if (used * 2 <= required) { /* If we're in this case then this isn't the firsta allocation and we * already have enough space on both sides to hold double what we * have allocated. There's nothing for us to do. */ goto done; } uint32_t size = old_size * 2; while (size < required) size *= 2; assert(size > table->size); result = anv_state_table_expand_range(table, size); done: return result; } void anv_state_table_finish(struct anv_state_table *table) { struct anv_state_table_cleanup *cleanup; u_vector_foreach(cleanup, &table->cleanups) { if (cleanup->map) munmap(cleanup->map, cleanup->size); } u_vector_finish(&table->cleanups); close(table->fd); } VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx, uint32_t count) { struct anv_block_state state, old, new; VkResult result; assert(idx); while(1) { state.u64 = __sync_fetch_and_add(&table->state.u64, count); if (state.next + count <= state.end) { assert(table->map); struct anv_free_entry *entry = &table->map[state.next]; for (int i = 0; i < count; i++) { entry[i].state.idx = state.next + i; } *idx = state.next; return VK_SUCCESS; } else if (state.next <= state.end) { /* We allocated the first block outside the pool so we have to grow * the pool. pool_state->next acts a mutex: threads who try to * allocate now will get block indexes above the current limit and * hit futex_wait below. */ new.next = state.next + count; do { result = anv_state_table_grow(table); if (result != VK_SUCCESS) return result; new.end = table->size / ANV_STATE_ENTRY_SIZE; } while (new.end < new.next); old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64); if (old.next != state.next) futex_wake(&table->state.end, INT_MAX); } else { futex_wait(&table->state.end, state.end, NULL); continue; } } } void anv_free_list_push(union anv_free_list *list, struct anv_state_table *table, uint32_t first, uint32_t count) { union anv_free_list current, old, new; uint32_t last = first; for (uint32_t i = 1; i < count; i++, last++) table->map[last].next = last + 1; old = *list; do { current = old; table->map[last].next = current.offset; new.offset = first; new.count = current.count + 1; old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); } while (old.u64 != current.u64); } struct anv_state * anv_free_list_pop(union anv_free_list *list, struct anv_state_table *table) { union anv_free_list current, new, old; current.u64 = list->u64; while (current.offset != EMPTY) { __sync_synchronize(); new.offset = table->map[current.offset].next; new.count = current.count + 1; old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); if (old.u64 == current.u64) { struct anv_free_entry *entry = &table->map[current.offset]; return &entry->state; } current = old; } return NULL; } /* All pointers in the ptr_free_list are assumed to be page-aligned. This * means that the bottom 12 bits should all be zero. */ #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff) #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff)) #define PFL_PACK(ptr, count) ({ \ (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \ }) static bool anv_ptr_free_list_pop(void **list, void **elem) { void *current = *list; while (PFL_PTR(current) != NULL) { void **next_ptr = PFL_PTR(current); void *new_ptr = VG_NOACCESS_READ(next_ptr); unsigned new_count = PFL_COUNT(current) + 1; void *new = PFL_PACK(new_ptr, new_count); void *old = __sync_val_compare_and_swap(list, current, new); if (old == current) { *elem = PFL_PTR(current); return true; } current = old; } return false; } static void anv_ptr_free_list_push(void **list, void *elem) { void *old, *current; void **next_ptr = elem; /* The pointer-based free list requires that the pointer be * page-aligned. This is because we use the bottom 12 bits of the * pointer to store a counter to solve the ABA concurrency problem. */ assert(((uintptr_t)elem & 0xfff) == 0); old = *list; do { current = old; VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current)); unsigned new_count = PFL_COUNT(current) + 1; void *new = PFL_PACK(elem, new_count); old = __sync_val_compare_and_swap(list, current, new); } while (old != current); } static VkResult anv_block_pool_expand_range(struct anv_block_pool *pool, uint32_t center_bo_offset, uint32_t size); VkResult anv_block_pool_init(struct anv_block_pool *pool, struct anv_device *device, uint64_t start_address, uint32_t initial_size, uint64_t bo_flags) { VkResult result; pool->device = device; pool->bo_flags = bo_flags; pool->nbos = 0; pool->size = 0; pool->center_bo_offset = 0; pool->start_address = gen_canonical_address(start_address); pool->map = NULL; /* This pointer will always point to the first BO in the list */ pool->bo = &pool->bos[0]; anv_bo_init(pool->bo, 0, 0); if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) { pool->fd = memfd_create("block pool", MFD_CLOEXEC); if (pool->fd == -1) return vk_error(VK_ERROR_INITIALIZATION_FAILED); /* Just make it 2GB up-front. The Linux kernel won't actually back it * with pages until we either map and fault on one of them or we use * userptr and send a chunk of it off to the GPU. */ if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } } else { pool->fd = -1; } if (!u_vector_init(&pool->mmap_cleanups, round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128)) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } pool->state.next = 0; pool->state.end = 0; pool->back_state.next = 0; pool->back_state.end = 0; result = anv_block_pool_expand_range(pool, 0, initial_size); if (result != VK_SUCCESS) goto fail_mmap_cleanups; /* Make the entire pool available in the front of the pool. If back * allocation needs to use this space, the "ends" will be re-arranged. */ pool->state.end = pool->size; return VK_SUCCESS; fail_mmap_cleanups: u_vector_finish(&pool->mmap_cleanups); fail_fd: if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) close(pool->fd); return result; } void anv_block_pool_finish(struct anv_block_pool *pool) { struct anv_mmap_cleanup *cleanup; const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED); u_vector_foreach(cleanup, &pool->mmap_cleanups) { if (use_softpin) anv_gem_munmap(cleanup->map, cleanup->size); else munmap(cleanup->map, cleanup->size); if (cleanup->gem_handle) anv_gem_close(pool->device, cleanup->gem_handle); } u_vector_finish(&pool->mmap_cleanups); if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) close(pool->fd); } static VkResult anv_block_pool_expand_range(struct anv_block_pool *pool, uint32_t center_bo_offset, uint32_t size) { void *map; uint32_t gem_handle; struct anv_mmap_cleanup *cleanup; const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED); /* Assert that we only ever grow the pool */ assert(center_bo_offset >= pool->back_state.end); assert(size - center_bo_offset >= pool->state.end); /* Assert that we don't go outside the bounds of the memfd */ assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER); assert(use_softpin || size - center_bo_offset <= BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER); cleanup = u_vector_add(&pool->mmap_cleanups); if (!cleanup) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); *cleanup = ANV_MMAP_CLEANUP_INIT; uint32_t newbo_size = size - pool->size; if (use_softpin) { gem_handle = anv_gem_create(pool->device, newbo_size); map = anv_gem_mmap(pool->device, gem_handle, 0, newbo_size, 0); if (map == MAP_FAILED) return vk_errorf(pool->device->instance, pool->device, VK_ERROR_MEMORY_MAP_FAILED, "gem mmap failed: %m"); assert(center_bo_offset == 0); } else { /* Just leak the old map until we destroy the pool. We can't munmap it * without races or imposing locking on the block allocate fast path. On * the whole the leaked maps adds up to less than the size of the * current map. MAP_POPULATE seems like the right thing to do, but we * should try to get some numbers. */ map = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, pool->fd, BLOCK_POOL_MEMFD_CENTER - center_bo_offset); if (map == MAP_FAILED) return vk_errorf(pool->device->instance, pool->device, VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m"); /* Now that we mapped the new memory, we can write the new * center_bo_offset back into pool and update pool->map. */ pool->center_bo_offset = center_bo_offset; pool->map = map + center_bo_offset; gem_handle = anv_gem_userptr(pool->device, map, size); if (gem_handle == 0) { munmap(map, size); return vk_errorf(pool->device->instance, pool->device, VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m"); } } cleanup->map = map; cleanup->size = use_softpin ? newbo_size : size; cleanup->gem_handle = gem_handle; /* Regular objects are created I915_CACHING_CACHED on LLC platforms and * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are * always created as I915_CACHING_CACHED, which on non-LLC means * snooped. * * On platforms that support softpin, we are not going to use userptr * anymore, but we still want to rely on the snooped states. So make sure * everything is set to I915_CACHING_CACHED. */ if (!pool->device->info.has_llc) anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_CACHED); /* For block pool BOs we have to be a bit careful about where we place them * in the GTT. There are two documented workarounds for state base address * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset * which state that those two base addresses do not support 48-bit * addresses and need to be placed in the bottom 32-bit range. * Unfortunately, this is not quite accurate. * * The real problem is that we always set the size of our state pools in * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most * likely significantly smaller. We do this because we do not no at the * time we emit STATE_BASE_ADDRESS whether or not we will need to expand * the pool during command buffer building so we don't actually have a * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS * overflows 48 bits, the GPU appears to treat all accesses to the buffer * as being out of bounds and returns zero. For dynamic state, this * usually just leads to rendering corruptions, but shaders that are all * zero hang the GPU immediately. * * The easiest solution to do is exactly what the bogus workarounds say to * do: restrict these buffers to 32-bit addresses. We could also pin the * BO to some particular location of our choosing, but that's significantly * more work than just not setting a flag. So, we explicitly DO NOT set * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the * hard work for us. */ struct anv_bo *bo; uint32_t bo_size; uint64_t bo_offset; assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS); if (use_softpin) { /* With softpin, we add a new BO to the pool, and set its offset to right * where the previous BO ends (the end of the pool). */ bo = &pool->bos[pool->nbos++]; bo_size = newbo_size; bo_offset = pool->start_address + pool->size; } else { /* Without softpin, we just need one BO, and we already have a pointer to * it. Simply "allocate" it from our array if we didn't do it before. * The offset doesn't matter since we are not pinning the BO anyway. */ if (pool->nbos == 0) pool->nbos++; bo = pool->bo; bo_size = size; bo_offset = 0; } anv_bo_init(bo, gem_handle, bo_size); bo->offset = bo_offset; bo->flags = pool->bo_flags; bo->map = map; pool->size = size; return VK_SUCCESS; } static struct anv_bo * anv_block_pool_get_bo(struct anv_block_pool *pool, int32_t *offset) { struct anv_bo *bo, *bo_found = NULL; int32_t cur_offset = 0; assert(offset); if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) return pool->bo; anv_block_pool_foreach_bo(bo, pool) { if (*offset < cur_offset + bo->size) { bo_found = bo; break; } cur_offset += bo->size; } assert(bo_found != NULL); *offset -= cur_offset; return bo_found; } /** Returns current memory map of the block pool. * * The returned pointer points to the map for the memory at the specified * offset. The offset parameter is relative to the "center" of the block pool * rather than the start of the block pool BO map. */ void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset) { if (pool->bo_flags & EXEC_OBJECT_PINNED) { struct anv_bo *bo = anv_block_pool_get_bo(pool, &offset); return bo->map + offset; } else { return pool->map + offset; } } /** Grows and re-centers the block pool. * * We grow the block pool in one or both directions in such a way that the * following conditions are met: * * 1) The size of the entire pool is always a power of two. * * 2) The pool only grows on both ends. Neither end can get * shortened. * * 3) At the end of the allocation, we have about twice as much space * allocated for each end as we have used. This way the pool doesn't * grow too far in one direction or the other. * * 4) If the _alloc_back() has never been called, then the back portion of * the pool retains a size of zero. (This makes it easier for users of * the block pool that only want a one-sided pool.) * * 5) We have enough space allocated for at least one more block in * whichever side `state` points to. * * 6) The center of the pool is always aligned to both the block_size of * the pool and a 4K CPU page. */ static uint32_t anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state) { VkResult result = VK_SUCCESS; pthread_mutex_lock(&pool->device->mutex); assert(state == &pool->state || state == &pool->back_state); /* Gather a little usage information on the pool. Since we may have * threadsd waiting in queue to get some storage while we resize, it's * actually possible that total_used will be larger than old_size. In * particular, block_pool_alloc() increments state->next prior to * calling block_pool_grow, so this ensures that we get enough space for * which ever side tries to grow the pool. * * We align to a page size because it makes it easier to do our * calculations later in such a way that we state page-aigned. */ uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE); uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE); uint32_t total_used = front_used + back_used; assert(state == &pool->state || back_used > 0); uint32_t old_size = pool->size; /* The block pool is always initialized to a nonzero size and this function * is always called after initialization. */ assert(old_size > 0); /* The back_used and front_used may actually be smaller than the actual * requirement because they are based on the next pointers which are * updated prior to calling this function. */ uint32_t back_required = MAX2(back_used, pool->center_bo_offset); uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset); if (back_used * 2 <= back_required && front_used * 2 <= front_required) { /* If we're in this case then this isn't the firsta allocation and we * already have enough space on both sides to hold double what we * have allocated. There's nothing for us to do. */ goto done; } uint32_t size = old_size * 2; while (size < back_required + front_required) size *= 2; assert(size > pool->size); /* We compute a new center_bo_offset such that, when we double the size * of the pool, we maintain the ratio of how much is used by each side. * This way things should remain more-or-less balanced. */ uint32_t center_bo_offset; if (back_used == 0) { /* If we're in this case then we have never called alloc_back(). In * this case, we want keep the offset at 0 to make things as simple * as possible for users that don't care about back allocations. */ center_bo_offset = 0; } else { /* Try to "center" the allocation based on how much is currently in * use on each side of the center line. */ center_bo_offset = ((uint64_t)size * back_used) / total_used; /* Align down to a multiple of the page size */ center_bo_offset &= ~(PAGE_SIZE - 1); assert(center_bo_offset >= back_used); /* Make sure we don't shrink the back end of the pool */ if (center_bo_offset < back_required) center_bo_offset = back_required; /* Make sure that we don't shrink the front end of the pool */ if (size - center_bo_offset < front_required) center_bo_offset = size - front_required; } assert(center_bo_offset % PAGE_SIZE == 0); result = anv_block_pool_expand_range(pool, center_bo_offset, size); pool->bo->flags = pool->bo_flags; done: pthread_mutex_unlock(&pool->device->mutex); if (result == VK_SUCCESS) { /* Return the appropriate new size. This function never actually * updates state->next. Instead, we let the caller do that because it * needs to do so in order to maintain its concurrency model. */ if (state == &pool->state) { return pool->size - pool->center_bo_offset; } else { assert(pool->center_bo_offset > 0); return pool->center_bo_offset; } } else { return 0; } } static uint32_t anv_block_pool_alloc_new(struct anv_block_pool *pool, struct anv_block_state *pool_state, uint32_t block_size, uint32_t *padding) { struct anv_block_state state, old, new; /* Most allocations won't generate any padding */ if (padding) *padding = 0; while (1) { state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size); if (state.next + block_size <= state.end) { return state.next; } else if (state.next <= state.end) { if (pool->bo_flags & EXEC_OBJECT_PINNED && state.next < state.end) { /* We need to grow the block pool, but still have some leftover * space that can't be used by that particular allocation. So we * add that as a "padding", and return it. */ uint32_t leftover = state.end - state.next; /* If there is some leftover space in the pool, the caller must * deal with it. */ assert(leftover == 0 || padding); if (padding) *padding = leftover; state.next += leftover; } /* We allocated the first block outside the pool so we have to grow * the pool. pool_state->next acts a mutex: threads who try to * allocate now will get block indexes above the current limit and * hit futex_wait below. */ new.next = state.next + block_size; do { new.end = anv_block_pool_grow(pool, pool_state); } while (new.end < new.next); old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64); if (old.next != state.next) futex_wake(&pool_state->end, INT_MAX); return state.next; } else { futex_wait(&pool_state->end, state.end, NULL); continue; } } } int32_t anv_block_pool_alloc(struct anv_block_pool *pool, uint32_t block_size, uint32_t *padding) { uint32_t offset; offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding); return offset; } /* Allocates a block out of the back of the block pool. * * This will allocated a block earlier than the "start" of the block pool. * The offsets returned from this function will be negative but will still * be correct relative to the block pool's map pointer. * * If you ever use anv_block_pool_alloc_back, then you will have to do * gymnastics with the block pool's BO when doing relocations. */ int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool, uint32_t block_size) { int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state, block_size, NULL); /* The offset we get out of anv_block_pool_alloc_new() is actually the * number of bytes downwards from the middle to the end of the block. * We need to turn it into a (negative) offset from the middle to the * start of the block. */ assert(offset >= 0); return -(offset + block_size); } VkResult anv_state_pool_init(struct anv_state_pool *pool, struct anv_device *device, uint64_t start_address, uint32_t block_size, uint64_t bo_flags) { VkResult result = anv_block_pool_init(&pool->block_pool, device, start_address, block_size * 16, bo_flags); if (result != VK_SUCCESS) return result; result = anv_state_table_init(&pool->table, device, 64); if (result != VK_SUCCESS) { anv_block_pool_finish(&pool->block_pool); return result; } assert(util_is_power_of_two_or_zero(block_size)); pool->block_size = block_size; pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY; for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) { pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY; pool->buckets[i].block.next = 0; pool->buckets[i].block.end = 0; } VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); return VK_SUCCESS; } void anv_state_pool_finish(struct anv_state_pool *pool) { VG(VALGRIND_DESTROY_MEMPOOL(pool)); anv_state_table_finish(&pool->table); anv_block_pool_finish(&pool->block_pool); } static uint32_t anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool, struct anv_block_pool *block_pool, uint32_t state_size, uint32_t block_size, uint32_t *padding) { struct anv_block_state block, old, new; uint32_t offset; /* We don't always use anv_block_pool_alloc(), which would set *padding to * zero for us. So if we have a pointer to padding, we must zero it out * ourselves here, to make sure we always return some sensible value. */ if (padding) *padding = 0; /* If our state is large, we don't need any sub-allocation from a block. * Instead, we just grab whole (potentially large) blocks. */ if (state_size >= block_size) return anv_block_pool_alloc(block_pool, state_size, padding); restart: block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size); if (block.next < block.end) { return block.next; } else if (block.next == block.end) { offset = anv_block_pool_alloc(block_pool, block_size, padding); new.next = offset + state_size; new.end = offset + block_size; old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64); if (old.next != block.next) futex_wake(&pool->block.end, INT_MAX); return offset; } else { futex_wait(&pool->block.end, block.end, NULL); goto restart; } } static uint32_t anv_state_pool_get_bucket(uint32_t size) { unsigned size_log2 = ilog2_round_up(size); assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2); if (size_log2 < ANV_MIN_STATE_SIZE_LOG2) size_log2 = ANV_MIN_STATE_SIZE_LOG2; return size_log2 - ANV_MIN_STATE_SIZE_LOG2; } static uint32_t anv_state_pool_get_bucket_size(uint32_t bucket) { uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2; return 1 << size_log2; } /** Helper to push a chunk into the state table. * * It creates 'count' entries into the state table and update their sizes, * offsets and maps, also pushing them as "free" states. */ static void anv_state_pool_return_blocks(struct anv_state_pool *pool, uint32_t chunk_offset, uint32_t count, uint32_t block_size) { /* Disallow returning 0 chunks */ assert(count != 0); /* Make sure we always return chunks aligned to the block_size */ assert(chunk_offset % block_size == 0); uint32_t st_idx; UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count); assert(result == VK_SUCCESS); for (int i = 0; i < count; i++) { /* update states that were added back to the state table */ struct anv_state *state_i = anv_state_table_get(&pool->table, st_idx + i); state_i->alloc_size = block_size; state_i->offset = chunk_offset + block_size * i; state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset); } uint32_t block_bucket = anv_state_pool_get_bucket(block_size); anv_free_list_push(&pool->buckets[block_bucket].free_list, &pool->table, st_idx, count); } /** Returns a chunk of memory back to the state pool. * * Do a two-level split. If chunk_size is bigger than divisor * (pool->block_size), we return as many divisor sized blocks as we can, from * the end of the chunk. * * The remaining is then split into smaller blocks (starting at small_size if * it is non-zero), with larger blocks always being taken from the end of the * chunk. */ static void anv_state_pool_return_chunk(struct anv_state_pool *pool, uint32_t chunk_offset, uint32_t chunk_size, uint32_t small_size) { uint32_t divisor = pool->block_size; uint32_t nblocks = chunk_size / divisor; uint32_t rest = chunk_size - nblocks * divisor; if (nblocks > 0) { /* First return divisor aligned and sized chunks. We start returning * larger blocks from the end fo the chunk, since they should already be * aligned to divisor. Also anv_state_pool_return_blocks() only accepts * aligned chunks. */ uint32_t offset = chunk_offset + rest; anv_state_pool_return_blocks(pool, offset, nblocks, divisor); } chunk_size = rest; divisor /= 2; if (small_size > 0 && small_size < divisor) divisor = small_size; uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2; /* Just as before, return larger divisor aligned blocks from the end of the * chunk first. */ while (chunk_size > 0 && divisor >= min_size) { nblocks = chunk_size / divisor; rest = chunk_size - nblocks * divisor; if (nblocks > 0) { anv_state_pool_return_blocks(pool, chunk_offset + rest, nblocks, divisor); chunk_size = rest; } divisor /= 2; } } static struct anv_state anv_state_pool_alloc_no_vg(struct anv_state_pool *pool, uint32_t size, uint32_t align) { uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align)); struct anv_state *state; uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket); int32_t offset; /* Try free list first. */ state = anv_free_list_pop(&pool->buckets[bucket].free_list, &pool->table); if (state) { assert(state->offset >= 0); goto done; } /* Try to grab a chunk from some larger bucket and split it up */ for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) { state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table); if (state) { unsigned chunk_size = anv_state_pool_get_bucket_size(b); int32_t chunk_offset = state->offset; /* First lets update the state we got to its new size. offset and map * remain the same. */ state->alloc_size = alloc_size; /* Now return the unused part of the chunk back to the pool as free * blocks * * There are a couple of options as to what we do with it: * * 1) We could fully split the chunk into state.alloc_size sized * pieces. However, this would mean that allocating a 16B * state could potentially split a 2MB chunk into 512K smaller * chunks. This would lead to unnecessary fragmentation. * * 2) The classic "buddy allocator" method would have us split the * chunk in half and return one half. Then we would split the * remaining half in half and return one half, and repeat as * needed until we get down to the size we want. However, if * you are allocating a bunch of the same size state (which is * the common case), this means that every other allocation has * to go up a level and every fourth goes up two levels, etc. * This is not nearly as efficient as it could be if we did a * little more work up-front. * * 3) Split the difference between (1) and (2) by doing a * two-level split. If it's bigger than some fixed block_size, * we split it into block_size sized chunks and return all but * one of them. Then we split what remains into * state.alloc_size sized chunks and return them. * * We choose something close to option (3), which is implemented with * anv_state_pool_return_chunk(). That is done by returning the * remaining of the chunk, with alloc_size as a hint of the size that * we want the smaller chunk split into. */ anv_state_pool_return_chunk(pool, chunk_offset + alloc_size, chunk_size - alloc_size, alloc_size); goto done; } } uint32_t padding; offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket], &pool->block_pool, alloc_size, pool->block_size, &padding); /* Everytime we allocate a new state, add it to the state pool */ uint32_t idx; UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1); assert(result == VK_SUCCESS); state = anv_state_table_get(&pool->table, idx); state->offset = offset; state->alloc_size = alloc_size; state->map = anv_block_pool_map(&pool->block_pool, offset); if (padding > 0) { uint32_t return_offset = offset - padding; anv_state_pool_return_chunk(pool, return_offset, padding, 0); } done: return *state; } struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align) { if (size == 0) return ANV_STATE_NULL; struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align); VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size)); return state; } struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool) { struct anv_state *state; uint32_t alloc_size = pool->block_size; state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table); if (state) { assert(state->offset < 0); goto done; } int32_t offset; offset = anv_block_pool_alloc_back(&pool->block_pool, pool->block_size); uint32_t idx; UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1); assert(result == VK_SUCCESS); state = anv_state_table_get(&pool->table, idx); state->offset = offset; state->alloc_size = alloc_size; state->map = anv_block_pool_map(&pool->block_pool, state->offset); done: VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size)); return *state; } static void anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state) { assert(util_is_power_of_two_or_zero(state.alloc_size)); unsigned bucket = anv_state_pool_get_bucket(state.alloc_size); if (state.offset < 0) { assert(state.alloc_size == pool->block_size); anv_free_list_push(&pool->back_alloc_free_list, &pool->table, state.idx, 1); } else { anv_free_list_push(&pool->buckets[bucket].free_list, &pool->table, state.idx, 1); } } void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state) { if (state.alloc_size == 0) return; VG(VALGRIND_MEMPOOL_FREE(pool, state.map)); anv_state_pool_free_no_vg(pool, state); } struct anv_state_stream_block { struct anv_state block; /* The next block */ struct anv_state_stream_block *next; #ifdef HAVE_VALGRIND /* A pointer to the first user-allocated thing in this block. This is * what valgrind sees as the start of the block. */ void *_vg_ptr; #endif }; /* The state stream allocator is a one-shot, single threaded allocator for * variable sized blocks. We use it for allocating dynamic state. */ void anv_state_stream_init(struct anv_state_stream *stream, struct anv_state_pool *state_pool, uint32_t block_size) { stream->state_pool = state_pool; stream->block_size = block_size; stream->block = ANV_STATE_NULL; stream->block_list = NULL; /* Ensure that next + whatever > block_size. This way the first call to * state_stream_alloc fetches a new block. */ stream->next = block_size; VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false)); } void anv_state_stream_finish(struct anv_state_stream *stream) { struct anv_state_stream_block *next = stream->block_list; while (next != NULL) { struct anv_state_stream_block sb = VG_NOACCESS_READ(next); VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr)); VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size)); anv_state_pool_free_no_vg(stream->state_pool, sb.block); next = sb.next; } VG(VALGRIND_DESTROY_MEMPOOL(stream)); } struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream, uint32_t size, uint32_t alignment) { if (size == 0) return ANV_STATE_NULL; assert(alignment <= PAGE_SIZE); uint32_t offset = align_u32(stream->next, alignment); if (offset + size > stream->block.alloc_size) { uint32_t block_size = stream->block_size; if (block_size < size) block_size = round_to_power_of_two(size); stream->block = anv_state_pool_alloc_no_vg(stream->state_pool, block_size, PAGE_SIZE); struct anv_state_stream_block *sb = stream->block.map; VG_NOACCESS_WRITE(&sb->block, stream->block); VG_NOACCESS_WRITE(&sb->next, stream->block_list); stream->block_list = sb; VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL)); VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size)); /* Reset back to the start plus space for the header */ stream->next = sizeof(*sb); offset = align_u32(stream->next, alignment); assert(offset + size <= stream->block.alloc_size); } struct anv_state state = stream->block; state.offset += offset; state.alloc_size = size; state.map += offset; stream->next = offset + size; #ifdef HAVE_VALGRIND struct anv_state_stream_block *sb = stream->block_list; void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr); if (vg_ptr == NULL) { vg_ptr = state.map; VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr); VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size); } else { void *state_end = state.map + state.alloc_size; /* This only updates the mempool. The newly allocated chunk is still * marked as NOACCESS. */ VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr); /* Mark the newly allocated chunk as undefined */ VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size); } #endif return state; } struct bo_pool_bo_link { struct bo_pool_bo_link *next; struct anv_bo bo; }; void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device, uint64_t bo_flags) { pool->device = device; pool->bo_flags = bo_flags; memset(pool->free_list, 0, sizeof(pool->free_list)); VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); } void anv_bo_pool_finish(struct anv_bo_pool *pool) { for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) { struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]); while (link != NULL) { struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link); anv_gem_munmap(link_copy.bo.map, link_copy.bo.size); anv_vma_free(pool->device, &link_copy.bo); anv_gem_close(pool->device, link_copy.bo.gem_handle); link = link_copy.next; } } VG(VALGRIND_DESTROY_MEMPOOL(pool)); } VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size) { VkResult result; const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size); const unsigned pow2_size = 1 << size_log2; const unsigned bucket = size_log2 - 12; assert(bucket < ARRAY_SIZE(pool->free_list)); void *next_free_void; if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) { struct bo_pool_bo_link *next_free = next_free_void; *bo = VG_NOACCESS_READ(&next_free->bo); assert(bo->gem_handle); assert(bo->map == next_free); assert(size <= bo->size); VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); return VK_SUCCESS; } struct anv_bo new_bo; result = anv_bo_init_new(&new_bo, pool->device, pow2_size); if (result != VK_SUCCESS) return result; new_bo.flags = pool->bo_flags; if (!anv_vma_alloc(pool->device, &new_bo)) return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); assert(new_bo.size == pow2_size); new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0); if (new_bo.map == MAP_FAILED) { anv_gem_close(pool->device, new_bo.gem_handle); anv_vma_free(pool->device, &new_bo); return vk_error(VK_ERROR_MEMORY_MAP_FAILED); } /* We are removing the state flushes, so lets make sure that these buffers * are cached/snooped. */ if (!pool->device->info.has_llc) { anv_gem_set_caching(pool->device, new_bo.gem_handle, I915_CACHING_CACHED); } *bo = new_bo; VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); return VK_SUCCESS; } void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in) { /* Make a copy in case the anv_bo happens to be storred in the BO */ struct anv_bo bo = *bo_in; VG(VALGRIND_MEMPOOL_FREE(pool, bo.map)); struct bo_pool_bo_link *link = bo.map; VG_NOACCESS_WRITE(&link->bo, bo); assert(util_is_power_of_two_or_zero(bo.size)); const unsigned size_log2 = ilog2_round_up(bo.size); const unsigned bucket = size_log2 - 12; assert(bucket < ARRAY_SIZE(pool->free_list)); anv_ptr_free_list_push(&pool->free_list[bucket], link); } // Scratch pool void anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool) { memset(pool, 0, sizeof(*pool)); } void anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool) { for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { for (unsigned i = 0; i < 16; i++) { struct anv_scratch_bo *bo = &pool->bos[i][s]; if (bo->exists > 0) { anv_vma_free(device, &bo->bo); anv_gem_close(device, bo->bo.gem_handle); } } } } struct anv_bo * anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool, gl_shader_stage stage, unsigned per_thread_scratch) { if (per_thread_scratch == 0) return NULL; unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048); assert(scratch_size_log2 < 16); struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage]; /* We can use "exists" to shortcut and ignore the critical section */ if (bo->exists) return &bo->bo; pthread_mutex_lock(&device->mutex); __sync_synchronize(); if (bo->exists) { pthread_mutex_unlock(&device->mutex); return &bo->bo; } const struct anv_physical_device *physical_device = &device->instance->physicalDevice; const struct gen_device_info *devinfo = &physical_device->info; const unsigned subslices = MAX2(physical_device->subslice_total, 1); unsigned scratch_ids_per_subslice; if (devinfo->is_haswell) { /* WaCSScratchSize:hsw * * Haswell's scratch space address calculation appears to be sparse * rather than tightly packed. The Thread ID has bits indicating * which subslice, EU within a subslice, and thread within an EU it * is. There's a maximum of two slices and two subslices, so these * can be stored with a single bit. Even though there are only 10 EUs * per subslice, this is stored in 4 bits, so there's an effective * maximum value of 16 EUs. Similarly, although there are only 7 * threads per EU, this is stored in a 3 bit number, giving an * effective maximum value of 8 threads per EU. * * This means that we need to use 16 * 8 instead of 10 * 7 for the * number of threads per subslice. */ scratch_ids_per_subslice = 16 * 8; } else if (devinfo->is_cherryview) { /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU * has 7 threads. The 6 EU devices appear to calculate thread IDs as if * it had 8 EUs. */ scratch_ids_per_subslice = 8 * 7; } else { scratch_ids_per_subslice = devinfo->max_cs_threads; } uint32_t max_threads[] = { [MESA_SHADER_VERTEX] = devinfo->max_vs_threads, [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads, [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads, [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads, [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads, [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices, }; uint32_t size = per_thread_scratch * max_threads[stage]; anv_bo_init_new(&bo->bo, device, size); /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they * are still relative to the general state base address. When we emit * STATE_BASE_ADDRESS, we set general state base address to 0 and the size * to the maximum (1 page under 4GB). This allows us to just place the * scratch buffers anywhere we wish in the bottom 32 bits of address space * and just set the scratch base pointer in 3DSTATE_*S using a relocation. * However, in order to do so, we need to ensure that the kernel does not * place the scratch BO above the 32-bit boundary. * * NOTE: Technically, it can't go "anywhere" because the top page is off * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the * kernel allocates space using * * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); * * so nothing will ever touch the top page. */ assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)); if (device->instance->physicalDevice.has_exec_async) bo->bo.flags |= EXEC_OBJECT_ASYNC; if (device->instance->physicalDevice.use_softpin) bo->bo.flags |= EXEC_OBJECT_PINNED; anv_vma_alloc(device, &bo->bo); /* Set the exists last because it may be read by other threads */ __sync_synchronize(); bo->exists = true; pthread_mutex_unlock(&device->mutex); return &bo->bo; } struct anv_cached_bo { struct anv_bo bo; uint32_t refcount; }; VkResult anv_bo_cache_init(struct anv_bo_cache *cache) { cache->bo_map = _mesa_pointer_hash_table_create(NULL); if (!cache->bo_map) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); if (pthread_mutex_init(&cache->mutex, NULL)) { _mesa_hash_table_destroy(cache->bo_map, NULL); return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY, "pthread_mutex_init failed: %m"); } return VK_SUCCESS; } void anv_bo_cache_finish(struct anv_bo_cache *cache) { _mesa_hash_table_destroy(cache->bo_map, NULL); pthread_mutex_destroy(&cache->mutex); } static struct anv_cached_bo * anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle) { struct hash_entry *entry = _mesa_hash_table_search(cache->bo_map, (const void *)(uintptr_t)gem_handle); if (!entry) return NULL; struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data; assert(bo->bo.gem_handle == gem_handle); return bo; } UNUSED static struct anv_bo * anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle) { pthread_mutex_lock(&cache->mutex); struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle); pthread_mutex_unlock(&cache->mutex); return bo ? &bo->bo : NULL; } #define ANV_BO_CACHE_SUPPORTED_FLAGS \ (EXEC_OBJECT_WRITE | \ EXEC_OBJECT_ASYNC | \ EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \ EXEC_OBJECT_PINNED | \ ANV_BO_EXTERNAL) VkResult anv_bo_cache_alloc(struct anv_device *device, struct anv_bo_cache *cache, uint64_t size, uint64_t bo_flags, struct anv_bo **bo_out) { assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); struct anv_cached_bo *bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!bo) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); bo->refcount = 1; /* The kernel is going to give us whole pages anyway */ size = align_u64(size, 4096); VkResult result = anv_bo_init_new(&bo->bo, device, size); if (result != VK_SUCCESS) { vk_free(&device->alloc, bo); return result; } bo->bo.flags = bo_flags; if (!anv_vma_alloc(device, &bo->bo)) { anv_gem_close(device, bo->bo.gem_handle); vk_free(&device->alloc, bo); return vk_errorf(device->instance, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY, "failed to allocate virtual address for BO"); } assert(bo->bo.gem_handle); pthread_mutex_lock(&cache->mutex); _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)bo->bo.gem_handle, bo); pthread_mutex_unlock(&cache->mutex); *bo_out = &bo->bo; return VK_SUCCESS; } VkResult anv_bo_cache_import_host_ptr(struct anv_device *device, struct anv_bo_cache *cache, void *host_ptr, uint32_t size, uint64_t bo_flags, struct anv_bo **bo_out) { assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); assert((bo_flags & ANV_BO_EXTERNAL) == 0); uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size); if (!gem_handle) return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); pthread_mutex_lock(&cache->mutex); struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle); if (bo) { /* VK_EXT_external_memory_host doesn't require handling importing the * same pointer twice at the same time, but we don't get in the way. If * kernel gives us the same gem_handle, only succeed if the flags match. */ if (bo_flags != bo->bo.flags) { pthread_mutex_unlock(&cache->mutex); return vk_errorf(device->instance, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE, "same host pointer imported two different ways"); } __sync_fetch_and_add(&bo->refcount, 1); } else { bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!bo) { anv_gem_close(device, gem_handle); pthread_mutex_unlock(&cache->mutex); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } bo->refcount = 1; anv_bo_init(&bo->bo, gem_handle, size); bo->bo.flags = bo_flags; if (!anv_vma_alloc(device, &bo->bo)) { anv_gem_close(device, bo->bo.gem_handle); pthread_mutex_unlock(&cache->mutex); vk_free(&device->alloc, bo); return vk_errorf(device->instance, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY, "failed to allocate virtual address for BO"); } _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo); } pthread_mutex_unlock(&cache->mutex); *bo_out = &bo->bo; return VK_SUCCESS; } VkResult anv_bo_cache_import(struct anv_device *device, struct anv_bo_cache *cache, int fd, uint64_t bo_flags, struct anv_bo **bo_out) { assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); assert(bo_flags & ANV_BO_EXTERNAL); pthread_mutex_lock(&cache->mutex); uint32_t gem_handle = anv_gem_fd_to_handle(device, fd); if (!gem_handle) { pthread_mutex_unlock(&cache->mutex); return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); } struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle); if (bo) { /* We have to be careful how we combine flags so that it makes sense. * Really, though, if we get to this case and it actually matters, the * client has imported a BO twice in different ways and they get what * they have coming. */ uint64_t new_flags = ANV_BO_EXTERNAL; new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE; new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC; new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS; new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED; /* It's theoretically possible for a BO to get imported such that it's * both pinned and not pinned. The only way this can happen is if it * gets imported as both a semaphore and a memory object and that would * be an application error. Just fail out in that case. */ if ((bo->bo.flags & EXEC_OBJECT_PINNED) != (bo_flags & EXEC_OBJECT_PINNED)) { pthread_mutex_unlock(&cache->mutex); return vk_errorf(device->instance, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE, "The same BO was imported two different ways"); } /* It's also theoretically possible that someone could export a BO from * one heap and import it into another or to import the same BO into two * different heaps. If this happens, we could potentially end up both * allowing and disallowing 48-bit addresses. There's not much we can * do about it if we're pinning so we just throw an error and hope no * app is actually that stupid. */ if ((new_flags & EXEC_OBJECT_PINNED) && (bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) != (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) { pthread_mutex_unlock(&cache->mutex); return vk_errorf(device->instance, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE, "The same BO was imported on two different heaps"); } bo->bo.flags = new_flags; __sync_fetch_and_add(&bo->refcount, 1); } else { off_t size = lseek(fd, 0, SEEK_END); if (size == (off_t)-1) { anv_gem_close(device, gem_handle); pthread_mutex_unlock(&cache->mutex); return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); } bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!bo) { anv_gem_close(device, gem_handle); pthread_mutex_unlock(&cache->mutex); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } bo->refcount = 1; anv_bo_init(&bo->bo, gem_handle, size); bo->bo.flags = bo_flags; if (!anv_vma_alloc(device, &bo->bo)) { anv_gem_close(device, bo->bo.gem_handle); pthread_mutex_unlock(&cache->mutex); vk_free(&device->alloc, bo); return vk_errorf(device->instance, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY, "failed to allocate virtual address for BO"); } _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo); } pthread_mutex_unlock(&cache->mutex); *bo_out = &bo->bo; return VK_SUCCESS; } VkResult anv_bo_cache_export(struct anv_device *device, struct anv_bo_cache *cache, struct anv_bo *bo_in, int *fd_out) { assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in); struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in; /* This BO must have been flagged external in order for us to be able * to export it. This is done based on external options passed into * anv_AllocateMemory. */ assert(bo->bo.flags & ANV_BO_EXTERNAL); int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle); if (fd < 0) return vk_error(VK_ERROR_TOO_MANY_OBJECTS); *fd_out = fd; return VK_SUCCESS; } static bool atomic_dec_not_one(uint32_t *counter) { uint32_t old, val; val = *counter; while (1) { if (val == 1) return false; old = __sync_val_compare_and_swap(counter, val, val - 1); if (old == val) return true; val = old; } } void anv_bo_cache_release(struct anv_device *device, struct anv_bo_cache *cache, struct anv_bo *bo_in) { assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in); struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in; /* Try to decrement the counter but don't go below one. If this succeeds * then the refcount has been decremented and we are not the last * reference. */ if (atomic_dec_not_one(&bo->refcount)) return; pthread_mutex_lock(&cache->mutex); /* We are probably the last reference since our attempt to decrement above * failed. However, we can't actually know until we are inside the mutex. * Otherwise, someone could import the BO between the decrement and our * taking the mutex. */ if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) { /* Turns out we're not the last reference. Unlock and bail. */ pthread_mutex_unlock(&cache->mutex); return; } struct hash_entry *entry = _mesa_hash_table_search(cache->bo_map, (const void *)(uintptr_t)bo->bo.gem_handle); assert(entry); _mesa_hash_table_remove(cache->bo_map, entry); if (bo->bo.map) anv_gem_munmap(bo->bo.map, bo->bo.size); anv_vma_free(device, &bo->bo); anv_gem_close(device, bo->bo.gem_handle); /* Don't unlock until we've actually closed the BO. The whole point of * the BO cache is to ensure that we correctly handle races with creating * and releasing GEM handles and we don't want to let someone import the BO * again between mutex unlock and closing the GEM handle. */ pthread_mutex_unlock(&cache->mutex); vk_free(&device->alloc, bo); }