/* * Copyright (C) 2017-2018 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #define GPU 600 #include "ir3_context.h" #include "ir3_image.h" /* * Handlers for instructions changed/added in a6xx: * * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the * atomic instructions (used for both SSBO and image) use a new instruction * encoding compared to a4xx/a5xx. */ /* src[] = { buffer_index, offset }. No const_index */ static void emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr, struct ir3_instruction **dst) { struct ir3_block *b = ctx->block; struct ir3_instruction *offset; struct ir3_instruction *ldib; /* can this be non-const buffer_index? how do we handle that? */ int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[0])); offset = ir3_get_src(ctx, &intr->src[2])[0]; ldib = ir3_LDIB(b, create_immed(b, ibo_idx), 0, offset, 0); ldib->regs[0]->wrmask = MASK(intr->num_components); ldib->cat6.iim_val = intr->num_components; ldib->cat6.d = 1; ldib->cat6.type = TYPE_U32; ldib->barrier_class = IR3_BARRIER_BUFFER_R; ldib->barrier_conflict = IR3_BARRIER_BUFFER_W; ir3_split_dest(b, dst, ldib, 0, intr->num_components); } /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */ static void emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; struct ir3_instruction *stib, *val, *offset; /* TODO handle wrmask properly, see _store_shared().. but I think * it is more a PITA than that, since blob ends up loading the * masked components and writing them back out. */ unsigned wrmask = intr->const_index[0]; unsigned ncomp = ffs(~wrmask) - 1; /* can this be non-const buffer_index? how do we handle that? */ int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[1])); /* src0 is offset, src1 is value: */ val = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp); offset = ir3_get_src(ctx, &intr->src[3])[0]; stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, offset, 0, val, 0); stib->cat6.iim_val = ncomp; stib->cat6.d = 1; stib->cat6.type = TYPE_U32; stib->barrier_class = IR3_BARRIER_BUFFER_W; stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; array_insert(b, b->keeps, stib); } /* * SSBO atomic intrinsics * * All of the SSBO atomic memory operations read a value from memory, * compute a new value using one of the operations below, write the new * value to memory, and return the original value read. * * All operations take 3 sources except CompSwap that takes 4. These * sources represent: * * 0: The SSBO buffer index. * 1: The offset into the SSBO buffer of the variable that the atomic * operation will operate on. * 2: The data parameter to the atomic function (i.e. the value to add * in ssbo_atomic_add, etc). * 3: For CompSwap only: the second data parameter. */ static struct ir3_instruction * emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy; type_t type = TYPE_U32; /* can this be non-const buffer_index? how do we handle that? */ int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[0])); ibo = create_immed(b, ibo_idx); data = ir3_get_src(ctx, &intr->src[2])[0]; /* So this gets a bit creative: * * src0 - vecN offset/coords * src1.x - is actually destination register * src1.y - is 'data' except for cmpxchg where src2.y is 'compare' * src1.z - is 'data' for cmpxchg * * The combining src and dest kinda doesn't work out so well with how * scheduling and RA work. So for now we create a dummy src2.x, and * then in a later fixup path, insert an extra MOV out of src1.x. * See ir3_a6xx_fixup_atomic_dests(). * * Note that nir already multiplies the offset by four */ dummy = create_immed(b, 0); if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap_ir3) { src0 = ir3_get_src(ctx, &intr->src[4])[0]; struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0]; src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ dummy, compare, data }, 3); } else { src0 = ir3_get_src(ctx, &intr->src[3])[0]; src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ dummy, data }, 2); } switch (intr->intrinsic) { case nir_intrinsic_ssbo_atomic_add_ir3: atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_imin_ir3: atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0); type = TYPE_S32; break; case nir_intrinsic_ssbo_atomic_umin_ir3: atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_imax_ir3: atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0); type = TYPE_S32; break; case nir_intrinsic_ssbo_atomic_umax_ir3: atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_and_ir3: atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_or_ir3: atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_xor_ir3: atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_exchange_ir3: atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_ssbo_atomic_comp_swap_ir3: atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0); break; default: unreachable("boo"); } atomic->cat6.iim_val = 1; atomic->cat6.d = 1; atomic->cat6.type = type; atomic->barrier_class = IR3_BARRIER_BUFFER_W; atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; /* even if nothing consume the result, we can't DCE the instruction: */ array_insert(b, b->keeps, atomic); return atomic; } /* src[] = { deref, coord, sample_index, value }. const_index[] = {} */ static void emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; const nir_variable *var = nir_intrinsic_get_var(intr, 0); struct ir3_instruction *stib; struct ir3_instruction * const *value = ir3_get_src(ctx, &intr->src[3]); struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]); unsigned ncoords = ir3_get_image_coords(var, NULL); unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0])); unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot); unsigned ncomp = ir3_get_num_components_for_glformat(var->data.image.format); /* src0 is offset, src1 is value: */ stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, ir3_create_collect(ctx, coords, ncoords), 0, ir3_create_collect(ctx, value, ncomp), 0); stib->cat6.iim_val = ncomp; stib->cat6.d = ncoords; stib->cat6.type = ir3_get_image_type(var); stib->cat6.typed = true; stib->barrier_class = IR3_BARRIER_IMAGE_W; stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W; array_insert(b, b->keeps, stib); } /* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */ static struct ir3_instruction * emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr) { struct ir3_block *b = ctx->block; const nir_variable *var = nir_intrinsic_get_var(intr, 0); struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy; struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]); struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0]; unsigned ncoords = ir3_get_image_coords(var, NULL); unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0])); unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot); ibo = create_immed(b, ibo_idx); /* So this gets a bit creative: * * src0 - vecN offset/coords * src1.x - is actually destination register * src1.y - is 'value' except for cmpxchg where src2.y is 'compare' * src1.z - is 'value' for cmpxchg * * The combining src and dest kinda doesn't work out so well with how * scheduling and RA work. So for now we create a dummy src2.x, and * then in a later fixup path, insert an extra MOV out of src1.x. * See ir3_a6xx_fixup_atomic_dests(). */ dummy = create_immed(b, 0); src0 = ir3_create_collect(ctx, coords, ncoords); if (intr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap) { struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0]; src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ dummy, compare, value }, 3); } else { src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ dummy, value }, 2); } switch (intr->intrinsic) { case nir_intrinsic_image_deref_atomic_add: atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_min: atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_max: atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_and: atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_or: atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_xor: atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_exchange: atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0); break; case nir_intrinsic_image_deref_atomic_comp_swap: atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0); break; default: unreachable("boo"); } atomic->cat6.iim_val = 1; atomic->cat6.d = ncoords; atomic->cat6.type = ir3_get_image_type(var); atomic->cat6.typed = true; atomic->barrier_class = IR3_BARRIER_IMAGE_W; atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W; /* even if nothing consume the result, we can't DCE the instruction: */ array_insert(b, b->keeps, atomic); return atomic; } const struct ir3_context_funcs ir3_a6xx_funcs = { .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo, .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo, .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo, .emit_intrinsic_store_image = emit_intrinsic_store_image, .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image, }; /* * Special pass to run after instruction scheduling to insert an * extra mov from src1.x to dst. This way the other compiler passes * can ignore this quirk of the new instruction encoding. * * This might cause extra complication in the future when we support * spilling, as I think we'd want to re-run the scheduling pass. One * possible alternative might be to do this in the RA pass after * ra_allocate() but before destroying the SSA links. (Ie. we do * want to know if anything consumes the result of the atomic instr, * if there is no consumer then inserting the extra mov is pointless. */ static struct ir3_instruction * get_atomic_dest_mov(struct ir3_instruction *atomic) { /* if we've already created the mov-out, then re-use it: */ if (atomic->data) return atomic->data; /* extract back out the 'dummy' which serves as stand-in for dest: */ struct ir3_instruction *src = ssa(atomic->regs[3]); debug_assert(src->opc == OPC_META_FI); struct ir3_instruction *dummy = ssa(src->regs[1]); struct ir3_instruction *mov = ir3_MOV(atomic->block, dummy, TYPE_U32); mov->flags |= IR3_INSTR_SY; if (atomic->regs[0]->flags & IR3_REG_ARRAY) { mov->regs[0]->flags |= IR3_REG_ARRAY; mov->regs[0]->array = atomic->regs[0]->array; } /* it will have already been appended to the end of the block, which * isn't where we want it, so fix-up the location: */ list_delinit(&mov->node); list_add(&mov->node, &atomic->node); /* And because this is after instruction scheduling, we don't really * have a good way to know if extra delay slots are needed. For * example, if the result is consumed by an stib (storeImage()) there * would be no extra delay slots in place already, but 5 are needed. * Just plan for the worst and hope nobody looks at the resulting * code that is generated :-( */ struct ir3_instruction *nop = ir3_NOP(atomic->block); nop->repeat = 5; list_delinit(&nop->node); list_add(&nop->node, &mov->node); return atomic->data = mov; } void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so) { if (so->image_mapping.num_ibo == 0) return; list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { instr->data = NULL; } } list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { list_for_each_entry_safe (struct ir3_instruction, instr, &block->instr_list, node) { struct ir3_register *reg; foreach_src(reg, instr) { struct ir3_instruction *src = ssa(reg); if (!src) continue; if (is_atomic(src->opc) && (src->flags & IR3_INSTR_G)) reg->instr = get_atomic_dest_mov(src); } } /* we also need to fixup shader outputs: */ for (unsigned i = 0; i < ir->noutputs; i++) { if (!ir->outputs[i]) continue; if (is_atomic(ir->outputs[i]->opc) && (ir->outputs[i]->flags & IR3_INSTR_G)) ir->outputs[i] = get_atomic_dest_mov(ir->outputs[i]); } } }