/* * Copyright © 2018 Intel Corporation * Copyright © 2018 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "v3d_compiler.h" #include "compiler/nir/nir_builder.h" #include "compiler/nir/nir_format_convert.h" /** @file v3d_nir_lower_image_load_store.c * * Performs any necessary lowering of GL_ARB_shader_image_load_store * operations. * * On V3D 4.x, we just need to do format conversion for stores such that the * GPU can effectively memcpy the arguments (in increments of 32-bit words) * into the texel. Loads are the same as texturing, where we may need to * unpack from 16-bit ints or floats. * * On V3D 3.x, to implement image load store we would need to do manual tiling * calculations and load/store using the TMU general memory access path. */ bool v3d_gl_format_is_return_32(GLenum format) { switch (format) { case GL_R8: case GL_R8_SNORM: case GL_R8UI: case GL_R8I: case GL_RG8: case GL_RG8_SNORM: case GL_RG8UI: case GL_RG8I: case GL_RGBA8: case GL_RGBA8_SNORM: case GL_RGBA8UI: case GL_RGBA8I: case GL_R11F_G11F_B10F: case GL_RGB10_A2: case GL_RGB10_A2UI: case GL_R16F: case GL_R16UI: case GL_R16I: case GL_RG16F: case GL_RG16UI: case GL_RG16I: case GL_RGBA16F: case GL_RGBA16UI: case GL_RGBA16I: return false; case GL_R16: case GL_R16_SNORM: case GL_RG16: case GL_RG16_SNORM: case GL_RGBA16: case GL_RGBA16_SNORM: case GL_R32F: case GL_R32UI: case GL_R32I: case GL_RG32F: case GL_RG32UI: case GL_RG32I: case GL_RGBA32F: case GL_RGBA32UI: case GL_RGBA32I: return true; default: unreachable("Invalid image format"); } } /* Packs a 32-bit vector of colors in the range [0, (1 << bits[i]) - 1] to a * 32-bit SSA value, with as many channels as necessary to store all the bits */ static nir_ssa_def * pack_bits(nir_builder *b, nir_ssa_def *color, const unsigned *bits, int num_components, bool mask) { nir_ssa_def *results[4]; int offset = 0; for (int i = 0; i < num_components; i++) { nir_ssa_def *chan = nir_channel(b, color, i); /* Channels being stored shouldn't cross a 32-bit boundary. */ assert((offset & ~31) == ((offset + bits[i] - 1) & ~31)); if (mask) { chan = nir_iand(b, chan, nir_imm_int(b, (1 << bits[i]) - 1)); } if (offset % 32 == 0) { results[offset / 32] = chan; } else { results[offset / 32] = nir_ior(b, results[offset / 32], nir_ishl(b, chan, nir_imm_int(b, offset % 32))); } offset += bits[i]; } return nir_vec(b, results, DIV_ROUND_UP(offset, 32)); } static nir_ssa_def * pack_unorm(nir_builder *b, nir_ssa_def *color, const unsigned *bits, int num_components) { color = nir_channels(b, color, (1 << num_components) - 1); color = nir_format_float_to_unorm(b, color, bits); return pack_bits(b, color, bits, color->num_components, false); } static nir_ssa_def * pack_snorm(nir_builder *b, nir_ssa_def *color, const unsigned *bits, int num_components) { color = nir_channels(b, color, (1 << num_components) - 1); color = nir_format_float_to_snorm(b, color, bits); return pack_bits(b, color, bits, color->num_components, true); } static nir_ssa_def * pack_uint(nir_builder *b, nir_ssa_def *color, const unsigned *bits, int num_components) { color = nir_channels(b, color, (1 << num_components) - 1); color = nir_format_clamp_uint(b, color, bits); return pack_bits(b, color, bits, num_components, false); } static nir_ssa_def * pack_sint(nir_builder *b, nir_ssa_def *color, const unsigned *bits, int num_components) { color = nir_channels(b, color, (1 << num_components) - 1); color = nir_format_clamp_sint(b, color, bits); return pack_bits(b, color, bits, num_components, true); } static nir_ssa_def * pack_half(nir_builder *b, nir_ssa_def *color, const unsigned *bits, int num_components) { color = nir_channels(b, color, (1 << num_components) - 1); color = nir_format_float_to_half(b, color); return pack_bits(b, color, bits, color->num_components, false); } static void v3d_nir_lower_image_store(nir_builder *b, nir_intrinsic_instr *instr) { nir_variable *var = nir_intrinsic_get_var(instr, 0); GLenum format = var->data.image.format; static const unsigned bits_8[4] = {8, 8, 8, 8}; static const unsigned bits_16[4] = {16, 16, 16, 16}; static const unsigned bits_1010102[4] = {10, 10, 10, 2}; b->cursor = nir_before_instr(&instr->instr); nir_ssa_def *unformatted = nir_ssa_for_src(b, instr->src[3], 4); nir_ssa_def *formatted = NULL; switch (format) { case GL_RGBA32F: case GL_RGBA32UI: case GL_RGBA32I: /* For 4-component 32-bit components, there's no packing to be * done. */ return; case GL_R32F: case GL_R32UI: case GL_R32I: /* For other 32-bit components, just reduce the size of * the input vector. */ formatted = nir_channels(b, unformatted, 1); break; case GL_RG32F: case GL_RG32UI: case GL_RG32I: formatted = nir_channels(b, unformatted, 2); break; case GL_R8: formatted = pack_unorm(b, unformatted, bits_8, 1); break; case GL_RG8: formatted = pack_unorm(b, unformatted, bits_8, 2); break; case GL_RGBA8: formatted = pack_unorm(b, unformatted, bits_8, 4); break; case GL_R8_SNORM: formatted = pack_snorm(b, unformatted, bits_8, 1); break; case GL_RG8_SNORM: formatted = pack_snorm(b, unformatted, bits_8, 2); break; case GL_RGBA8_SNORM: formatted = pack_snorm(b, unformatted, bits_8, 4); break; case GL_R16: formatted = pack_unorm(b, unformatted, bits_16, 1); break; case GL_RG16: formatted = pack_unorm(b, unformatted, bits_16, 2); break; case GL_RGBA16: formatted = pack_unorm(b, unformatted, bits_16, 4); break; case GL_R16_SNORM: formatted = pack_snorm(b, unformatted, bits_16, 1); break; case GL_RG16_SNORM: formatted = pack_snorm(b, unformatted, bits_16, 2); break; case GL_RGBA16_SNORM: formatted = pack_snorm(b, unformatted, bits_16, 4); break; case GL_R16F: formatted = pack_half(b, unformatted, bits_16, 1); break; case GL_RG16F: formatted = pack_half(b, unformatted, bits_16, 2); break; case GL_RGBA16F: formatted = pack_half(b, unformatted, bits_16, 4); break; case GL_R8UI: formatted = pack_uint(b, unformatted, bits_8, 1); break; case GL_R8I: formatted = pack_sint(b, unformatted, bits_8, 1); break; case GL_RG8UI: formatted = pack_uint(b, unformatted, bits_8, 2); break; case GL_RG8I: formatted = pack_sint(b, unformatted, bits_8, 2); break; case GL_RGBA8UI: formatted = pack_uint(b, unformatted, bits_8, 4); break; case GL_RGBA8I: formatted = pack_sint(b, unformatted, bits_8, 4); break; case GL_R16UI: formatted = pack_uint(b, unformatted, bits_16, 1); break; case GL_R16I: formatted = pack_sint(b, unformatted, bits_16, 1); break; case GL_RG16UI: formatted = pack_uint(b, unformatted, bits_16, 2); break; case GL_RG16I: formatted = pack_sint(b, unformatted, bits_16, 2); break; case GL_RGBA16UI: formatted = pack_uint(b, unformatted, bits_16, 4); break; case GL_RGBA16I: formatted = pack_sint(b, unformatted, bits_16, 4); break; case GL_R11F_G11F_B10F: formatted = nir_format_pack_11f11f10f(b, unformatted); break; case GL_RGB9_E5: formatted = nir_format_pack_r9g9b9e5(b, unformatted); break; case GL_RGB10_A2: formatted = pack_unorm(b, unformatted, bits_1010102, 4); break; case GL_RGB10_A2UI: formatted = pack_uint(b, unformatted, bits_1010102, 4); break; default: unreachable("bad format"); } nir_instr_rewrite_src(&instr->instr, &instr->src[3], nir_src_for_ssa(formatted)); instr->num_components = formatted->num_components; } static void v3d_nir_lower_image_load(nir_builder *b, nir_intrinsic_instr *instr) { static const unsigned bits16[] = {16, 16, 16, 16}; nir_variable *var = nir_intrinsic_get_var(instr, 0); const struct glsl_type *sampler_type = glsl_without_array(var->type); enum glsl_base_type base_type = glsl_get_sampler_result_type(sampler_type); if (v3d_gl_format_is_return_32(var->data.image.format)) return; b->cursor = nir_after_instr(&instr->instr); assert(instr->dest.is_ssa); nir_ssa_def *result = &instr->dest.ssa; if (base_type == GLSL_TYPE_FLOAT) { nir_ssa_def *rg = nir_channel(b, result, 0); nir_ssa_def *ba = nir_channel(b, result, 1); result = nir_vec4(b, nir_unpack_half_2x16_split_x(b, rg), nir_unpack_half_2x16_split_y(b, rg), nir_unpack_half_2x16_split_x(b, ba), nir_unpack_half_2x16_split_y(b, ba)); } else if (base_type == GLSL_TYPE_INT) { result = nir_format_unpack_sint(b, result, bits16, 4); } else { assert(base_type == GLSL_TYPE_UINT); result = nir_format_unpack_uint(b, result, bits16, 4); } nir_ssa_def_rewrite_uses_after(&instr->dest.ssa, nir_src_for_ssa(result), result->parent_instr); } void v3d_nir_lower_image_load_store(nir_shader *s) { nir_foreach_function(function, s) { if (!function->impl) continue; nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); switch (intr->intrinsic) { case nir_intrinsic_image_deref_load: v3d_nir_lower_image_load(&b, intr); break; case nir_intrinsic_image_deref_store: v3d_nir_lower_image_store(&b, intr); break; default: break; } } } nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance); } }