// SPDX-FileCopyrightText: 2010 Mathieu Desnoyers // SPDX-FileCopyrightText: 2010 Paolo Bonzini // // SPDX-License-Identifier: GPL-2.0-or-later /* * Userspace RCU library - example RCU-based lock-free stack */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "thread-id.h" /* hardcoded number of CPUs */ #define NR_CPUS 16384 #ifndef DYNAMIC_LINK_TEST #define _LGPL_SOURCE #endif #include /* * External synchronization used. */ enum test_sync { TEST_SYNC_NONE = 0, TEST_SYNC_MUTEX, }; static enum test_sync test_sync; static int test_force_sync; static volatile int test_stop_enqueue, test_stop_dequeue; static unsigned long rduration; static unsigned long duration; /* read-side C.S. duration, in loops */ static unsigned long wdelay; static inline void loop_sleep(unsigned long loops) { while (loops-- != 0) caa_cpu_relax(); } static int verbose_mode; static int test_pop, test_pop_all, test_wait_empty; static unsigned int test_enqueue_stopped; #define printf_verbose(fmt, args...) \ do { \ if (verbose_mode) \ printf(fmt, ## args); \ } while (0) static unsigned int cpu_affinities[NR_CPUS]; static unsigned int next_aff = 0; static int use_affinity = 0; pthread_mutex_t affinity_mutex = PTHREAD_MUTEX_INITIALIZER; static void set_affinity(void) { #ifdef HAVE_SCHED_SETAFFINITY cpu_set_t mask; int cpu, ret; #endif /* HAVE_SCHED_SETAFFINITY */ if (!use_affinity) return; #ifdef HAVE_SCHED_SETAFFINITY ret = pthread_mutex_lock(&affinity_mutex); if (ret) { perror("Error in pthread mutex lock"); exit(-1); } cpu = cpu_affinities[next_aff++]; ret = pthread_mutex_unlock(&affinity_mutex); if (ret) { perror("Error in pthread mutex unlock"); exit(-1); } CPU_ZERO(&mask); CPU_SET(cpu, &mask); sched_setaffinity(0, sizeof(mask), &mask); #endif /* HAVE_SCHED_SETAFFINITY */ } /* * returns 0 if test should end. */ static int test_duration_dequeue(void) { return !uatomic_load(&test_stop_dequeue, CMM_RELAXED); } static int test_duration_enqueue(void) { return !uatomic_load(&test_stop_enqueue, CMM_RELAXED); } static DEFINE_URCU_TLS(unsigned long long, nr_dequeues); static DEFINE_URCU_TLS(unsigned long long, nr_enqueues); static DEFINE_URCU_TLS(unsigned long long, nr_successful_dequeues); static DEFINE_URCU_TLS(unsigned long long, nr_successful_enqueues); static DEFINE_URCU_TLS(unsigned long long, nr_empty_dest_enqueues); static DEFINE_URCU_TLS(unsigned long long, nr_pop_all); static DEFINE_URCU_TLS(unsigned long long, nr_pop_last); static unsigned int nr_enqueuers; static unsigned int nr_dequeuers; static struct cds_wfs_stack s; static void *thr_enqueuer(void *_count) { unsigned long long *count = _count; bool was_nonempty; printf_verbose("thread_begin %s, tid %lu\n", "enqueuer", urcu_get_thread_id()); set_affinity(); wait_until_go(); for (;;) { struct cds_wfs_node *node = malloc(sizeof(*node)); if (!node) goto fail; cds_wfs_node_init(node); was_nonempty = cds_wfs_push(&s, node); URCU_TLS(nr_successful_enqueues)++; if (!was_nonempty) URCU_TLS(nr_empty_dest_enqueues)++; if (caa_unlikely(wdelay)) loop_sleep(wdelay); fail: URCU_TLS(nr_enqueues)++; if (caa_unlikely(!test_duration_enqueue())) break; } uatomic_inc(&test_enqueue_stopped); count[0] = URCU_TLS(nr_enqueues); count[1] = URCU_TLS(nr_successful_enqueues); count[2] = URCU_TLS(nr_empty_dest_enqueues); printf_verbose("enqueuer thread_end, tid %lu, " "enqueues %llu successful_enqueues %llu, " "empty_dest_enqueues %llu\n", urcu_get_thread_id(), URCU_TLS(nr_enqueues), URCU_TLS(nr_successful_enqueues), URCU_TLS(nr_empty_dest_enqueues)); return ((void*)1); } static void do_test_pop(enum test_sync sync) { struct cds_wfs_node *node; int state; if (sync == TEST_SYNC_MUTEX) cds_wfs_pop_lock(&s); node = __cds_wfs_pop_with_state_blocking(&s, &state); if (sync == TEST_SYNC_MUTEX) cds_wfs_pop_unlock(&s); if (node) { if (state & CDS_WFS_STATE_LAST) URCU_TLS(nr_pop_last)++; free(node); URCU_TLS(nr_successful_dequeues)++; } URCU_TLS(nr_dequeues)++; } static void do_test_pop_all(enum test_sync sync) { struct cds_wfs_head *head; struct cds_wfs_node *node, *n; if (sync == TEST_SYNC_MUTEX) cds_wfs_pop_lock(&s); head = __cds_wfs_pop_all(&s); if (sync == TEST_SYNC_MUTEX) cds_wfs_pop_unlock(&s); /* Check if empty */ if (cds_wfs_first(head) == NULL) return; URCU_TLS(nr_pop_all)++; URCU_TLS(nr_pop_last)++; cds_wfs_for_each_blocking_safe(head, node, n) { free(node); URCU_TLS(nr_successful_dequeues)++; URCU_TLS(nr_dequeues)++; } } static void *thr_dequeuer(void *_count) { unsigned long long *count = _count; unsigned int counter = 0; printf_verbose("thread_begin %s, tid %lu\n", "dequeuer", urcu_get_thread_id()); set_affinity(); wait_until_go(); urcu_posix_assert(test_pop || test_pop_all); for (;;) { if (test_pop && test_pop_all) { if (counter & 1) do_test_pop(test_sync); else do_test_pop_all(test_sync); counter++; } else { if (test_pop) do_test_pop(test_sync); else do_test_pop_all(test_sync); } if (caa_unlikely(!test_duration_dequeue())) break; if (caa_unlikely(rduration)) loop_sleep(rduration); } printf_verbose("dequeuer thread_end, tid %lu, " "dequeues %llu, successful_dequeues %llu " "pop_all %llu pop_last %llu\n", urcu_get_thread_id(), URCU_TLS(nr_dequeues), URCU_TLS(nr_successful_dequeues), URCU_TLS(nr_pop_all), URCU_TLS(nr_pop_last)); count[0] = URCU_TLS(nr_dequeues); count[1] = URCU_TLS(nr_successful_dequeues); count[2] = URCU_TLS(nr_pop_all); count[3] = URCU_TLS(nr_pop_last); return ((void*)2); } static void test_end(unsigned long long *nr_dequeues_l, unsigned long long *nr_pop_last_l) { struct cds_wfs_node *node; int state; do { node = cds_wfs_pop_with_state_blocking(&s, &state); if (node) { if (state & CDS_WFS_STATE_LAST) (*nr_pop_last_l)++; free(node); (*nr_dequeues_l)++; } } while (node); } static void show_usage(char **argv) { printf("Usage : %s nr_dequeuers nr_enqueuers duration (s) \n", argv[0]); printf("OPTIONS:\n"); printf(" [-d delay] (enqueuer period (in loops))\n"); printf(" [-c duration] (dequeuer period (in loops))\n"); printf(" [-v] (verbose output)\n"); printf(" [-a cpu#] [-a cpu#]... (affinity)\n"); printf(" [-p] (test pop)\n"); printf(" [-P] (test pop_all, enabled by default)\n"); printf(" [-M] (use mutex external synchronization)\n"); printf(" Note: default: no external synchronization used.\n"); printf(" [-f] (force user-provided synchronization)\n"); printf(" [-w] Wait for dequeuer to empty stack\n"); printf("\n"); } int main(int argc, char **argv) { int err; pthread_t *tid_enqueuer, *tid_dequeuer; void *tret; unsigned long long *count_enqueuer, *count_dequeuer; unsigned long long tot_enqueues = 0, tot_dequeues = 0; unsigned long long tot_successful_enqueues = 0, tot_successful_dequeues = 0, tot_empty_dest_enqueues = 0, tot_pop_all = 0, tot_pop_last = 0; unsigned long long end_dequeues = 0; int i, a, retval = 0; unsigned int i_thr; if (argc < 4) { show_usage(argv); return -1; } err = sscanf(argv[1], "%u", &nr_dequeuers); if (err != 1) { show_usage(argv); return -1; } err = sscanf(argv[2], "%u", &nr_enqueuers); if (err != 1) { show_usage(argv); return -1; } err = sscanf(argv[3], "%lu", &duration); if (err != 1) { show_usage(argv); return -1; } for (i = 4; i < argc; i++) { if (argv[i][0] != '-') continue; switch (argv[i][1]) { case 'a': if (argc < i + 2) { show_usage(argv); return -1; } a = atoi(argv[++i]); cpu_affinities[next_aff++] = a; use_affinity = 1; printf_verbose("Adding CPU %d affinity\n", a); break; case 'c': if (argc < i + 2) { show_usage(argv); return -1; } rduration = atol(argv[++i]); break; case 'd': if (argc < i + 2) { show_usage(argv); return -1; } wdelay = atol(argv[++i]); break; case 'v': verbose_mode = 1; break; case 'p': test_pop = 1; break; case 'P': test_pop_all = 1; break; case 'M': test_sync = TEST_SYNC_MUTEX; break; case 'w': test_wait_empty = 1; break; case 'f': test_force_sync = 1; break; } } /* activate pop_all test by default */ if (!test_pop && !test_pop_all) test_pop_all = 1; if (test_sync == TEST_SYNC_NONE && nr_dequeuers > 1 && test_pop) { if (test_force_sync) { fprintf(stderr, "[WARNING] Using pop concurrently " "with other pop or pop_all without external " "synchronization. Expect run-time failure.\n"); } else { printf("Enforcing mutex synchronization\n"); test_sync = TEST_SYNC_MUTEX; } } printf_verbose("running test for %lu seconds, %u enqueuers, " "%u dequeuers.\n", duration, nr_enqueuers, nr_dequeuers); if (test_pop) printf_verbose("pop test activated.\n"); if (test_pop_all) printf_verbose("pop_all test activated.\n"); if (test_sync == TEST_SYNC_MUTEX) printf_verbose("External sync: mutex.\n"); else printf_verbose("External sync: none.\n"); if (test_wait_empty) printf_verbose("Wait for dequeuers to empty stack.\n"); printf_verbose("Writer delay : %lu loops.\n", rduration); printf_verbose("Reader duration : %lu loops.\n", wdelay); printf_verbose("thread %-6s, tid %lu\n", "main", urcu_get_thread_id()); tid_enqueuer = calloc(nr_enqueuers, sizeof(*tid_enqueuer)); tid_dequeuer = calloc(nr_dequeuers, sizeof(*tid_dequeuer)); count_enqueuer = calloc(nr_enqueuers, 3 * sizeof(*count_enqueuer)); count_dequeuer = calloc(nr_dequeuers, 4 * sizeof(*count_dequeuer)); cds_wfs_init(&s); next_aff = 0; for (i_thr = 0; i_thr < nr_enqueuers; i_thr++) { err = pthread_create(&tid_enqueuer[i], NULL, thr_enqueuer, &count_enqueuer[3 * i_thr]); if (err != 0) exit(1); } for (i_thr = 0; i_thr < nr_dequeuers; i_thr++) { err = pthread_create(&tid_dequeuer[i_thr], NULL, thr_dequeuer, &count_dequeuer[4 * i_thr]); if (err != 0) exit(1); } cmm_smp_mb(); begin_test(); for (i_thr = 0; i_thr < duration; i_thr++) { sleep(1); if (verbose_mode) { fwrite(".", sizeof(char), 1, stdout); fflush(stdout); } } uatomic_store(&test_stop_enqueue, 1, CMM_RELEASE); if (test_wait_empty) { while (nr_enqueuers != uatomic_read(&test_enqueue_stopped)) { sleep(1); } while (!cds_wfs_empty(&s)) { sleep(1); } } uatomic_store(&test_stop_dequeue, 1, CMM_RELAXED); for (i_thr = 0; i_thr < nr_enqueuers; i_thr++) { err = pthread_join(tid_enqueuer[i_thr], &tret); if (err != 0) exit(1); tot_enqueues += count_enqueuer[3 * i_thr]; tot_successful_enqueues += count_enqueuer[3 * i_thr + 1]; tot_empty_dest_enqueues += count_enqueuer[3 * i_thr + 2]; } for (i_thr = 0; i_thr < nr_dequeuers; i_thr++) { err = pthread_join(tid_dequeuer[i_thr], &tret); if (err != 0) exit(1); tot_dequeues += count_dequeuer[4 * i_thr]; tot_successful_dequeues += count_dequeuer[4 * i_thr + 1]; tot_pop_all += count_dequeuer[4 * i_thr + 2]; tot_pop_last += count_dequeuer[4 * i_thr + 3]; } test_end(&end_dequeues, &tot_pop_last); printf_verbose("total number of enqueues : %llu, dequeues %llu\n", tot_enqueues, tot_dequeues); printf_verbose("total number of successful enqueues : %llu, " "enqueues to empty dest : %llu, " "successful dequeues %llu, " "pop_all : %llu, pop_last : %llu\n", tot_successful_enqueues, tot_empty_dest_enqueues, tot_successful_dequeues, tot_pop_all, tot_pop_last); printf("SUMMARY %-25s testdur %4lu nr_enqueuers %3u wdelay %6lu " "nr_dequeuers %3u " "rdur %6lu nr_enqueues %12llu nr_dequeues %12llu " "successful enqueues %12llu enqueues to empty dest %12llu " "successful dequeues %12llu pop_all %12llu " "pop_last %llu end_dequeues %llu nr_ops %12llu\n", argv[0], duration, nr_enqueuers, wdelay, nr_dequeuers, rduration, tot_enqueues, tot_dequeues, tot_successful_enqueues, tot_empty_dest_enqueues, tot_successful_dequeues, tot_pop_all, tot_pop_last, end_dequeues, tot_enqueues + tot_dequeues); if (tot_successful_enqueues != tot_successful_dequeues + end_dequeues) { printf("WARNING! Discrepancy between nr succ. enqueues %llu vs " "succ. dequeues + end dequeues %llu.\n", tot_successful_enqueues, tot_successful_dequeues + end_dequeues); retval = 1; } /* * The enqueuer should see exactly as many empty queues than the * number of non-empty stacks dequeued. */ if (tot_empty_dest_enqueues != tot_pop_last) { printf("WARNING! Discrepancy between empty enqueue (%llu) and " "number of pop last (%llu)\n", tot_empty_dest_enqueues, tot_pop_last); retval = 1; } cds_wfs_destroy(&s); free(count_enqueuer); free(count_dequeuer); free(tid_enqueuer); free(tid_dequeuer); return retval; }