MoudE3

Maude Manual
(Version 3.1)

Manuel Clavel
Francisco Duran
Steven Eker
Santiago Escobar
Patrick Lincoln
Narciso Marti-Oliet
José Meseguer
Rubén Rubio
Carolyn Talcott

October 2020

ii

Maude 3 is copyright 1997-2020 SRI International, Menlo
Park, CA 94025, USA.

The Maude system is free software; you can redistribute
it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option)
any later version.

The Maude system is distributed in the hope that it will
be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a par-
ticular purpose. See the GNU General Public License for
more details.

Contents

1

Simplicity, expressiveness, and performance] L.

(1.1.1 ~ Simplicity]
[1.1.2 Expressiveness|. . .

T2

The logical foundations of Maude|

T3

Programming, specification,

and verification|

T4

A high-performance logical framework|

2 Using Maude|

B1

Getting Maude|

2.2

Running Maude|

2.3

Getting support and more information| L.

[

Reporting bugs in Maude|

13 Syntax and Basic Parsing|

8.1

Identifiersl e

B

B.6

3.8

[3.9.1 Default precedence values|

[3.9.2 Default gathering patterns| L.

[3.9.3 The extended signature of a module|.

[3.9.4 Parsing examples| L

4__Functional Modules|

i)

Unconditional equations|

2

Unconditional memberships|

iii

21

23
23
23
27
28

29
29
30
31
33
35
36
36
37
38
40
40
42
43

iv CONTENTS
4.3 Conditional equations and memberships| 49
4.4 Operator attributes|. o 53

4.4.1 Equational attributes| o oo 53
4.4.2 [he iter attributel 55
4.4.3 Constructors|. 55
4.4.4 Polymorphic operators| Lo 58
.................................... 59

4.4.6 Dittol 62
4.4.7 Operator evaluation strategies| 63
A8 Memd . . - . o o o 66
4.4.9 Frozen arguments|o Lo 68
4.4.10 D . 69

A5 Statement atfributes 69
EST Tabeld o oot 69
452 Metadatal. 70
4.5.3 Nonexed e 70
4.5.4 Otherwisel e 70
EES Pl - - o« o o oo e e 74
4.6 Admissible functional modulesf.o o000 75
4.7 Matching and equational simplification| 0000 L. 76
4.8 More on matching and simplification modulo| 79
4.9 The reduce, match, trace, and show commands| 84

[System Modules| 89
.1 Unconditional rulesl oo 90
B2 Conditionalrulesl 91
9.3 Admissible system modules| oo o000 92
p.4 The rewrite, frewrite, and search commands|. 95

041 The rewrite commando 96
0.4.2 The frewrite command| L. 98
043 The search command| 99

[6 Module Operations| 105

6.1 Module importation| 105
6.1.1 Protecting] 107
6.1.2 Extending| 108
6.1.3 Including|. 108
6.1.4 Default conventions in module importations| 109
6.1.5 Some module hierarchy examples| 109

6.2 Module summation and renaming| L. 111
6.2.1 The summation module expression| 111
6.2.2 Module renaming|00 112

6.3 Parameterized programming|o 115
6.3.1 Theoriesl e 115
6.3.2 Viewsl. e 120
[6.3.3 Parameterized moduled oL 124
[6.3.4 Module instantiation] 128
6.3.0 Tastd 134
6.3.6 Sorted lists|. 135

CONTENTS v

[7__Predefined Data Modules 143
rd Boolean values 144
[[2 Naturalnumbersl 148
[2.3 Random numbers and countersl L. 152
[7.4 Integer numbers|. L 154
[7.5 Machine integers| 157
[[.6 Rationalnumbers 160
[7.7 Floating-point numbers|. Lo 164

.8 ETINGS| 168
7.9 String and number CONVErsIONS| v it e e 171
[7.10 Quoted 1dentifiers| 173
[7.11 Conversions between strings and lists of quoted identifiers| 174

176

177

177

178

180

182

182

184

187

188

190

193

[7.13.7 Making listsout of sets| oL 199

[7.14 Maps and arrays| 201
l Maps| 202

.14. ATTAYS| © .« v v o e e e e e 203

[7.15 A linear Diophantine equation solver| 205
[16 _Predefined Parameterized Views., 208

I8 Object-Based Programming| 211
8.1 Configurations|. oL L e 211
8.2 Object-message fair rewriting]o 221
8.3 Example: data agents| o oo 223

19 External Objects and 10| 231
9.1 Standard streamsl 232

[9.1.1 The Hello Word! example| 233
[9.1.2 A ROTI13 cypher example] 233
9.1.3 A calculator example| o000 235
9.2 File I/O[. 236
9.2.1 Afile copy example| Lo 239
9.3 Socketsl. 240
9.3.1 An HTTP/1.0 client example] 242
932 Bufferedsocketd 246
9.4 Processesl 249
[9.4.1 A desk calculator process|. Lo 251
[9.4.2 Python and Maude processes|. 253

vi CONTENTS
[10 Strategy Language| 261
[10.1 The strategy language| L oL 262
110.1.1 Basic control combinators| 265

[10.1.2 Rewriting of subterms| L L. 268

[10.1.3 The one operator| L 269

[10.1.4 Strategy calls|] 270

[10.2 Strategy modules|o 271
110.2.1 Module importation|. Lo oo 274

[10.3 Parameterization in strategy modules|. 275
110.4 Strategy search and the dsrewrite command| 279
[10.5 Case study: logic programming| L. 281
110.5.1 Negation as failure] L oo 287

OS2 Culsl . - o o o oo e 288

{11 Model Checking Invariants Through Search| 293
[I1 Tovarfantd o o o 293
[11.2 Model checking of invariants|o L. 294
[11.3 Bounded model checking of invariants| 297
[11.4 Veritying infinite-state systems through abstractions| 299
12 LT ode eckin 303
2.1 LTL formulas and the LTL modulel 303
[12.2 Associating Kripke structures to rewrite theories| 305
[12.3 LTL model checking] 309
[12.4 The LTL satisfiability and tautology checker| 315
[12.5 Other model-checking examples| 317
M3 Unificationl 319
031 TIntroductionl e 319
3.2 Order-sorted unification| 320
113.2.1 A hybrid approach to equational order-sorted unification| 321

[13.3 Theories currently supported| oL, 321
[13.4 The unify command| L L 323
13.4.1 Non-supported unification examples| 325

13.4.2 Associative-commutative (AC') unification examples|. 325

[13.4.3 Unification examples with the iter attribute. 326

13.4.4 Associative-commutative with identity (ACU) unification examples| . . 327

[[3.45 Unification examples with an identity symboll 329

13.4.6 Associative (A) unification examples| 331

13.4.7 Associative with identity (AU) unification examples|. 334

[13.5 Some applications of unification| L. 335
|13.5.1 Narrowing-based unification| 335

113.5.2 Symbolic reachability analysis in rewrite theories| 336

113.5.3 Other automated deduction applications| 338

[13.6 Endogenous vs. exogenous order-sorted unification algorithms| 339
|13.7 Some notes on the implementation of unification| 340
|13.7.1 Combining unification algorithms| 340

|13.7.2 Combining incomplete unification algorithms|. 341

|13.7.3 Diophantine basis element selection| 342

CONTENTS

14 Var [Vag Unification
M4 Tntroductionl o
4.2 Term variantsl oo

114.3 Theories currently supported|
144 'The get variants command|
[[Z5 Variant generation with irreducibility constraints|
114.6 Incremental variant generation|o
|[14.7 Variant generation in incomplete unification examples|
[14.8 Variant-based equational order-sorted unification|
[14.9 The variant unify command|.
[[410 Variant-based unification with irreducibility constraints|.

[14.11 Incremental variant unificationl

olving

|116.2 Formulas using integer linear arithmetic|
|116.3 Formulas using rational linear arithmetic|.
116.4 Formulas using rational and integer linear arithmetic|
116.5 Satisfiability of formulas|00 oo
116.6 A briet introduction to variant satisfiability]o 000

7

Reflection, Metalevel Computation, and Internal Strategies|

[17.1 Reflection and metalevel computation|

[17.2.1 Metarepresenting sorts and kinds|
[17.2.2 Metarepresenting terms|.
[17.3 The META-STRATEGY module: Metarepresenting the strategy language|.
17.4 e META-MODULE module: Metarepresenting modules|
117.5 The META-VIEW module: Metarepresenting views|
[17.6 The META-LEVEL module: Metalevel operations|
[17.6.1 Moving between reflection levels: upModule, upTerm, and others|

[I7.6.2 Simplifying: metaReduce and metaNormalize|
[17.6.3 Rewriting: metaRewrite and metaFrewrite

[17.6.4 Applying rules: metaApply and metaXapply|
17.6.5 atching: metaMatch and metaXmatch|
[17.6.6 Searching: metaSearch and metaSearchPath|
[17.6.7 Rewriting using strategies: metaSrewrite|

768 TUnificationl

vii

345
345
345
347
348
352
353
354
356
357
358
358
359
359

361
361
363
363
364
365
366
369
372

375
376
377
378
379
379
380

viii CONTENTS

17.6.9 Variants: metaGetVariantl 411

117.6.10 Variant Matching and Unification| 414

[17.6.11 Narrowing] e 416

117.6.12 Checking satisfiability modulo theories: metaCheck| 420

[L7.6.13 Parsing and pretty-printing: metaParse and metaPrettyPrint| 420

[[7.6.14 Sort operations] v v i 424

117.6.15 Other metalevel operations: wellFormed| 430

[17.7 Internal strategies|. L 431
|18 User Interfaces and Metalanguage Applications| 435
8.1 Userinterfaces. e 435
18.2 The interaction with the system|. 439
18.3 'Tokens, bubbles, and metaparsing|. L 440
18.4 The LOOP-MODE module (deprecated)|o ... 446
[19 Meta-interpreters| 449
[19.1 Maude meta-interpreters| L Lo 449
119.2 A Russian dolls example| oo oo 450
19.3 An execution environment for Mini-Maudel 452
20 Debugging and Troubleshooting| 461
[20.1 Debugging approaches| 461

(0 B o e e e 461

20.1.2 Term coloring| 469

20.1.3 The debugger| 470

20.1.4 Status report| 473

120.1.5 The profiler] 474

20.1.6 Performance notel 482

120.2 Debugging strategy executions|. 484
[20.3 Traps and known problems|. Lo oo 488
20.3.1 Associativity and idempotency|. L. 488

20.3.2 Segmentation fault (core dumped)|. Lo 489
........................ 490

120.3.4 Operator overloading and associativity] 490

120.3.5 Preregularity and equational attributes| 491

20.3.6 Collapse theories] 492

120.3.7 One-sided identities and associativity| 494

120.3.8 Memberships for associative operators| 495

120.3.9 Memberships for iterated operators| 498

[20.3.10 Ambiguity in print attribute items|o 499

I Full Maudel 501
[21 Full Maude: Extending Core Maude| 503
21.1 Running Full Maude| oo 504
[21.2 Using Core Maude modules in Full Maude| 508
21.3 Additional module operations in Full Maude|. 509
121.3.1 The tuple and power module expressions| 511

21.4 Moving up and down between reflection levels| 513

CONTENTS

122 Object-Oriented Modules|

22.1 Object-oriented systems|o

[22.1.1 Objects and messages| oo

[22.1.4 Object-oriented rules|

22.2 Example: a rent-a-car store] L o

[22.3.3 Parameterized object-oriented modules| L.

22.4 Module operations on object-oriented modules|.

[22.4.1 Module summation and renaming|

22.5 Example: extended rent-a-car storel Lo

22.6 A strategy for sequential rule execution|. o L

22.7 Model checking a round-robin scheduling algorithm|

22.8 From object-oriented modules to system modules|

(III Reference

123 Complete List of Maude Commands|

23.1 Command line flags[. o

23.2 Rewriting commands| Lo

23.3 Matching commands| Lo Lo

23.4 Searching commands|

[23.5 Strategic rewriting commands|

[23.6 Unification, variants, and narrowing commands|

[23.10 Print option commands|. L

23.11 Show option commands|

24 Core Maude Grammar]

24.1 The grammar|
124.2 Synonyms| . .
243 lexical Issues|

ix

513
514
516
519

521
521
521
522
523
524
527
530
531
531
931
934
5934
535
536
540
544
548

553

555
555
556
558
559
560
560
561
562
963
963
564
565
566
566
567
567

CONTENTS

588
589
597
601

603

List of Figures

[2.1 Maude home page at maude.cs.illinois.edul 24
2.2 unning Maude inside Emacs| oo 0oL 27
4.1 Confluence diagram| e 77
p.1 Coherence diagram| L oL 94
5.2 Graphical representation of search graph in example] 101
6.1 Hierarchy of order theories|. o0 o 119
[6.2 Structure of TEX-PATR] 127
[7.1 Importation (protecting) graph of predefined modules| 144
[7.2 Tmportation graph of parameterized list and set modules|. 182
7.3 From lists to weakly sortable listsf. 0oL 194
[7.4 From weakly sortable lists to sortable lists| 196
[[5 _Another version of sortable TStsl . - « « « « v v v v v i e 197
8.1 Importation graph of bank modules| 216
[8.2 Importation graph of ticker modules| 0000 219
8.3 Importation graph of data-agents modules| 228
10.1 Behavior of the amatchrew combinatorf 269
110.2 Family tree defined by the example predicates|. 282
[12.1 Importation graph of model-checking modules|. 313
|12.2 Graphical representation of a Kripke structure] 316
[17.1 Importation graph of metalevel modules| 383
[17.2 Folding variant narrowing tree for theterm < $§ q g X Y >|. 413
119.1 MiniMaude’s statechart) oo Lo 454

[20.1 Number of rewrites and CPU time for difterent versions ot the sorting algorithms| 483

xi

xii LIST OF FIGURES

Chapter 1

Introduction

This introduction tries to give the big picture on the goals, design philosophy, logical founda-
tions, applications, and overall structure of Maude. It is written in an impressionistic, conver-
sational style, and should be read in that spirit. The fact that occasionally some particular
technical concept mentioned in passing (for example, “the Church-Rosser property”) may be
unfamiliar should not be seen as an obstacle. It should be taken in a relaxed, sporting spirit:
those things will become clearer in the body of the manual; here it is just a matter of gaining
a first overall impression.

1.1 Simplicity, expressiveness, and performance

Maude’s language design can be understood as an effort to simultaneously maximize three
dimensions:

e Simplicity: programs should be as simple as possible and have clear meaning.

e FEzxpressiveness: a very wide range of applications should be naturally expressible: from
sequential, deterministic systems to highly concurrent nondeterministic ones; from small
applications to large systems; and from concrete implementations to abstract specifi-
cations, all the way to logical frameworks, in which not just applications, but entire
formalisms, other languages, and other logics can be naturally expressed.

e Performance: concrete implementations should yield system performance competive with
other efficient programming languages.

Although simplicity and performance are natural allies, maximizing expressiveness is per-
haps the key point in Maude’s language design. Languages are after all representational devices,
and their merits should be judged on the degree to which problems and applications can be
represented and reasoned about generally, naturally, and easily. Of course, domain-specific lan-
guages also have an important role to play in certain application areas, and can offer a useful
“economy of representation” for a given area. In this regard, Maude should be viewed as a
high-performance metalanguage, through which many different domain-specific languages can
be developed.

1.1.1 Simplicity

Maude’s basic programming statements are very simple and easy to understand. They are
equations and rules, and have in both cases a simple rewriting semantics in which instances of

2 CHAPTER 1. INTRODUCTION

the lefthand side pattern are replaced by corresponding instances of the righthand side.

A Maude program containing only equations is called a functional module. It is a functional
program defining one or more functions by means of equations, used as simplification rules. For
example, if we build lists of quoted identifiers (which are sequences of characters starting with
the character ‘°’ and belong to a sortE| Qid) with a “cons” operator denoted by an infix period,

op nil : -> List .
op _._ : Qid List -> List .

then we can define a length function and a membership predicate by means of the operators
and equations

op length : List -> Nat .
op _in_ : Qid List -> Bool .

vars I J : Qid .
var L : List .

eq length(nil)

=0 .
eq length(I . L) =

s length(L)

eq I in nil

= false .
eq Il inJ . L =

(I ==17J) or (I in L)

where s_ denotes the successor function on natural numbers, _==_ is the equality predicate
on quoted identifiers, and _or_ is the usual disjunction on Boolean values. Such equations
(specified in Maude with the keyword eq and ended with a period) are used from left to right
as equational simplification rules. For example, if we want to evaluate the expression

length(’a . ’b . ’c . nil)

we can apply the second equation for length to simplify the expression three times, and then
apply the first equation once to get the final value s s s 0:

length(’a . ’b . ’c . nil)
= s length(’b . ’c . nil)
s s length(’c . nil)

= s s s length(nil)

s ssO

This is the standard “replacement of equals by equals” use of equations in elementary
algebra and has a very clear and simple semantics in equational logic. Replacement of equals
by equals is here performed only from left to right and is then called equational simplification
or, alternatively, equational rewriting. Of course, the equations in our program should have
good properties as “simplification rules” in the sense that their final result exists and should
be unique. This is indeed the case for the two functional definitions given above.

In Maude, equations can be conditional; that is, they may only be applied if a certain
condition holds. For example, we can simplify a fraction to its irreducible form using the
conditional equation

vars I J : NzInt .
ceq J / I = quot(J, gcd(J, I)) / quot(I, gcd(J, I))
if ged(J, I) > s 0 .

n Maude, types come in two flavors, called sorts and kinds (see Section [3} and the discussion of user-
definable data in Section below).

1.1. SIMPLICITY, EXPRESSIVENESS, AND PERFORMANCE 3

where ceq is the Maude keyword introducing conditional equations, NzInt is the sort of nonzero
integers, and where we assume that the integer quotient (quot) and greatest common divisor
(gcd) operations have already been defined by their corresponding equations.

A Maude program containing rules and possibly equations is called a system module. Rules
are also computed by rewriting from left to right, that is, as rewrite rules, but they are not
equations; instead, they are understood as local transition rules in a possibly concurrent system.
Consider, for example, a distributed banking system in which we envision the account objects
as floating in a “soup,” that is, in a multiset or bag of objects and messages. Such objects and
messages can “dance together” in the distributed soup and can interact locally with each other
according to specific rewrite rules. We can represent a bank account as a record-like structure
with the name of the object, its class name (Account) and a bal(ance) attribute, say, a natural
number. The following are two different account objects in our notation:

< ’A-001 : Account | bal : 200 >
< ’A-002 : Account | bal : 150 >

Accounts can be updated by receiving different messages and changing their state accord-
ingly. For example, we can have debit and credit messages, such as

credit(’A-002, 50)
debit (’A-001, 25)

We can think of the “soup” as formed just by “juxtaposition” (with empty syntax) of objects
and messages. For example, the above two objects and two messages form the soup

< ’A-001 : Account | bal : 200 >
< ?A-002 : Account | bal : 150 >
credit (’A-002, 50)
debit (’A-001, 25)

in which the order of objects and messages is immaterial. The local interaction rules for
crediting and debiting accounts are then expressed in Maude by the rewrite rules

var I : Qid .
vars N M : Nat .

rl < I : Account | bal : M > credit(I, N)
=> < I : Account | bal : (M + N) > .

crl < I : Account | bal : M > debit(I, N)
=> < I : Account | bal : (M - N) >
if M >= N .

where rules are introduced with the keyword rl and conditional rules (like the above rule for
debit that requires the account to have enough funds) with the crl keyword.

Note that these rules are not equations at all: they are local transition rules of the dis-
tributed banking system. They can be applied concurrently to different fragments of the soup.
For example, applying both rules to the soup above we get the new distributed state:

< ’A-001 : Account | bal : 175 >
< ’A-002 : Account | bal : 200 >

Note that the rewriting performed is multiset rewriting, so that, regardless of where the
account objects and the messages are placed in the soup, they can always come together and
rewrite if a rule applies. In Maude this is specified in the equational part of the program (system
module) by declaring that the (empty syntax) multiset union operator satisfies the associativity
and commutativity equations:

4 CHAPTER 1. INTRODUCTION

X (Y2 =&Y Z
XY=YX

This is not done by giving the above equations explicitly. It is instead done by declaring
the multiset union operator with the assoc and comm equational attributes (see Section m
and Section below), as follows, where Configuration denotes the multisets or soups of
objects and messages.

op __ : Configuration Configuration -> Configuration [assoc comm]

Maude then uses this information to generate a multiset matching algorithm, in which the
multiset union operator is matched modulo associativity and commutativity.

Again, a program involving such rewrite rules is intuitively very simple, and has a very simple
rewriting semantics. Of course, the systems specified by such rules can be highly concurrent
and nondeterministic; that is, unlike for equations, there is no assumption that all rewrite
sequences will lead to the same outcome. For example, depending on the order in which debit
or credit messages are consumed, a bank account can end up in quite different states, because
the rule for debiting can only be applied if the account balance is big enough. Furthermore,
for some systems there may not be any final states: their whole point may be to continuously
engage in interactions with their environment as reactive systems.

1.1.2 Expressiveness

The above examples illustrate a general fact, namely, that Maude can express with equal ease
and naturalness deterministic computations, which lead to a unique final result, and concurrent,
nondeterministic computations. The first kind is typically programmed with equations in
functional modules, and the second with rules (and perhaps with some equations for the “data”
part) in system modules.

In fact, functional modules define a functional sublanguageﬂ of Maude. In a functional
language true to its name, functions have unique values as their results, and it is neither easy
nor natural to deal with highly concurrent and nondeterministic systems while keeping the
language’s functional semantics. It is well known that such systems pose a serious expressiveness
challenge for functional languages. In Maude this challenge is met by system modules, which
extend the purely functional semantics of equations to the concurrent rewriting semantics of
rulesEI Although certainly declarative in the sense of having a clear logical semantics, system
modules are of course mot functional: that is their entire raison d’étre.

Besides this generality in expressing both deterministic and nondeterministic computations,
further expressiveness is gained by the following features:

e equational pattern matching,

e user-definable syntax and data,

types, subtypes, and partiality,

generic types and modules,

support for objects, and

2This sublanguage is essentially an extension of the OBJ3 equational language [79], which has greatly influ-
enced the design of Maude.

3As explained in Section mathematically this is achieved by a logic inclusion, in which the functional
world of equational theories is conservatively embedded in the nonfunctional, concurrent world of rewrite theo-
ries.

1.1. SIMPLICITY, EXPRESSIVENESS, AND PERFORMANCE 5

e reflection.

We briefly discuss each of these features in what follows.

Equational pattern matching

Rewriting with both equations and rules takes place by matching a lefthand side term against
the subject term to be rewritten. The most common form of matching is syntactic matching, in
which the lefthand side term is matched as a tree on the (tree representation of the) subject term
(see Section . For example, the matching of the lefthand sides for the equations defining
the length and _in_ functions above is performed by syntactic matching. But we have already
encountered another, more expressive, form of matching, namely, equational matching in the
bank accounts example: the lefthand side

< I : Account | bal : M > credit(I, N)

has the (empty syntax) multiset union operator __ as its top operator, but, thanks to its assoc
and comm equational attributes, it is matched not as a tree, but as a multiset. Therefore,
the match will succeed provided that the subject multiset contains instances of the terms
< I : Account | bal : M > and credit(I, N) in which the variable I is instantiated the
same way in both terms, regardless of where those instances appear in the multiset, that is,
modulo associativity and commutativity.

In general, a binary operator declared in a Maude module can be defined with anyE| combina-
tion of equational attributes of: associativity, commutativity, left-, right-, or two-sided identity,
and idempotency. Maude then generates an equational matching algorithm for the equational
attributes of the different operators in the module, so that each operator is matched modulo its
equational attributes. This manual will illustrate with various examples the expressive power
afforded by this form of equational matching (see Section .

User-definable syntax and data

In Maude the user can specify each operator with its own syntax, which can be prefix, postfix,
infix, or any “mixfix” combination. This is done by indicating with underscores the places where
the arguments appear in the mixfix syntax. For example, the infix list cons operator above is
specified by _. _, the (empty syntax) multiset union operator by __, and the if-then-else operator
by if_then_else_fi. In practice, this improves readability (and therefore understandability)
of programs and data. In particular, for metalanguage uses, in which another language or logic
is represented in Maude, this can make a big difference for understanding large examples, since
the Maude representation can keep essentially the original syntax. The combination of user-
definable syntax with equations and equational attributes for matching leads to a very expressive
capability for specifying any user-definable data. It is well known that any computable data
type can be equationally specified [10]. Maude gives users full support for this equational style
of defining data which is not restricted to syntactic terms (trees) but can also include lists
(modulo associativity), multisets (modulo associativity and commutativity), sets (adding an
idempotency equation), and other combinations of equational attributes that can then be used
in matching. This great expressiveness for defining data is further enhanced by Maude’s rich
type structure, as explained below.

Types, subtypes, and partiality

Maude has two varieties of types: sorts, which correspond to well-defined data, and kinds,
which may contain error elements. Sorts can be structured in subsort hierarchies, with the
subsort relation understood semantically as subset inclusion. For example, for numbers we can
have subsort inclusions

4Except for any combination including both associativity and idempotency, which is not currently supported.

6 CHAPTER 1. INTRODUCTION

Nat < Int < Rat

indicating that the natural numbers are contained in the integers, and these in turn are con-
tained in the rational numbers. All these sorts determine a kind (say the “number kind”) which
is interpreted semantically as the set containing all the well-formed numerical expressions for
the above number systems as well as error expressions such as, for example, 4 + 7/0. This
allows support for partial functions in a total setting, in the sense that a function whose appli-
cation to some arguments has a kind but not a sort should be considered undefined for those
arguments (but notice that functions can also map undefined to defined results, for example
in the context of error recovery). Furthermore, operators can be subsort-overloaded, providing
a useful form of subtype polymorphism. For example, the addition operation _+_ is subsort
overloaded and has typings for each of the above number sorts. A further feature, greatly
extending the expressive power for specifying partial functions, is the possibility of defining
sorts by means of equational conditions. For example, a sequential composition operation _; _
concatenating two paths in a graph is defined if and only if the target of the first path coincides
with the source of the second path. In Maude this can be easily expressed with the “conditional
membership” (see Section [£.3)):

vars P Q : Path .
cmb (P ; Q) : Path if target(P) = source(Q)

Generic types and modules

Maude supports a powerful form of generic programming that substantially extends the param-
eterized programming capabilities of OBJ3 [79]. The analogous terminology to express these
capabilities in higher-order type theory would be parametric polymorphism and dependent types.
But in Maude the parameters are not just types, but theories, including operators and equations
that impose semantic restrictions on the parameterized module instantiations. Thus, whereas a
parametric LIST module can be understood just at the level of the parametric type (sort) of list
elements, a parameterized SORTING module has the theory TOSET of totally ordered sets as its
parameter, including the axioms for the order predicate, that must be satisfied in each correct
instance for the sorting function to work properly. Types analogous to dependent types are
also supported by making the parameter instantiations depend on specific parametric constants
in the parameter theory, and by giving membership axioms depending on such constants. For
example, natural numbers modulo n (see Section , and arrays of length n, can be easily
defined this way. The fact that entire modules, and not just types, can be parametric provides
even more powerful constructs. For example, TUPLE[n] (see Section is a “dependent
parameterized module” that assigns to each natural number n the parameterized module of
n-tuples (together with the tupling and projection operations) with n parameter sorts.

Support for objects

The bank accounts example illustrates a general point, namely, that in Maude it is very easy to
support objects and distributed object interactions in a completely declarative style with rewrite
rules. Although such object systems are just a particular style of system modules in which object
interactions (through messages or directly between objects) are expressed by rewriting, Maude
provides special support for object-based programming and for fair execution of object-based
applications (see Chapter . Furthermore, the Full Maude extension provides special syntax
in object-oriented modules (see Chapter . Such modules directly support object-oriented
concepts like objects, messages, classes, and multiple class inheritance. Moreover, the support
for communication with external objects (see Section E[) allows Maude objects to interact by
message passing with internet sockets and, through them, with all kinds of other external

1.1. SIMPLICITY, EXPRESSIVENESS, AND PERFORMANCE 7

objects, such as files, databases, graphical user interfaces, sensors, robots, and so on. All this
is achieved without compromising Maude’s declarative nature: interaction with normal Maude
objects and with external objects can both be programmed with rewrite rules. Using internet
sockets as external objects, it is also easy to develop distributed implementations in Maude,
where a “soup” of objects and messages is not realized just as a multiset data structure in a
single sequential machine, but as a “distributed soup,” with objects and messages in different
machines or in transit.

Reflection

This is a very important feature of Maude. Intuitively, it means that Maude programs can
be metarepresented as data, which can then be manipulated and transformed by appropriate
functions. It also means that there is a systematic causal connection between Maude mod-
ules themselves and their metarepresentations, in the sense that we can either first perform
a computation in a module and then metarepresent its result, or, equivalently, we can first
metarepresent the module and its initial state and then perform the entire computation at the
metalevel. Finally, the metarepresentation process can itself be iterated giving rise to a very
useful reflective tower. Thanks to Maude’s logical semantics (more on this in Section , all
this is not just some kind of “glorified hacking,” but a precise form of logical reflection with a
well-defined semantics (see Chapter and [33] B4]). There are many important applications
of reflection. Let us mention just three:

e Internal strategies. Since the rewrite rules of a system module can be highly nondeter-
ministic, there may be many possible ways in which they can be applied, leading to quite
different outcomes. In a distributed object system this may be just part of life: provided
some fairness assumptions are respected, any concurrent execution may be acceptable.
But what should be done in a sequential execution? Maude does indeed support two
different fair execution strategies in a built-in way through its rewrite and frewrite
commands (see Section . But what if we want to use a different strategy for a given
application? The answer is that Maude modules can be executed at the metalevel with
user-definable internal stmtegiesﬂ (see Section . Such internal strategies can be de-
fined by rewrite rules in a metalevel module that guides the possibly nondeterministic
application of the rules in the given “object level” module. This process can be iterated
in the reflective tower. That is, we can define meta-strategies, meta-meta-strategies, and
SO on.

o Module algebra. The entire module algebra in which parameterized modules can be com-
posed and instantiated becomes expressible within the logic, and extensible by new mod-
ule operations that transform existing modules metarepresented as data. This is of more
than theoretical interest: Maude’s module algebra is realized exactly in this way by Full
Maude, a Maude program defining all the module operations and easily extensible with
new ones (see Part [[I] of this manual).

e Formal tools. The verification tools in Maude’s formal environment must take Maude
modules as arguments and perform different formal analyses and transformations on such
modules. This is again done by reflection in tools such as Maude’s inductive theorem
prover, the Church-Rosser checker, the Maude termination tool, the Real-Time Maude
tool, and so on.

5That is, internal to Maude’s logic, in the sense of being definable by logical axioms.

8 CHAPTER 1. INTRODUCTION

1.1.3 Performance

Achieving expressiveness in all the ways described above without sacrificing performance is
a nontrivial matter. Successive Maude implementations have been advancing this goal while
expanding the set of language features. More work remains ahead, but it seems fair to say that
Maude, although still an interpreter, is a high-performance system that can be used for many
non-toy applications with competitive performance and with many advantages over conventional
code. Without in any way trying to extrapolate a specific experience into a general conclusion,
a concrete example from the Maude user’s trenches may illustrate the point. A formal tool
component to check whether a trace of events satisfies a given linear temporal logic (LTL)
formula was written in Maude at NASA Ames by Grigore Rosu in about one page of Maude
code. The component had a trivial correctness proof—the Maude module was based on the
equational definition of the LTL semantics for the different connectives. This replaced a similar
component having about 5,000 lines of Java code that had taken over a month to develop by an
experienced colleague. The Java tool used a translation of LTL formulas into Biichi automata
(the usual method to efficiently model check an LTL formula) and run about three times more
slowly than the Maude code. It would have been very difficult to prove the correctness of the
Java tool and, having a better and clearly correct alternative in the Maude implementation,
this was never done.

Generally and roughly speaking, the current Maude implementation can execute syntac-
tic rewriting with typical speeds from half a million to several million rewrites per second,
depending on the particular application and the given machine. Similarly, associative and
associative-commutative equational rewriting with term patterns used in practiceﬂ can be per-
formed at the typical rate of one hundred thousand to several hundred thousand rewrites per
second.

These figures must be qualified by the observation that, until recently, the cost of an associa-
tive or associative-commutative rewriting step depended polynomially on the size of the subject
term, even with the most efficient algorithms. In practice this meant that this kind of rewriting
was not practical for large applications, in which the lists or multisets to be rewritten could have
millions of elements. This situation has been drastically altered by a recent result of Steven
Eker [59] providing new algorithms for associative and associative-commutative rewriting that,
for patterns typically encountered in practice, can perform one step of associative rewriting
in constant time, and one associative-commutative rewriting step in time proportional to the
logarithm of the subject term’s size. Maude supports equational rewriting with these new
algorithms.

The reason why the Maude interpreter achieves high performance is that the rewrite rules are
carefully analyzed and are then semicompiled into efficient matching and replacement automata
[57] with efficient matching algorithms. One important advantage of semicompilation is that
it is possible to trace every single rewriting step. More performance is of course possible by
full compilation. Maude has an experimental compiler for a subset of the language which can
typically achieve a fivefold speedup over the interpreter.

Four other language features give the user different ways of optimizing the performance of
his/her code. One is profiling, allowing a detailed analysis of which statements are most expen-
sive to execute in a given application (see Section . Another is evaluation strategies (see
Section7 giving the user the possibility of indicating which arguments and in which order
to evaluate before simplifying a given operator with the equations. This can range from “no

61n its fullest generality, it is well known that associative-commutative rewriting is an NP-complete problem.
In programming practice, however, the patterns used as lefthand sides allow much more efficient matching,
so that the theoretical limits only apply to “pathological” patterns not encountered in typical programming
practice.

1.2. THE LOGICAL FOUNDATIONS OF MAUDE 9

arguments” (a lazy strategy) to “all arguments” (an eager bottom-up strategy) to something in
the middle (like evaluating the condition before simplifying an if-then-else expression). Evalu-
ation strategies control the positions in which equations can be applied. But what about rules?
The analogous feature for rules is that of frozen argument positions; that is, declaring certain
argument positions in an operator with the frozen attribute (see Section blocks rule
rewriting anywhere in the subterms at those positions. A fourth useful feature is memoization
(see Section . By giving an operator the memo attribute, Maude stores previous results
of function calls to that symbol. This allows trading off space for time, and can lead in some
cases to drastic performance improvements.

One nagging question may be reflection. Is reflection really practical from a performance
perspective? The answer is yes. In Maude, reflective computations are performed by descent
functions that move metalevel computations to the object level whenever possible (see Sec-
tion . This, together with the use of caching techniques, makes metalevel computations
quite efficient. A typical metalevel computation may perform millions of rewrites very efficiently
at the object level, paying a cost (linear in the size of the term) in changes of representation
from the metalevel to the object level and back only at the beginning and at the end of the
computation.

1.2 The logical foundations of Maude

The foundations of a house do not have to be inspected every day: one is grateful that they are
there and are sound. This section describes the logical foundations of Maude in an informal,
impressionistic style, not assuming much beyond a cocktail party acquaintance with logic and
mathematics. The contents of this section may be read in two ways, and at two different
moments:

e before reading the rest of the manual, to obtain a bird’s-eye view of the mathematical
ideas underlying Maude’s design and semantics; or

e after reading the rest of the manual, to gain a more unified understanding of the language’s
design philosophy and its foundations.

Readers with a more pragmatic interest may safely skip this section, but they may miss
some of the fun.

Maude is a declarative language in the strict sense of the word. That is, a Maude program
is a logical theory, and a Maude computation is logical deduction using the axioms specified in
the theory /program. But which logic? There are two, one contained in the other. The seamless
integration of the functional world within the broader context of concurrent, nondeterministic
computation is achieved at the language level by the inclusion of functional modules as a
special case of system modules. At the mathematical level this inclusion is precisely the sublogic
inclusion in which membership equational logic [106], [17] is embedded in rewriting logic [102] [19].

A functional module specifies a theory in membership equational logic. Mathematically, we
can view such a theory as a pair (X, EUA). X, called the signature, specifies the type structure:
sorts, subsorts, kinds, and overloaded operators. E is the collection of (possibly conditional)
equations and memberships declared in the functional module, and A is the collection of equa-
tional attributes (assoc, comm, and so on) declared for the different operators. Computation
is of course the efficient form of equational deduction in which equations are used from left to
right as simplification rules.

Similarly, a system module specifies a rewrite theory, that is, a theory in rewriting logic.
Mathematically, such a rewrite theory is a 4-tuple R = (X, E U A, ¢, R), where (X, E U A) is

10 CHAPTER 1. INTRODUCTION

the module’s equational theory part, ¢ is the function specifying the frozen arguments of each
operator in X, and R is a collection of (possibly conditional) rewrite rules. Computation is
rewriting logic deduction, in which equational simplification with the axioms FUA is intermixed
with rewriting computation with the rules R.

We can of course view an equational theory (X, E U A) as a degenerate rewrite theory of
the form (X, F U A, ¢y, D), where ¢g(f) = 0, that is, no argument of f is frozen, for each
operator f in the signature 3. This defines a sublogic inclusion from membership equational
logic (MEqLogic) into rewriting logic (RWLogic) which we can denote

MEqLogic — RWLogic.

In Maude this corresponds to the inclusion of functional modules into the broader class of
system modules. However, Maude’s inclusion is more general: the user can give the desired
freezing information for each operator in the signature of a functional module, not just the ¢y
above.

Another important fact is that each Maude module specifies not just a theory, but also an
intended mathematical model. This is the model the user has intuitively in mind when writing
the module. For functional modules such models consist of certain sets of data and certain
functions defined on such data, and are called algebras. For example, the intended model for
a NAT module is the natural numbers with the standard arithmetic operations. Similarly, a
module LIST-QID may specify a data type of lists of quoted identifiers, and may import NAT
and BOOL as submodules to specify functions such as length and _in_. Mathematically, the
intended model of a functional module specifying an equational theory (X, E'U A), with X the
signature defining the sorts, subsorts, and operators, E the equations and memberships, and
A the equational attributes like assoc, comm, and so on, is called the initial algebra of such a
theory and is denoted Tx/pua-

In a similar way, a system module specifying a rewrite theory R = (3, E U A, ¢, R) has an
initial model, denoted Tr, which in essence is an algebraic (labeled) transition systemm The
states and data of this system are elements of the underlying initial algebra T%,pu4- The state
transitions are the (possibly complex) concurrent rewrites possible in the system by application
of the rules R. For our bank accounts example, these transitions correspond to all the possible
concurrent computations that can transform a given “soup” of account objects and messages
into another soup. Again, this is the model the programmer of such a system has in mind.

How do the mathematical models associated with Maude modules and the computations
performed by them fit together? Very well, thanks. This is the so-called agreement between the
mathematical semantics (the models) and the operational semantics (the computations). In this
introduction we must necessarily be brief; see Sections and and [I7] for the whole story in
the case of functional modules, and Section[5.3|and [I38] for the case of system modules. Here is
the key idea: under certain executability conditions required of Maude modules, both semantics
coincide. For functional modules we have already mentioned that the equations should have
good properties as simplification rules, so that they evaluate each expression to a single final
result. Technically, these are called the Church-Rosser and termination assumptions. Under
these assumptions, the final values, called the canonical forms, of all expressions form an algebra
called the canonical term algebra. By definition, the results of operations in this algebra are
exactly those given by the Maude interpreter: this is as computational a model as one can
possibly get. For example, the results in the canonical term algebra of the operations

length(’a . ’b . ’c . nil)
’b in (’a . ’b . ’c . nil)

"With additional operations, including a sequential composition operation for labeled transitions.

1.3. PROGRAMMING, SPECIFICATION, AND VERIFICATION 11

are, respectively,

s ssO0
true

Suppose that a functional module specifies an equational theory (X, FU A) and satisfies the
Church-Rosser and termination assumptions. Let us then denote by Cans,pua the associated
canonical term algebra. The coincidence of the mathematical and operational semantics is then
expressed by the fact that we have an isomorphism

Ts/pua & Cansg/pua-

In other words, except for a change of representation, both algebras are identical.

For system modules, the executability conditions center around the notion of coherence
between rules and equations (see [I38] and Section . The equational part £ U A should be
Church-Rosser and terminating as before. A reasonable strategy (the one adopted in Maude
by the rewrite command, see Chapter |5) is to first apply the equations to reach a canonical
form, and then do a rewriting step with a rule in R. But is this strategy complete? Couldn’t we
miss rewrites with R that could have been performed if we had not insisted on first simplifying
the term to its canonical form with the equations? Coherence guarantees that this kind of
incompleteness cannot happen (see Section [5.3)).

1.3 Programming, specification, and verification

The observations in the previous section about the agreement between mathematical and op-
erational semantics in Maude programs are of enormous importance for reasoning about them
and verifying their correctness. The key point is that there are three different uses of Maude
modules:

1. As programs, to solve some application. In principle we could have programmed such
an application in some other programming language, but we may have chosen Maude
because its features make the programming task easier and simpler.

2. As formal executable specifications, that provide a rigorous mathematical model of an
algorithm, a system, a language, or a formalism. Because of the agreement between
operational and mathematical semantics, this mathematical model is at the same time
executable. Therefore, we can use it as a precise prototype of our system to simulate
its behavior. The system itself could be implemented in a conventional language, or
perhaps in Maude itself (as in (1) above) as a more detailed Maude program, or maybe
our specification is already detailed and efficient enough to be directly used as its own
implementation.

3. As models that can be formally analyzed and verified with respect to different properties
expressing various formal requirements. For example, we may want to prove that our
Maude module terminates; or that its equations have the Church-Rosser property; or that
a given function, equationally defined in the module, satisfies some properties expressed
as first-order formulas. Similarly, given a system module we may want to model check
some properties about it, such as the satisfaction of some invariants or, more generally,
of some temporal logic formulas.

Note that the distinction between uses (1) and (2) is, for the most part, in the eyes of
the beholder. In fact, there is a seamless integration of specifications and code. The same

12 CHAPTER 1. INTRODUCTION

Maude module can simultaneously be viewed as an executable formal specification and as a
program. Furthermore, certain kinds of formal requirements needed for verification in (3) can
be expressed at the Maude level, either in Maude theories (see Section , or by including
some nonexecutable statements in a Maude module giving them the nonexec attribute (see
Section . This can be very useful in several ways. For example, we may include lemmas
that we have proved about a module, either in theories or as nonexecutable statements in the
module itself. Similarly, we may begin with some nonexecutable specifications in a Maude
theory, and then refine them using views (see Section into the desired Maude module
satisfying them.

There is, however, no need for all the properties that we wish to formally verify in (3) to be
in the logic of Maude, that is, to be statements in membership equational logic or in rewriting
logic. More generally, properties can be expressed, for example, as arbitrary first-order logic
formulas, or as temporal logic formulas. An interesting issue is then to explain precisely what
it means for a Maude module, defined in membership equational logic or in rewriting logic,
to satisfy a formula in one of those logics. Here is where the Maude initial model semantics
explained in Section becomes crucial. Such a semantics means that what a Maude module
denotes is a specific mathematical model, namely, the initial one. Satisfaction of any property,
expressed as some kind of formula, means satisfaction of that formula in the initial model. This
is an important observation, even when the formula in question is expressed in Maude’s native
logic. Let us explain this idea in more detail.

Consider, for example, that we have defined natural number addition in a Maude functional
module with Peano notation, so that zero is represented as the constant 0, and there is a
successor function s_ so that, for example, 2 is represented as s s 0. Natural number addition
can then be defined by the equations

op _+_ : Nat Nat -> Nat .
vars N M K : Nat .
eqN+0=N.

eq N+ (sM) =s (N+M .

The initial model of these equations is precisely the algebra of the natural numbers with
zero, successor, and the usual addition function. For example, using the canonical term algebra
representation (see Section , when we add s s 0 and s s O in this algebra we obtain the
result s s s s 0.

Consider now two relevant properties of natural number addition, namely, associativity and
commutativity. These properties are precisely described by the respective equations

eq N+ M =M+ N [nonexec]
eq N+ (M +K) = (N +M + K [nonexec]

where we have used the nonexec attribute to emphasize that these equations are not part of
our natural number addition module, and are not meant to be executed (in fact, if executed
the first equation would loop). They may, for example, be stated in a separate Maude theory
as properties we wish to verify.

The first thing to observe is that the above associativity and commutativity equations are
not provable by equational deduction, that is, they do not follow by replacing equals by equals
from the two equations defining the addition function. They are in fact inductive properties of
the addition function. Therefore, in order to prove them, using for example Maude’s inductive
theorem prover (ITP), we need to use a stronger proof method, namely, Peano induction. But
for any equational specification, being an inductive property and being a property satisfied by
its initial model are one and the same thing [ITI]. Therefore, what we mean when we say that
our natural number addition module satisfies the associativity and commutativity equations is
precisely that its initial model does.

1.3. PROGRAMMING, SPECIFICATION, AND VERIFICATION 13

Of course, associativity and commutativity are properties expressible in Maude’s native
logic (in fact, just in its equational sublogic). But the case of arbitrary first-order formulas is
entirely similar. Consider, for example, the property that any even number is the sum of two
odd numbers, which can be expressed as the first-order formula

Vn : Nat (even(n) = dx,y: Nat (odd(x) A odd(y) An =z +y)).

Let us assume, for argument’s sake, that we had also defined the odd and even predicates
in our Maude natural number module. What does it mean for our module to satisfy the
above formula? Just as before, it exactly means that the initial model denoted by our Maude
specification satisfies the formula. The point is that membership equational logic is a sublogic
of many-kinded first-order logic with equality (MKFOL™) that we can represent with a sublogic
inclusion

MEqLogic — MKFOL=.

Therefore, our initial model is also a first-order logic model, and it is perfectly clear what it
means for it to satisfy a first-order formula.

In a similar way, if we have a Maude system module and choose an initial state for it, we may
be interested in verifying that it satisfies a given temporal logic formula. Defining satisfaction in
this case is not as direct as for first-order formulas, because we do not have a sublogic inclusion
from rewriting logic into temporal logic. However, the meaning of satisfaction in this case is
also fairly straightforward. The point is that to such a system module, that is, to a rewrite
theory in which we have defined some atomic state predicates equationally, we can naturally
associate a Kripke structure (see Section. Since Kripke structures are the standard models
of temporal logic, satisfaction of the given temporal logic formula exactly means that the Kripke
structure associated to the module satisfies the formula. In fact, such a Kripke structure and
the initial model of the rewrite theory are intimately related, so that the initial model can be
used to define the corresponding Kripke structure. As explained in Chapters [11] and if our
system module is such that the set of states reachable from the initial state is finite, we can
use Maude’s search command and Maude’s model checker for linear temporal logic (LTL) as
decision procedures to verify, respectively, the satisfaction of invariants and of LTL properties.

Besides being able to use Maude’s inductive theorem prover (ITP) to verify inductive prop-
erties of functional modules, and the above-mentioned built-in support for verifying invariants
and LTL formulas through the search command and Maude’s LTL model checker, we can use
the following Maude tools to formally verify other properties:

e the Maude Termination Tool (MTT) [47, [46] can be used to prove termination of func-
tional modules (see Section [11.4));

e the Maude Church-Rosser Checker (CRC) [54] 56} 30} [48] can be used to check the Church-
Rosser property of unconditional functional modules (see Section [11.4));

e the Maude Coherence Checker (ChC) [55] 56] can be used to check the coherence (or
ground coherence) of unconditional system modules (see Section [11.4]); and

e the Maude Sufficient Completeness Checker (SCC) [83] can be used to check that defined
functions have been fully defined in terms of constructors (see Sections and |11.4).

These tools are integrated in what is called the Maude Formal Environment (MFE), available
at https://github.com/maude-team/MFE. Furthermore, if we are dealing with rewriting logic
specifications of real-time and hybrid systems, we can use the Real-Time Maude tool to both
simulate such specifications and to perform search and model-checking analysis of their LTL
properties [1211 [122].

https://github.com/maude-team/MFE

14 CHAPTER 1. INTRODUCTION

In summary, therefore, Maude supports three seamlessly integrated tasks: programming,
executable formal specification, and formal analysis and verification. For analysis and verifi-
cation purposes, the Maude interpreter itself is the first and most obvious tool. It is in fact a
high-performance logical engine that can be used to prove certain kinds of logical facts about
our theories. For example, we can use the Maude interpreter as a decision procedure for equa-
tional deduction if the desired theory has good properties. Similarly, as already mentioned, we
can use it also to verify invariants and LTL properties of finite-state system modules. More
generally, we can use other tools in Maude’s formal environment, such as the ITP, MTT, CRC,
ChC, and SCC tools (or Real-Time Maude for real-time systems) to formally verify a variety
of other properties.

1.4 A high-performance logical framework

Our previous discussion of the programming, executable specification, and formal verification
uses of Maude makes clear that we can distinguish two different levels of formal specification:
a system specification level, and a property specification one. In a system specification we are
after an unambiguous specification of a given system and how it actually works. Ideally this
specification should be both formal and executable, and should therefore provide an ezecutable
mathematical model of the system we are interested in. This is exactly what Maude modules
provide.

By contrast, when specifying properties of a system we are not necessarily after an executable
model of our system. Instead, we assume it, as either already given or to be developed later, and
specify such properties in a typically nonexecutable manner: for example in first-order logic,
higher-order logic, or some temporal logic. That is, the properties we specify have an intended
model, namely the system design captured by a system specification, and we are interested in
verifying by different methods that the intended model satisfies the properties stated in our
property specification. In the context of Maude, such property specifications can be given in a
variety of ways:

e as nonexecutable equations, memberships, and rules in Maude’s native logics;
e as first-order logic formulas; or
e as invariants or, more generally, linear temporal logic formulas.

We can then use Maude itself and its formal tool environment to try to verify that a given
system specified as a Maude module satisfies the desired properties.

Since Maude system specifications should be both formal and executable, Maude native
logics, namely, membership equational logic and its rewriting logic extension, should be com-
putational logics, that is, logics in which computation and deduction coincides, and simple
enough to allow a high-performance implementation as a declarative programming language.
This is what the Maude implementation provides. Of course, as mentioned in Section [I.2] and
further explained in Sections and Maude modules should be theories that satisfy some
reasonable executability requirements, making possible not only their efficient execution, but
also the already-mentioned coincidence between mathematical and operational semantics.

However, not all computational logics are equally expressive. For example, equational log-
ics (in either first-order or higher-order versions) are very well suited to specify deterministic
systems under the Church-Rosser assumption, but poorly equipped to specify concurrent and
highly nondeterministic systems. The whole point of extending membership equational logic
to rewriting logic is to seamlessly integrate the specification of deterministic systems, through

1.4. A HIGH-PERFORMANCE LOGICAL FRAMEWORK 15

equational specifications in functional modules, and of concurrent and nondeterministic sys-
tems, through rewriting logic specifications in system modules, within the same language.
Experience has shown that this makes rewriting logic a very expressive semantic framework for
system specification. Here we only mention some relevant areas:

e Models of computation. Many models of computation, including a very wide range of
concurrency models, can be naturally specified as different theories within rewriting logic,
and can be executed and analyzed in Maude.

e Programming languages. Rewriting logic has very good properties—combining in a sense
the best features of denotational semantics’ equational definitions with the strengths of
structural operational semantics—to give formal semantics to a programming language.
Furthermore, in Maude such semantics definitions become the basis of interpreters, model
checkers, and other program analysis tools for the language in question.

e Distributed algorithms and systems. Because of its good features for concurrent, object-
based specification, many distributed algorithms and systems, including, for example,
network protocols and cryptographic protocols, can be easily specified and analyzed in
Maude. Furthermore, making use of Maude’s external object facility to program interac-
tions with internet sockets, one can not just specify but also program various distributed
applications in a declarative way (see Section E[)

e Biological systems. Cell dynamics is intrinsically concurrent, since many different bio-
chemical reactions happen concurrently in a cell. By modeling such biochemical reactions
with rewrite rules, one can develop useful symbolic mathematical models of cell biology.
Such models can then be used to study and predict biological phenomena.

Furthermore, other application areas can be naturally supported in appropriate extensions
of rewriting logic and Maude. For example, real-time and hybrid systems can be specified as
real-time rewrite theories. Such specification can be executed and analyzed in the Real-Time
Maude tool [121], 122]. Similarly, probabilistic systems can be specified as probabilistic rewrite
theories, and can be simulated in PMaude and analyzed in the VeStA tool [90), [2].

The fact that in a computational logic computation and deduction coincide, so that they
are like two sides of the same coin, can be used in two ways: we can use the logic as a semantic
framework to specify different computational entities as just explained; or we can use it as a
logical framework to represent many other logics in it. That is, if our computational logic has
good representational features, it can be used as a universal logic which can faithfully express
the inference systems of many other logics.

Since the logic is computational and presumably has an efficient implementation, this is not
just a purely theoretical exercise: we can use such an implementation to mechanize deduction
in any logic that we can faithfully represent inside our logical framework. Experience has shown
that rewriting logic has very good properties as a logical framework in precisely this sense. An
important practical consequence is that it becomes quite easy to use Maude to develop a variety
of formal tools for different logics. The point is that any such tool has an associated inference
system, so it is just a matter of representing such an inference system as a rewrite theory and
guiding the application of the inference rules with suitable strategies (see Section . In
addition, since such formal tools often manipulate and transform not only formulas but also
theories, Maude’s reflective capabilities, which allow manipulating theories as data, become
enormously useful [30} B31].

Reflection and the existence of initial models (and therefore of induction principles for such
models) have one further important consequence, namely, that rewriting logic has also good

16 CHAPTER 1. INTRODUCTION

properties as a metalogical framework. A metalogical framework is a logical framework in
which we can not only represent and simulate many other logics: we can also reason within
the framework about the metalogical properties of the logics thus represented. As explained
in [9], this is exactly what can be done in rewriting logic using Maude and Maude’s inductive
theorem prover (ITP).

1.5 Core Maude vs. Full Maude

We call Core Maude the Maude 2 interpreter implemented in C++ and providing all of Maude’s
basic functionality. Part [[] explains in detail all the aspects of Core Maude, including its syntax
and parsing, functional and system modules, module hierarchies, module parameterization
with theories and module instantiation with views, its suite of predefined modules, the model-
checking capabilities, object-based programming, reflection, and metalanguage uses.

Full Maude is an extension of Maude, written in Maude itself, that endows the language with
an even more powerful and extensible module algebra than that available in Core Maude. As in
Core Maude, modules can be parameterized and instantiated with views, but in addition views
can also be parameterized. Full Maude also provides generic modules for n-tuples. Object-
oriented modules (which can also be parameterized) support notation for objects, messages,
classes, and inheritance.

Full Maude itself can be used as a basis for further extensions, by adding new functionality.
It is possible both to change the syntax or the behavior of existing features, and to add new
features. In this way Full Maude becomes a common infrastructure on top of which one can
build tools, such as, e.g., the Church-Rosser and coherence checkers, as well as environments for
other languages, such as, e.g., the Real-Time Maude tool for specifying and analyzing real-time
systems [121], [122], and the Maude MSOS tool for modular structural operational semantics
[22].

1.6 Manual structure

The present manual documents Maude 3, and explains Maude’s basic concepts in a leisurely
and mostly informal style. The material is basically presented following a “grammatical” order;
for example, all features related with operators are discussed together. Concepts are introduced
by concrete examples, that may be fragments of modules. The complete module examples are
available in the official webpage http://maude.cs.illinois.edu. We follow the convention of
naming each file in that site as the module it contains, or if a file contains several modules, as
the main one. In most cases, the rewriting or search commands and the corresponding outputs
are also included in the files.

The manual is divided in three parts: Part [[]is devoted to Core Maude, Part [[T] is devoted
to Full Maude, and Part [[T]] is a reference manual. Here is a brief summary of what can be
found in the remaining chapters:

Part [I. Core Maude.

Chapter |2| explains how to get Maude, how to install the system on the different plat-
forms supported, and how to run it. It also includes pointers on how to get additional
information and support.

Chapter [3| describes the basic syntactic constructs of the language, including what is
an identifier, a sort, and an operator. The different kinds of declarations that can

http://maude.cs.illinois.edu

1.6. MANUAL STRUCTURE 17

be included in the different types of modules are explained here, in addition to
fundamental concepts such as kinds or terms, and a discussion on parsing.

Chapter [4] introduces functional modules, and the different statements that can be found
in this kind of modules, namely equations and membership axioms. Operator and
statement attributes are also introduced. The final part of this chapter is devoted
to the use of functional modules for equational simplification, for which matching
modulo axioms is a fundamental feature.

Chapter [5| introduces system modules, and is mainly devoted to rules, term rewriting,
and the search command.

Chapter [6] explains the support for modularity provided by Core Maude. It describes
first the different modes of module importation, namely protecting, extending, and
including. Then it introduces the module summation and renaming operations. Fi-
nally, this chapter explains the powerful form of parameterized programming avail-
able in Core Maude, based on theories and views.

Chapter [7] provides detailed descriptions of the different predefined data types available,
including Booleans, natural numbers, integers, rationals, floating-point numbers,
strings, and quoted identifiers. It also describes the generic containers provided by
Maude, namely lists, sets, maps, and arrays. The chapter finishes with a description
of a built-in linear Diophantine equation solver.

Chapter [8] explains the basic support for object-based programming, with special em-
phasis on the standard notation for object systems.

Chapter [9] explains Maude’s support for rewriting with external objects and the imple-
mentation of sockets, standard streams, and files.

Chapter describes Maude’s object-level strategy language and the corresponding
strategy modules. It contains many examples of using strategies to control rewriting.

Chapter explains how to use the search command to model check invariant prop-
erties of concurrent systems specified as system modules in Maude.

Chapter introduces linear temporal logic (LTL) and describes the facilities for LTL
model checking provided by the Maude system. This procedure can be used to prove
properties when the set of states reachable from an initial state in a system module is
finite. When this is not the case, it may be possible to use an equational abstraction
technique for reducing the size of the state space.

Chapter describes Maude’s support of order-sorted unification modulo axioms such
as either commutativity or associativity and commutativity. The importance of
this feature is made explicit in an overview of several interesting applications of
unification, including narrowing and symbolic reachability analysis. This chapter
also includes a discussion on endogenous vs. exogenous order-sorted unification al-
gorithms.

Chapter introduces the concept of variants, and then explains its use in the get
variants command and its application in variant-based equational order-sorted uni-
fication.

Chapter describes the implementation of narrowing based on the unification and
variant facilities introduced in the previous Chapters [13] and

Chapter introduces satisfiability modulo theories (SMT) and describes the connec-
tion of Maude to SMT solvers like CVC4 and Yices2.

18 CHAPTER 1. INTRODUCTION

Chapter presents the reflective capabilities of the Maude system. The concept of
reflection is introduced, and the effective way of supporting metalevel computation
is discussed. The predefined module META-LEVEL and its submodules are presented,
with special emphasis on the descent functions provided. The chapter ends with an
introduction to the notion of internal strategies.

Chapter explains the way of using the facilities provided by the modules META-LEVEL,
STD-STREAM, and LEXICAL for the construction of user interfaces and metalanguage
applications.

Chapter introduces meta-interpreters. Each meta-interpreter is an external object
that is an independent Maude interpreter, complete with module and view databases,
and able to send and receive messages. Together with standard streams, meta-
interpreters can be used to develop execution environments.

Chapter discusses debugging and troubleshooting, considering the different debug-
ging facilities provided: tracing, term coloring, the debugger, and the profiler. A
number of traps and known problems are also commented.

Part [[I. Full Maude.

Chapter explains the nature of Full Maude, and how to use it. This chapter includes
information on how to load Core Maude modules into Full Maude, on the additional
module operations (supported by tuple generation and parameterized views), and
on the facilities available in Full Maude for moving up and down between reflection
levels.

Chapter introduces object-oriented modules, which provide a syntax more conve-
nient than that of system modules for object-oriented applications, with direct sup-
port for the declaration of classes, inheritance, and useful default conventions in the
definition of rules. Such object-oriented modules can also be parameterized. This
chapter includes several extended examples that illustrate the power of combining
the additional features available in Full Maude.

Part [Tl Reference.

Chapter gives a complete list of the commands available in Maude.
Chapter includes the grammar of Core Maude.

1.7 The Maude book

Most of the material in this manual also appears in the book All About Maude: A High-
Performance Logical Framework, published by Springer as volume 4350 in the series Lecture
Notes in Computer Science [29].

The book contains many additional examples and explanations, as well as information on
applications and tools.

We gratefully acknowledge the permission given by Springer to distribute this manual on
the web.

1.7. THE MAUDE BOOK 19

Acknowledgements

Languages are living organisms. The lifeblood provided by experienced users is key to their
growth and their improvement. We have benefited much from colleagues who have used different
alpha versions of Maude; we cannot mention them all, but Luis Aguirre, Christiano Braga, Feng
Chen, Grit Denker, Santiago Escobar, Azadeh Farzan, Joe Hendrix, Merrill Knapp, Nirman
Kumar, Oscar Martin, Miguel Palomino, Peter Olveczky, José Quesada, Adridn Riesco, Dilia
Rodriguez, Grigore Rosu, Ralf Sasse, Koushik Sen, Ambarish Sridharanarayanan, Mark-Oliver
Stehr, Prasanna Thati, and Alberto Verdejo deserve special thanks for their creative uses of
Maude and their suggestions for improving the language. Thanks to Christiano Braga, Peter
Mosses, Peter (.jlveczky7 Miguel Palomino, Sylvan Pinsky, Isabel Pita, Adridn Riesco, Dilia
Rodriguez, Manuel Roldan, Mark-Oliver Stehr, Antonio Vallecillo, and Alberto Verdejo for
their comments on previous versions of this document.

As already mentioned, Maude’s historical precursor is the OBJ3 language [79]. The OBJ3
experience has greatly influenced the Maude design and philosophy, and we are grateful to all
our former OBJ colleagues for this. Joseph Goguen should be mentioned in particular, because
of his enormous influence in all aspects of OBJ; and Tim Winkler for having implemented a
state-of-the-art OBJ3 system with such great skill.

Two other rewriting logic languages, ELAN [I2] and CafeOBJ [75], have provided a rich
stimulus to the design of Maude. Although our language design solutions have often been dif-
ferent, we have all been wrestling with a similar problem: how to best obtain efficient language
implementations of rewriting-based languages. We have benefited much from the ELAN and
CafeOBJ experience, and from many discussions with their main designers and implementers:
Claude and Hélene Kirchner, Marian Vittek, Pierre-Etienne Moreau, Kokichi Futatsugi, Razvan
Diaconescu, Ataru Nakagawa, Toshimi Sawada, and Makoto Ishisone.

Bringing a new language design to maturity requires a long-term research effort and sub-
stantial resources. We are not there yet, but much has been advanced since the early design
phases. Perhaps the longest, most sustained support has come from the US Office for Naval
Research (ONR) through a series of contracts. We are most grateful to Dr. Ralph Wachter at
ONR for his continued encouragement at every step of the way. The US Defense Advance Re-
search Projects Agency (DARPA), the US National Science Foundation (NSF), and the Spanish
Ministry for Education and Science (MEC) have also contributed important resources to the
development of Maude, its foundations, and its applications.

20

CHAPTER 1. INTRODUCTION

Part 1

Core Maude

21

Chapter 2

Using Maude

2.1 Getting Maude

The Maude system is available, free of charge, under the terms of the GNU General Public
License as published by the Free Software Foundation, at the Maude home page (a snapshot is

shown in Figure

http://maude.cs.illinois.edu

There you can also find documentation about Maude, including a Maude primer, some papers
on Maude and rewriting logic, and several Maude applications, including a set of proving tools
for Maude specifications and Maude case studies.

Maude binaries are provided for selected architectures and operating systems, including
Linux and macOS. Detailed information on this can be found in the Maude web site, where
installation instructions are also available.

2.2 Running Maude

A Maude session can be started by calling the maude.linux64 binary included in the release
package in a Linux shell window (and similarly for other platforms). For example, we can move
into the directory where the package was extracted and then invoke Maude, obtaining a banner
similar to the following, where we can see the version of the system being executed, the date it
was built, copyright information, and the current date.

~/maude-linux$./maude.linux64

NERRRRRRRRRRRRRNRRYS

-—-- Welcome to Maude ---
VARNRRERRE R RRERREAY
Maude 3.1 built: Oct 12 2020 20:12:31
Copyright 1997-2020 SRI Internatiomnal
Tue Oct 13 12:00:00 2020
Maude>

The Maude system is now ready to accept Maude modules and commands (see Chapter
for a complete list of Maude commands). During a Maude session, the user interacts with the
system by entering a request at the Maude prompt. For example, one can quit:

Maude> quit

23

http://maude.cs.illinois.edu

24

MaudEa Page Discussion

Main page
Recent changes
Random page
Help

~ Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information

Figure 2.1:

The Maude System

Contents [hidel
1 General Maude Information
2 Maude Documentation
3 Maude-related Tools
4 Obtaining and Using Maude

General Maude Information

+ Maude Overview

» The Maude Project and Team
+ Rewriting Logic

« Bug Reports and Mailing Lists

Maude Documentation

« Maude Manual and Examples

+ Some Papers on Maude and on Rewriting Logic &
+ Roadmap and Bibliography

+ Some Talks on Maude and on Rewriting Logic

+ Maude Primer and Examples (not maintained)

Maude-related Tools

+ Maude Tools

Obtaining and Using Maude
« Download latest version of Maude 3
+ Maude 3 License
s All Maude 3 versions
+ All Maude 2 versions
+ Looking for Maude 17 &

Read View source View history |5

CHAPTER 2. USING MAUDE

& Login

Q

wMAUDE CT |‘
MAUDtAVE

W

’i

Maude home page at maude.cs.illinois.edu

2.2. RUNNING MAUDE 25

q may be used as an abbreviation of the quit command. But please, do not leave us so
soon! One can also enter modules and use other commands. For example, we can enter the
following module SIMPLE-NAT, which specifies the natural numbers in Peano notation with a
plus operation _+_ on themE

Maude> fmod SIMPLE-NAT is
sort Nat .
op zero : -> Nat .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars N M : Nat .
eq zero + N =N .
eq s N+M=s (N +M
endfm

Fortunately, we do not need to write our modules in the prompt. We can input one or several
modules by saving them in a file and then entering the file with the in, load or sload commands
(see Section for details on the difference between these commands). Assuming that the
file my-nat .maude contains the module SIMPLE-NAT above, we can do the following to enter it:

Maude> load my-nat.maude

After entering the module SIMPLE-NAT into Maude, we can, for example, reduce the term
s s zero + s s s zero (which is the equivalent in Peano notation of the more usual 2 + 3)
as follows:

Maude> reduce in SIMPLE-NAT : s s zero + s s s zero .
reduce in SIMPLE-NAT : s s zero + s s s zero .
rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result Nat: s s s s s zero

It is not necessary to give the name of the module in which to reduce a term explicitly. All
commands that require a module refer to the current module by default, unless a module is
explicitly given. The current module is usually the last module entered or used, although we
can use the select command to select a module to be the current one (see Section .

Maude> reduce s s zero + s s s zero .

reduce in SIMPLE-NAT : s s zero + s s s zero .
rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result Nat: s s s s s zero

Any action happening in the Maude system can be interrupted by typing control-C. In
particular, by hitting control-C during a reduction in progress, such reduction is interrupted
and the system gets into debugging mode (see Section .

Although it is not the case in the simple examples above, sometimes we get a very big term
as output from Maude. In some cases, in order to make it easier to read and understand, we
edit the presentation of the outputs given by Maude.

When you execute maude.linux64, the file prelude.maude, which includes several prede-
fined modules (see Chapter [7)), is automatically loaded. To find prelude.maude, the Maude
interpreter checks for it in several directories, in the following order:

1. the directories specified in the MAUDE_LIB environment variable,

2. the directory containing the executable, and

1We do not display the >’ symbol that Maude adds at the beginning of each line.

26 CHAPTER 2. USING MAUDE

3. the current directory.

It is a good idea to include the path to prelude.maude in the MAUDE_LIB environment variable
to be sure that it will always be found, because the executable finding code may not find the
directory containing the executable.

Among the predefined modules included in prelude.maude we find a module STRING that
declares sorts and operations for manipulating strings. In particular, STRING introduces the
operation _+_ to concatenate two strings. Then, to concatenate the strings “hello”, “ ”, and
“world”, you can type at the Maude prompt the following red (which is the abbreviated form
of reduce) request:

Maude> red in STRING : "hello" + " " + "world" .
reduce in STRING : "hello" + " " + "world" .
rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
result String: "hello world"

Actually, although STRING is not the current module right after starting the system, it is
imported by the current one, CONVERSION. Thus, we can type the following, just after starting
Maude:

Maude> red "hello" + " " + "world" .

reduce in CONVERSION : "hello" + " " + "world" .
rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
result String: "hello world"

Notice that Maude makes explicit the module in which the term is reduced, even when no
module name is given by the user.

As said above, to load for example a user-defined module HELLO-WORLD for a Maude session,
you can either type at the Maude prompt the whole module or simply type the following
in-troduce request:

Maude> in hello-world

where hello-world is a text file in the current directory containing the module HELLO-WORLD.

For files specified by a bare file name, Maude also checks for files with .maude, .fm, and
.obj extensions. Maude can also be told using the MAUDE_LIB environment variable about
other directories to use to search for files. Thus to find a file specified in the in command,
Maude searches, in order:

1. the current directory,
2. the directories in the MAUDE_LIB environment variable, and
3. the directory containing the executable.

If the desired file is in none of these places you must type its full path name.

As for user-defined modules, user requests such as the above can either be typed at the
Maude prompt or simply in-troduced with a text file containing them. In fact, many users run
Maude inside an Emacs-like editor, since this provides both text editing facilities for creating
Maude modules and saving them in files, and also UNIX shell interaction to start a Maude
session and to in-troduce during the session modules and commands created and saved in files,
as shown in Figure 2:2]

Note that text files entered in Maude can contain not only modules, but also any command.
Actually, a file can contain as many modules and commands as one wishes. When entering it
with an in or load command, Maude will read them one after another as if they were written

2.3. GETTING SUPPORT AND MORE INFORMATION 27

emacs@maude X

File Edit Options Buffers Tools Errors Complete InfOut Signals Help

e B B R [Elsave =Undo B Q
SICELTEEEEEEEEeeenes
--- Welcome to Maude ---
ALLELTEETEELEREEELEN

Maude 3.0 built: Dec 17 201% 20:24:86
Copyright 1997-201% SRI International
Tue Dec 17 14:23:20 2019

Maude> load my-nat.maude

Maude> red s s zero + 5 5 5 Zero .

reduce in MY-NAT : s s zero + 5 5 § Zero .

rewrites: 3

result Nat: s s s s s zero

Maude> [

U:#x- =Maudes ALL L12 (inferior-maude:run Shell-Compile)
fmod MY-MNAT is

sort Nat .

op zero : ->» Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq zero + N = N .

eq S N+ M=5 (N+ M .
endfm

-:=—— my-nat.maude ALl L1G (Maude)

Figure 2.2: Running Maude inside Emacs

at the prompt of the system. Another important issue worth pointing out is that we can write
single line and multiline comments anywhere inside a module or a file. Single line comments
are started by either *** or ——-, and ended by the end of line. Multiline comments are started
by ***(and ended by). Parentheses must balance within multiline comments.

2.3 Getting support and more information
We maintain the following mailing lists related to Maude:

e maude-users@maude.cs.illinois.edu. A moderated list for the discussion of topics of
general interest to all Maude users. This list is typically low-traffic, and contains items
such as calls for papers, announcements of new Maude related papers, and notifications
of new releases of Maude. It is important that you subscribe to this list if using Maude,
as this is the mechanism by which we will make important announcements about the
system. To subscribe, or to view the archived messages, please go to

https://lists.cs.illinois.edu/lists/info/maude-users
e maude-help@maude.cs.illinois.edu. This is an alias for submitting questions about

any aspect of the use of Maude. Messages are distributed to a group of experienced users
who have offered to provide help. This list is not open for subscription, but you can send

https://lists.cs.illinois.edu/lists/info/maude-users

28 CHAPTER 2. USING MAUDE

messages to this list at any time. Questions posted here will be automatically archived
at

https://lists.cs.illinois.edu/lists/info/maude-help

e maude-bugs@maude.cs.illinois.edu. A list for reporting any problems you experience
with Maude (see below), and also any suggestions for enhancements and improvements.

2.4 Reporting bugs in Maude
As already mentioned, bug reports should be sent to
maude-bugs@maude.cs.illinois.edu

When submitting a bug report, please include the following information:

1. Exzample to reproduce the bug. Ideally this should be a single file that reproduces the
bug by loading it. If your example is large and spread out in multiple files, have a file
top.maude that loads files and executes commands as necessary to reproduce the bug.
Send all the files as a tar archive, optionally compressed with gzip.

If Maude’s output is not obviously wrong (for example, an “internal error” message),
include an explanation of why the output is wrong.

If you choose to simplify the example, note that a short runtime to expose the bug is
desirable. A small example text is mostly unimportant unless it is necessary to understand
such example text in order to understand why Maude’s output is incorrect.

2. Version of Maude used. Make sure you provide information of the concrete release of
Maude (and Full Maude if it is the case). If you are not using one of the ready-made
binaries released by the Maude team, also give the versions of the compiler and tools used
to build it and the libraries linked against.

3. Platform. Include the operating system type and version number, as well as the processor
type.

https://lists.cs.illinois.edu/lists/info/maude-help

Chapter 3

Syntax and Basic Parsing

This chapter introduces the basic syntactic ingredients of all Maude specifications: identifiers,
module names, sort names, and operator declarations. Other syntactic parts of Maude specifi-
cations, like equations and rules, will appear in the following chapters.

Some syntax is presented in an informal way by means of general schemes; a formal BNF
grammar of the language can be found in Chapter

The chapter finishes explaining some features that can be used to reduce parsing ambiguities
in the user-definable syntax, including mixfix operator declarations, supported by Maude.

3.1 Identifiers

In Core Maude, identifiers are the basic syntactic elements, used to name modules and sorts,
and to form operator names. For example, NAT, Nat, and hello-world are identifiers. In
general, an identifier in Maude is any finite sequence of ASCII characters such that:

e It does not contain any white space. For example, the sequence ‘abc def’ is not one
identifier, but two.

e The characters ‘{’, ‘}’, *(’,)7, ‘[’, ‘1’ and ‘,’ are special, in that they break a sequence of
characters into several identifiers. For example, the sequence ab{c,d}ef counts as seven
identifiers, namely, ab, {, ¢, ,, d, }, and ef.

e The backquote character ‘‘’ is used as an escape character to indicate that a blank
space or the special characters do not break the sequence. Consequently, backquotes
can only appear immediately before any of the special characters, or between two non-
empty strings of characters—with neither the ending of the first string nor the beginning
of the second string being another backquote—for exactly these purposes. For exam-
ple, 1ab‘{c‘,d‘}ef is a single identifier. Maude’s pretty printer will display such an
identifier in the form 1 ab{c,d}ef.

Nonprinting characters in strings use C backslash conventions [87, Section A2.5.2].

29

30 CHAPTER 3. SYNTAX AND BASIC PARSING

3.2 Modules

In Maude the basic units of specification and programming are called modulesﬂ A module
consists of syntax declarations, providing appropriate language to describe the system at hand,
and of statements, asserting the properties of such a system. The syntax declaration part is
called a signature and consists of declarations for:

e sorts, giving names for the types of data,
e subsorts, organizing the data types in a hierarchy,

e finds, that are implicit and intuitively correspond to “error supertypes” that, in addition
to normal data, can contain “error expressions,” and

e operators, providing names for the operations that will act upon the data and allowing
us to build expressions (or terms) referring to such data.

We use symbols X, Y/, etc. to denote signatures.

In Core Maude there are two kinds of modules: functional modules and system modules.
Signatures are common for both of them. The difference between functional and system modules
resides in the statements they can have:

e functional modules admit equations, identifying data, and memberships, stating typing
information for some data, while

e system modules also admit rules, describing transitions between states, in addition to
equations and memberships.

We use E, E’, etc. to denote sets of equations and memberships, and R, R’, etc. to denote sets
of rules.

From a programming point of view, a functional module is an equational-style functional
program with user-definable syntax in which a number of sorts, their elements, and functions
on those sorts are defined. From a specification viewpoint, a functional module is an equational
theory (3, E) with initial algebra semantics. Functional modules are described in detail in
Chapter [4] here we just discuss some of their top-level syntax. Each functional module has a
name, which is a Maude identifier. Any Maude identifier can be used, but the preferred style for
module names is an all capitalized identifier, and in the case of a compound name the different
parts are linked with hyphens. For example, a module defining numbers and operations on
them can be called NUMBERS. The top-level syntax will then be

fmod NUMBERS is

endfm
with ‘...” corresponding to all the declarations of submodule importations, sorts, subsorts,
operators, variables, equations, and so on.

From a programming point of view, a system module is a declarative-style concurrent
program with user-definable syntax. From a specification viewpoint, it is a rewrite theory
(X, E, ¢, R) (where ¢ specifies the frozen arguments of operators in ¥; see Section [4.4.9) with
initial model semantics. Again, each system module has a name, which is a Maude identifier.

And as for functional modules, the preferred style is an all capitalized name, with consecutive
parts linked with hyphens in the case of compound names. For example, a module specifying

1 As explained in Section [6.3.1] specifications can also be given in theories, with a syntax entirely similar to
that of modules, but theories, unlike modules, need not be executable.

3.3. SORTS AND SUBSORTS 31

the behavior of a vending machine may be called VENDING-MACHINE. It will then be introduced
with the following top-level syntax:

mod VENDING-MACHINE is

endm

where again ‘...” corresponds to all the declarations of submodule importations, sorts, subsorts,
operators, variables, equations, rules, and so on. System modules are described in detail in
Chapter

In the rest of the chapter we will describe the ingredients of signatures, that is, the syntac-
tic elements common to both functional and system modules, such as sorts, subsorts, kinds,
operators, variables, and the terms that can be built on a signature, postponing the discussion
about the syntax specific to functional and system modules to Chapters [] and [respectively.

3.3 Sorts and subsorts

The first thing a specification needs to declare are the types (that in the algebraic specification
community are usually called sorts) of the data being defined and the corresponding operations.
Sorts can be partially ordered via a subsort relation.

A sort is declared using the sort keyword followed by an identifier (the sort name), followed
by white space and a period, as follows:

sort (Sort) .

and multiple sorts may be declared using the sorts keyword, as follows:
sorts (Sort-1) ... (Sort-k) .

The period at the end of the sort declaration, as for the other types of declarations, is
crucial. Note that if either the period is missing or no space is left before and after the period,
there can be parsing problems or unintended behavior. For example, the following declaration
is syntactically correct but causes an unintended interpretation because of a missing ‘.’, since
this way sorts A, B, sort, and C are declared.

sorts A B
sort C .

Note also that the keywords sort and sorts are synonyms. One may use sort for multiple
sort declarations and sorts for single ones, although we do not encourage this style.

For example, we can declare sorts Zero, NzNat, and Nat in the NUMBERS module, either one
at a time

sort Zero .
sort NzNat .
sort Nat .

or all at once

sorts Zero Nat NzNat .

The identifiers <, =>, and ~> cannot be used as sort names. Moreover, identifiers used for
sorts cannot contain any of the characters :’, “.”, ‘[’, or ‘]1’. The reasons for these restrictions
will become clear below in this section and in Sections [3.4] and The use of ‘{’,
‘}’, and *,’ is only allowed in structured sort names (see below). Although any so restricted

identifier is a legal sort name, the preferred style is to capitalize the first letter of the name.

32 CHAPTER 3. SYNTAX AND BASIC PARSING

Furthermore, in the case of a compound name, such as a sort of nonzero naturals, the names
(each with the first letter capitalized) or suitable abbreviations will be juztaposed without
spaces or hyphens, like, for example, NzNat.

A sort name can also be structured. Structured sort names are used in parameterized
modules; for example, we may use List{X} for a parameterized list sort with parameter X and
List{Nat} for its instantiation to lists of natural numbers (see Section. A structured sort
name contains at least one pair of curly brace symbols ‘{’ and ‘}’, and is constructed according
to the following BNF grammar, without any white space between terminals:

(Sort) = (sort identifier)
| (Sort) { (SortList) }
(SortList) ::= (Sort)
|

(SortList) , (Sort)

Notice that structured sorts are allowed to contain ‘{’, ‘,” and ‘}’ but only in accordance
with the above grammar. Thus all the following are structured sort names:

a{X}

a{X, Y}

a{b, c{d}}{e}
a{ (>

while the following are not legal sort names:

{x> (lacks sort identifier prefix)
a(X, Y) (*,” not inside braces)

a{b, {d}}{e} ({d} lacks sort identifier prefix)
a() (‘0" without closing ‘}’)

Structured sort names can be written in an equivalent single-identifier form by using back-
quotes. For example, the sort a{b, c{d}}{e} may be written as a‘{b‘,c‘{d‘}‘}‘{e‘}. Hy-
brid notation such as in a{b‘,c} is not allowed. When backquotes are omitted, the sort name
becomes a sequence of tokens according to Maude’s usual tokenization rules and arbitrary white
space may be inserted between tokens. For example, Foo‘{X‘,Y‘}, Foo{X,Y}, and Foo{X, Y}
are three equivalent forms for the same structured sort name.

Structured sort names must be written in their equivalent single-identifier form inside op-
erator hooks (see Chapter @ or in metasyntax (see Chapter .

Apart from their special syntax and their use as parameterized sorts in parameterized mod-
ules (see Section , structured sort names behave just like sort identifiers.

The subsort relation on sorts parallels the subset relation on the sets of elements in the
intended model of these sorts. Subsort inclusions are declared using the keyword subsort. The
declaration

subsort (Sort-1) < (Sort-2) .
states that the first sort is a subsort of the second. For example, the declarations

subsort Zero < Nat .
subsort NzNat < Nat .

specify that the sorts Zero (containing only the constant 0) and NzNat (the nonzero natural
numbers) are subsorts of Nat, the natural numbers. More than one subsort relationship can be
declared using the keyword subsorts, as follows:

subsorts (Sort-1) ... (Sort-j) < ... < (Sort-k) ... (Sort-l) .

3.4. OPERATOR DECLARATIONS 33

Then, the above declarations can be given in a single declaration as follows:
subsorts Zero NzNat < Nat .

If we extend NUMBERS with sorts Int and NzInt we can express the additional subsort
relationships compactly by

sorts NzInt Int .
subsorts NzNat < NzInt Nat < Int .

A set of subsort declarations must define a partial order among the set of sorts. For this to
be true, the user is required to avoid cycles in the subsort declarations. For example, if a sort
A is declared as a subsort of B, and B is declared as a subsort of A, we would have a cycle.

Note that the partial order of subsort inclusions partitions the set of sorts into connected
components, that is, into sets of sorts that are directly or indirectly related in the subsort
ordering. For example, all the above sorts Zero, Nat, NzNat, NzInt, and Int belong to the
same connected component in the subsort ordering, whereas a sort Bool would clearly belong
to a different connected component and could have other sorts, for example a supersort Prop
of propositions, related to it in the same component. Intuitively, connected components gather
together related sorts of data such as numerical data, truth-value data, and so on. Graphically,
we can visualize the partial order of subsort inclusions as an acyclic graph (the corresponding
Hasse diagram), and then the connected components are exactly those of the underlying graph,
as in the following example:

///Int\\\

Nat NzInt Prop
SN S
Zero NzNat Bool

3.4 Operator declarations

In a Maude module, an operator is declared with the keyword op followed by its name, followed
by a colon, followed by the list of sorts for its arguments (called the operator’s arity or domain
sorts), followed by ->, followed by the sort of its result (called the operator’s coarity or range
sort), optionally followed by an attribute declaration (the discussion of operator attributes is
postponed to Section , followed by white space and a period. Thus the general scheme has
the form

op (OpName) : (Sort-1) ... (Sort-k) -> (Sort) [(OperatorAttributes)]
Here are some operator declarations for our NUMBERS module.

op zero : -> Zero .

op s_ : Nat -> NzNat .

op sd : Nat Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

If the argument list is empty, the operator is called a constant. Thus zero is a constant.

The name of the operator is a string of characters that may consist of several identifiers,
due to the presence of blanks or other special characters. Underscores (_) play a special role
in these strings. If no underscore character occurs in the operator string—as in the case of the
operator sd above—then the operator is declared in prefiz form. If underscore characters occur

34 CHAPTER 3. SYNTAX AND BASIC PARSING

in the string, then their number must coincide with the number of sorts declared as arguments
of the operator (in particular, constant names cannot include any underscore character). The
operator is then in mizfiz form, with the n-th underscore indicating the place where arguments
of the n-th sort must be placed in expressions formed with that operator. In the above example
the operators s_, _+_, and _*_ are in mixfix form.

There may or may not be any other characters before or after any of the underbars. If no
other characters appear, we say that the operator has been declared with empty syntax. For
example, we could declare a sort NatSeq of sequences of natural numbers formed with empty

syntax as follows:

sort NatSeq .
subsort Nat < NatSeq .
op __ : NatSeq NatSeq -> NatSeq [assoc]

where assoc is an attribute declaring that sequence concatenation is associative (see Sec-
tion [4.4.1). With this operator declaration we can write number sequences such as

zero (s zero) (s s zero)

Operators having the same arity and coarity can be declared simultaneously by using the
keyword ops and giving the non-empty list of their corresponding names after the ops keyword
and before the :, as is done for the declarations of _+_ and _*_ in the example above.

An operator can also be declared using several identifiers. This can be due to the presence
of special characters, or to blank spaces, or both. Consider for example the operator declaration

op [_] and then [_] : Command Command -> Command .

that may allow a natural language style in the syntax of a programming language. It uses
eight identifiers in the Maude sense, but declares a single binary operator, with the underscores
indicating the place of the arguments in the mixfix notation. Internally, Maude also associates
to this operator a corresponding single-identifier form by using backquotes. We could have
equivalently defined the operator using the single-identifier form, namely,

op ‘[_‘Jand‘then‘[_‘] : Command Command -> Command .

Of course, both variants are equivalent and have the same mixfix display, but the version
without backquotes is obviously more convenientEI

The declaration of an operator requires an extra pair of parentheses if we already use
parentheses as part of the syntax of the operator. Suppose we had in a programming language
a binary operator (_ only after _). Then, we have to declare it as follows:

op ((_ only after _)) : Command Command -> Command .

Since an operator may be declared using several identifiers, in an ops declaration involving
several operators each operator declaration can be enclosed in parentheses if necessary, to
indicate where the syntax of each operator begins and ends. We could have declared both
operators together, as follows:

ops ([_] and then [_]) ((_ only after _))
Command Command -> Command .

Thus, one or several Maude identifiers can be used in operator declarations. Regarding style,
the preferred one, particularly for single-identifier operators with prefix syntax, is to use lower
case names. However, for a composed name such as a meta parse operator, the subsequent
names will be juxtaposed and will typically begin with a capital letter to enhance readability,
e.g., metaParse.

2In Full Maude, operator names in operator declarations must be given as single identifiers. Multiple-identifier
names are also supported, but their equivalent single-identifier form must be used in their declarations.

3.5. KINDS 35

3.5 Kinds

The equational logic underlying Maude is membership equational logic [106] [I7]. In this logic
sorts are grouped into equivalence classes called kinds. For this purpose, two sorts are grouped
together in the same equivalence class if and only if they belong to the same connected com-
ponent. Maude sorts are user-defined, while kinds are implicitly associated with connected
components of sorts and are considered as “error supersorts.” Terms (see Section that
have a kind but not a sort are understood as undefined or error terms.

In Maude modules, kinds are not independently and explicitly named. Instead, a kind is
identified with its equivalence class of sorts and can be named by enclosing the name of one or
more of these sorts in square brackets [. . .]; when using more than one sort, they are separated
by commas.

For example, suppose we add a partial predecessor function to our NUMBERS module,

op p : NzNat -> Nat .

Then Maude will parse the term p(zero) and assign it the kind [Nat], or equivalently
[NatSeq] or also [Nat, NatSeq], since the sorts Nat and NatSeq belong to the same connected
component. Although any sort, or list of sorts in the connected component, can be enclosed
in brackets to denote the corresponding kind, Maude uses a canonical representation for kinds;
specifically, Maude prints the kind using a comma-separated list of the mazimal elements of
the connected component.

The Maude system also lifts automatically to kinds all the operators involving sorts of the
corresponding connected components to form error expressions. Such error expressions allow
us to give expressions to be evaluated the benefit of the doubt: if, when they are simplified,
they have a legal sort, then they are okay; otherwise, the fully simplified error expression is
returned, which the user can interpret as an error message. Equational simplification can also
occur at the kind level, so that operators can map error terms to defined terms, which may be
useful for error recovery.

It is also possible to explicitly declare operators at the kind level. This corresponds to
declaring a partial operation, which is defined for those argument values for which Maude can
determine that the resulting term has a sort. Note that the operation is considered to be total
at the kind level. As an example, consider the following fragment of a graph specification:

sorts Node Edge .
ops source target : Edge -> Node .

sort Path .
subsort Edge < Path .
op _;_ : [Path] [Path] -> [Path]

The sorts Node and Edge, along with the source and target operators mapping edges to
nodes, axiomatize the basic graph concepts. The sort Path is intended to be the paths through
the graph, sequences of edges with the target of one edge being the source of the next edge.
Edges are singleton paths, and _;_ denotes the partial concatenation operation, indicated by
giving kinds rather than sorts in the argument list. Later, in Section [4.3] we will see how to
specify when a sequence of edges has sort Path.

To emphasize the fact that an operator defined at the kind level in general defines only a
partial function at the sort level, Maude also supports a notational variant in which an (always
total) operator at the kind level can equivalently be defined as a partial operator between sorts
in the corresponding kinds, with syntax ‘>’ instead of ‘=>’ to indicate partiality. For example,
the above operator declaration can be equivalently specified by

op _;_ : Path Path "> Path .

36 CHAPTER 3. SYNTAX AND BASIC PARSING

More generally, the partial operator declaration
op (OpName) : (Sort-1) ... (Sort-k) ~> (Sort) .
is equivalent to the total operator declaration at the kind level
op (OpName) : [(Sort-1)1 ... [{Sort-k)] -> [(Sort)]

3.6 Operator overloading

Operators in Maude can be overloaded, that is, we can have several operator declarations for
the same operator with different arities and coarities. Consider extending our number module
with a new sort Nat3 (of natural numbers modulo 3), constants 0, 1, and 2 of sort Nat3, and
two further operator declarations for _+_.

op _+_ : NzNat Nat -> NzNat .
sort Nat3 .

ops 0 1 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 .

Now _+_ is overloaded, having three declarations. However, there are two different kinds
of overloading present in the example. The additional declaration of _+_ with first argument
NzNat is an example of subsort overloading. Here the two _+_ operators on Nat and NzNat are
supposed to have the same behavior on their shared argument values, that is, the operator on
the subsort NzNat is the restriction of the operator on the larger sort Nat. The main point
of such declarations is to give more sort information, for example that the result of adding a
nonzero natural number to any natural number is nonzero. Many more examples of this form of
overloading can be found in the predefined data modules for the number hierarchy (Chapter @
and in other modules throughout the manual.

In contrast, the sorts Nat and NzNat on the one hand, and the sort Nat3 on the other
belong to two different connected components in the subsort ordering and therefore natural
number addition and addition modulo 3 are semantically unrelated. This form of overloading
is called ad-hoc overloading. Both subsort and ad-hoc overloading of operators are allowed in
Maude. However, to avoid ambiguous expressions we require that if the sorts in the arities of
two operators with the same syntactic form are pairwise in the same connected components,
then the sorts in the coarities must likewise be in the same connected component.

Strictly speaking, this requirement would rule out ad-hoc overloaded constants. For this
reason, we have declared two different constants zero and 0 for the corresponding zero elements.
However, this requirement can be relaxed, and it is often natural to do so. For example, the
constants of a parameterized module (see Chapter [6.3)) can appear in many different connected
components for different instances of the module, and it may be cumbersome to rename them
all. To allow this relaxation, constants—and, more generally, terms (see Section [3.8)—can be
qualified by their sort, by enclosing them in parentheses followed by a dot and the sort name.
In this way, we could have instead declared 0 as an ad-hoc overloaded constant for natural
numbers and for natural numbers modulo 3, and could then disambiguate the expression 0 + 0
by writing, for example, 0 + (0).Nat and 0 + (0).Nat3, or (0 + 0).Nat and (0 + 0).Nat3.

3.7 Variables

A variable is constrained to range over a particular sort or kind. Variables can be declared
on-the-fly in Maude with syntax consisting of an identifier (the variable name), a colon, and

3.8. TERMS AND PREREGULARITY 37

another identifier (its sort) or kind expression (its kind). For example, N:Nat declares a variable
named N of sort Nat, and X: [Nat] declares a variable named X of kind [Nat].

The scope of an on-the-fly variable declaration is the declaration’s occurrence. Thus each
such variable must be accompanied by its sort or kind.

A variable can also be declared in a module using the keyword var followed by an identifier
(the variable name), followed by a colon with white space before and after, followed by an
identifier (its sort) or kind expression (its kind), followed by white space and a period.

var N : Nat .
var X : [Nat]

The scope of such a declaration is the entire module. It has the effect of replacing occurrences
of N and X by the on-the-fly versions N:Nat and X: [Nat].
Multiple variables of the same sort can be declared using the keyword vars.

vars M N : Nat .
vars X Y : [Nat]

Both upper and lower case names for variables are possible. However, upper case variable
names are more customary in Maude. The syntactic conventions for the acceptable names
of variables in variable declarations are the same as those for constant operators, that is, for
operators with empty arity. In particular, the underscore ‘.’ cannot be used in the name of a
variable, but the colon ‘:’ can; thus the scanning for in order to extract the appropriate
sort or kind from an on-the-fly variable declaration is done from right to left.

)

3.8 Terms and preregularity

A term is either a constant, a variable, or the application of an operator to a list of argument
terms. The sort of a constant or variable is its declared sort. In the application of an operator,
the argument list must agree with the declared arity of the operator. That is, it must be of the
same length, and each term must have sort (or at least kind) in the connected component of the
corresponding declared argument sort. Using prefix form—which can always be used for any
operator, regardless of having been declared with either prefix or mixfix syntax—the syntax
of operator application is the operator’s name followed by ‘(’, followed by a list of argument
terms separated by commas, followed by ‘)’. Here are some examples of prefix notation from
our numbers module.

s_(zero)
s_(sd(N:Nat, M:Nat))
p(s_(zero))
+(N:Nat, M:Nat)

The application of an operator declared with mixfix form also has a mixfix syntax: the
operator’s mixfix name with each underscore replaced by the corresponding term from the
argument list. The mixfix form of the above examples is

s zero
s sd(N:Nat, M:Nat)
p(s zero)

N:Nat + M:Nat

The kind of a term is the result kind of its topmost operator. For example, the kind of
p(s zero) is [Nat], since Nat is the result sort of p. If a module’s grammar is unambiguous
(see the discussion on parsing in the following section), then each term has a single kind. But

38 CHAPTER 3. SYNTAX AND BASIC PARSING

we can also associate sorts to terms. In general, even if the grammar is unambiguous, a term
may have several sorts, due to the subsort ordering. Specifically, constants have the sort they
are declared with and any supersort of it. Given a term of the form f(¢1,...,t,), if ¢; has
sort s; for ¢ = 1,...,n and there is an operator declaration f : s1...s, — s, then the term
f{t1,...,t,) has sort s and any of its supersorts. For example, in our example NUMBERS module
the term s s 0 has sorts NzNat and Nat.

A very desirable property of a module is that each term has a least sort that can be assigned
to it. Such a least sort gives us the most detailed information on how to classify such a term as a
data element. For example, the least sort of the term s s 0 is NzNat, and this gives us the most
precise classification of such a term in the sort hierarchy. Given an arbitrary signature X, we
can have terms that fail to have a least sort. However, if 3 satisfies a simple syntactic property
called preregularity [78], we can guarantee that any Y-term will have a least sort. We call X

preregular if for each n, given an n-argument function symbol f and sorts sy, ..., s, such that
flxy:s1,...,2p ¢ 8p) is a well-formed Y-term, then there is a least sort s among all the sorts
s appearing in (possibly overloaded) operator declarations of the form f :s},... s, — s in

¥ such that for 1 < i <n we have s; < s;. For example, the signature

sorts ABCD .
subsorts A < BC <D .
opa: —>A.
opf :B->B.
opf : C->C.

fails to be preregular, because for the sort A the term f (X:4) is a well-formed term, but there
is no least sort for the result of £ with arguments greater or equal to A, since either B or C can
be chosen as result sorts, and they are incomparable in the sort hierarchy. As a consequence,
both £(X:A) and f(a) do not have a least sort: they have sorts B, C, and D, and B and C are
minimal sorts among those sorts.

As already mentioned in Section [3.4] for the assoc attribute and further explained in Section
4.4.1) operators can be declared with equational axioms such as associativity (assoc), commu-
tativity (comm), and identity (id:). This means that, if we denote by A the corresponding
associativity and/or commutativity, and/or identity equations, we are not really interested in
syntactic terms ¢, but rather in equivalence classes modulo A, that is, in the equivalence class
[t] 4 of each term ¢, since all representatives of the class are viewed as equivalent representations.
Preregularity modulo A now means that we can assign a least sort not just to any well-formed
term ¢, but also to its equivalence class [t]4. As further explained in Section Maude
assumes that modules are preregular modulo whatever axioms such as assoc, comm, and id:
have been declared for operators, checks syntactic conditions ensuring preregularity modulo A,
and generates warnings when a module fails to satisfy such preregularity conditions.

A ground term is a term containing no variables: only constants and operators. Intuitively,
ground terms denote either data in case no equations apply to the term (for example, s zero
is data) or functional expressions indicating how an equationally defined function is applied
to data (for example, (s zero) + (s zero)). Ground terms modulo equations constitute the
initial algebra associated with a specification, as discussed later in Section [4.3

3.9 Parsing
As seen in previous sections, the Maude language supports user-definable syntax including

mixfix operator declarations. Parsing is done in stages. First Maude’s surface syntax is parsed
using a bison/flex-based parser. Operator declarations are extracted and are used to construct

3.9. PARSING 39

a grammar for language constructs that can contain terms. Finally those constructs are parsed
using a version of Leo’s algorithm for context-free grammars [91], which has been extended to
handle Maude-specific features including the precedence-gather mechanism and bubbles.

With mixfix syntax, the occurrence of ambiguities in the parsing of terms is very common.
Of course, we can always provide unambiguous grammars, which are frequently surprisingly
large, or use parentheses for breaking the possible ambiguities. But usually we would like to
have a more powerful alternative. Maude reduces such ambiguities by using a mechanism based
on precedence values and gathering patterns.

Let us assume the following declarations for some arithmetic expressions:

sort Nat .
ops 1 2 3 : -> Nat .
ops _+_ _*_ : Nat Nat -> Nat .

An expression like 1 + 2 * 3 is ambiguous, since both (1 + 2) * 3and 1 + (2 * 3) are
valid parses. This kind of ambiguity is usually solved by assigning a precedence to each of the
operators. In Maude, the precedence of an operator is given by a natural numberﬂ where a
lower value indicates a tighter binding.

Operator precedence then defines how an expression should be parsed when several operators
are present. We can assign a precedence to an operator with a precedence (abbreviated prec)
attribute, which takes the precedence value as an argument. For example, one would expect
multiplication to be evaluated before addition. Thus, we can give precedences, e.g., 33 and 31
to the operators _+_ and _*_, respectively, as follows:

op _+_ : Nat Nat -> Nat [prec 33]
op _*_ : Nat Nat -> Nat [prec 31]

The term 1 + 2 * 3 is now unambiguous: its only possible parse is 1 + (2 * 3).

Precedence can be overridden using parentheses; we can always write (1 + 2) * 3 in case
this is the term we are interested in. For those operators for which the user does not specify
a precedence value, a default one is given (see Section for a discussion on the default
precedence values). For example, both operators _+_ and _*_ above get 41 as their default
precedence, and hence the ambiguity.

The precedence mechanism is not enough, however. For example, the expression 1 + 2 + 3
is still ambiguous, because both parses (1 + 2) + 3 and 1 + (2 + 3) are possible. Usually,
programming languages define a way of associating operators to solve this kind of problems,
so that the associativity of the operators determines which is evaluated first. For example,
addition usually is left-associative, and therefore we expect to parse it as (1 + 2) + 3. In
Maude, we can specify not only the associativity of operators, but general gathering patterns
for each operator.

The gathering pattern of an operator restricts the precedences of terms that are allowed as
arguments. We give a (non-empty) sequence of as many E, e, or & values as the number of
arguments in the operator, that is, one of these values for each argument position:

e E indicates that the argument must have a precedence value lower or equal than the
precedence value of the operator,

e ¢ indicates that the argument must have a precedence value strictly lower than the prece-
dence value of the operator, and

e & indicates that the operator allows any precedence value for the corresponding argument.

3The maximum allowed precedence value is 231 — 1.

40 CHAPTER 3. SYNTAX AND BASIC PARSING

In fact, the precedence values work because of their combination with the gathering patterns.
For example, the precedence values given to _+_ and _*_ work as expected because their default
gathering pattern is (E E) (see Section , which forces them to be applied only to terms
of smaller or equal precedence value. Thus, 1 + (2 * 3) is a valid parse for 1 + 2 * 3. On
the other hand, since the precedence of a term is given by the precedence of its top operator,
(1 + 2) * 3isnot a valid parse for 1 + 2 * 3, because the term 1 + 2 has precedence value
33, which is greater than the precedence of _*_.

Moreover, by default, all constants have precedence 0 (see Section , and therefore they
are also valid arguments for both operators.

We can specify _+_ and _*_ as left-associative by giving to them gathering pattern (E e).

op _+_ : Nat Nat -> Nat [prec 33 gather (E e)]
op _*_ : Nat Nat -> Nat [prec 31 gather (E e)]

In this way, we force the second argument of these operators to be of a strictly lower precedence.
Then, a term with _+_ as top operator (or any other operator with the same precedence)
like 2 + 3 is nonvalid as second argument for _+_. But it would be valid as first argument,
since terms with equal precedence are allowed. Now the only possible parse for the expression
1+2+ 3is(1+2) + 3.

Note that parentheses could be described as an operator (_) with precedence 0 and gathering
pattern (&). Thus, any term can appear inside parentheses, and any subterm of a term can be
enclosed in parentheses.

3.9.1 Default precedence values

Maude associates default precedence values to those operators for which the user does not
specify this information as part of the operator declaration. The default precedence values are
entirely similar to those used by OBJ3 [[9]. The rules for the assignment of default precedence
values are:

e Operators with standard form (constants and prefix operators) always have precedence
0, regardless of user settings. The user cannot change the precedence value or gathering
pattern for operators in standard form.

e Mixfix operators which begin and end with something different from an underbar have
precedence 0. Operators as, for example, (_), <_:_|_>, and if_then_else_fi follow
this rule.

e Mixfix operators which begin or end with an underbar have precedence 15 for a unary
operator and 41 for everything else. Note that this ‘or’ is exclusive. Operators like, e.g.,
not_, _!, or to_:_ fall into this category.

e Mixfix operators which begin and end with an underbar have precedence 41. This rule
applies, e.g., to the operators __, _+_, _*_, and _7_:_.

3.9.2 Default gathering patterns

As for precedence values, Maude assigns default gathering patterns to all those operators for
which the user does not specify this information as part of the operator declaration. The
default gathering patterns are also entirely similar to those used by OBJ3 [79]. The rules for
the assignment of the default gathering patterns are:

3.9. PARSING 41

e All arguments of prefix operators have a gathering value &, regardless of the user specifi-
cation.

e If the underbar corresponding to an argument is not adjacent to another underbar, and it
is neither the leftmost nor the rightmost token in the operator, then the default gathering
value for such an argument is &. In other words, if an underbar appears between tokens dif-
ferent from the underbar, then its corresponding argument will have this default gathering
pattern. For example, the default gathering pattern for the operator if_then_else_fi
is (& & &), the default gathering pattern for the operator [_and then_] is (& &), and
the default gathering pattern for the operator (_) is (&).

e If the underbar corresponding to an argument is adjacent to another underbar, or if it
is the leftmost or the rightmost token in the operator, then the default gathering value
for such an argument is E. Thus, e.g., the default gathering pattern for the operator
not_ is (E), the default gathering pattern for the operator _7_:_is (E & E), the default
gathering pattern for the operator _+_ is (E E), and the default gathering pattern for the
operator __is (E E).

Those binary operators which start with an underscore, end with an underscore, and have
a precedence greater than 0 are handled as special cases:

— The operator will have gathering pattern (e E) if it has the assoc attribute (see
Section 4.4.1)). For example, the following operators fall into this category.

op _+_ : Nat Nat -> Nat [assoc]
op _*_ : Nat Nat -> Nat [assoc]
op __ : NatList NatList -> NatList [assoc]

— If the operator does not have the assoc attribute, but its first argument, its last
argument, and its coarity are in the same connected component of sorts, then:

1. if the subsort relations allow it to right-associate but not left-associate, then the
first argument’s gathering pattern will change to e, and

2. if the subsort relations allow it to left-associate but not right-associate, then the
last argument’s gathering pattern will change to e.

Assuming Int < IntList, then the operators

op _<:_ : Int IntList -> IntList .
op _:>_ : IntList Int -> IntList .

have, by default, gathering patterns (e E) and (E e), respectively. According to the
general rule, since their argument bars are the leftmost and the rightmost tokens, the
gathering pattern should be (E E) for both of them. However, both operators fall
into the second special case, since they are binary operators which start and end with
underscores, have a precedence greater than 0 (by default 41), and are not declared
associative. Given the subsort relation, the operator _<:_ may right-associate, but
not left-associate, that is, 1 <: 2 <: 3 should be parsed as 1 <: (2 <: 3), but
(1 <: 2) <: 3 should not be a valid parse. Therefore, _<:_ gets default gathering
pattern (e E). And similarly for _:>_, although in this case it can left-associate,
and therefore it gets default gathering pattern (E e).

42 CHAPTER 3. SYNTAX AND BASIC PARSING

3.9.3 The extended signature of a module

In addition to the signature defined by the user, parsing of terms takes place in an ex-
tended grammar in which information for handling parentheses, sort and equality predicates,
if_then_else_fi, and qualification operators are included. These structures belong to the
so-called extended signature of a module. The main structures added in the extended signature
of a module are:

e Sort disambiguation. For each sort S in the signature of a module, Maude adds to the
signature the operator

op (). :8S->8.

This helps in the disambiguation of ad-hoc overloaded constants and terms. As an exam-
ple, remember from Section that if we declare 0 as an ad-hoc overloaded constant for
natural numbers and for natural numbers modulo 3, then we can disambiguate the expres-
sion 0 + 0 by writing, for example, 0 + (0).Nat and 0 + (0).Nat3, or (0O + 0).Nat
and (0 + 0).Nat3. As another example, in the module META-MODULE (see Section ,
the term none is ambiguous, since the operator none is used as the empty set of operator
declarations, equations, rules, etc. We can disambiguate it by writing (none) .OpDeclSet.
Of course, these disambiguation operators can be used not only for constants, but for any
term. For example, we can write (2 + 3) .Nat as a valid term in the predefined module
NAT.

e Parentheses. The extended signature of a module contains the operator

op (L) : 8->8.

for each sort S in its signature. These operators allow the use of parentheses without hav-
ing to declare a parentheses operator for each sort. For example, (2 + 3), (2 + 3) + 5,
(2 + (3) + 5), (((2 + 3)) + 5), are all valid terms in NAT, thanks to these declara-
tions.

e Equivalent single-identifier form for all operators. Each declared operator, including those
in mixfix form, may also be used in their equivalent single-identifier prefix form. For
example, in the NAT module, the term _+_(2, 3) is equivalent to 2 + 3, and the terms
if true then 2 + 3 else - 3 fi and if_then_else_fi(true, _+_(2, 3), -_(3))
are equivalent; any combination is possible so if_then_else_fi(true, 2 + 3, - 3) is
also valid.

o Flattened associative argument lists. Operators with the attribute assoc may be used in
Maude in a nonparenthesized flattened form (see Section . This is possible thanks to
the precedence-gathering values in mixfix notation, but it is also possible in prefix syntax.
For example, gcd(2, 3, 4) is a valid term in NAT, where gcd is the greater common divi-
sor operator, which is declared as a binary associative operator. Of course, this term can
always be written in the standard format as gcd (2, gcd(3, 4)) or gcd(gecd(2, 3), 4).
Furthermore, we can combine this possibility with the single-identifier form to write things
like _+_(2, 3, 4) instead of _+_(_+_(2, 3), 4) or _+_(2, _+_(3, 4)), but of course,
since _+_ is declared with the assoc attribute in the predefined module NAT, we can just
write 2 + 3 + 4.

e Polymorphic operators and the BOOL module. All the information contained in the prede-
fined modules TRUTH-VALUE, TRUTH, BOOL-0PS, and BOOL is included in the extended signa-
ture of each module (unless this inclusion is explicitly disabled). In particular, appropriate

3.9. PARSING 43

instances of the polymorphic operators contained in TRUTH (that is, if_then_else_fi,
==, and _=/=_) are generated for each sort in the module; in addition, for each sort 8,
a sort predicate _:: S is also added. All these modules and operators are fully explained

in Section [T.1l

3.9.4 Parsing examples

Maude provides the parse command for parsing terms. The command does not do anything
other than parsing the given term in the extended signature of the module. This is exactly what
is done when a term appears in a command, before executing such a command. For example,
when we try to reduce a term (2 + 3) * 5, the system first parses it and then reduces it. If
the term is ambiguous, or there is no parse for it, an error message is given and no further
action takes place.

Maude> reduce in NAT : 2 + true .
Warning: <standard input>, line 1:

didn’t expect token true: 2 + true <---*HERE*
Warning: <standard input>, line 1: no parse for term.

For testing the parsing of terms we can use the parse command.

Maude> parse in NAT : 2 + true .
Warning: <standard input>, line 1:

didn’t expect token true: 2 + true <--—*HERE*
Warning: <standard input>, line 1: no parse for term.

As other commands, parsing can take place either in the module explicitly mentioned in the
command or in the current module.

We illustrate the use of the parse command for the examples introduced in the previous
sections. Let us first consider a module PARSING-EX1 with constants 1, 2, and 3, and binary
operators _+_ and _*_.

fmod PARSING-EX1 is
sort Nat .
ops 1 2 3 : -> Nat .
ops _+ *_ : Nat Nat -> Nat .

endfm

Since _+_ and _*_ are declared without precedence values, and therefore both get the default
value 41, we obtain the following result.

Maude> parse 1 + 2 * 3 .
Warning: <standard input>, line 13: ambiguous term, two parses are:
1+ (2 * 3) -versus- (1 + 2) * 3
Arbitrarily taking the first as correct. Nat: 1 + (2 * 3)
As a first solution, we may consider using parentheses.
Maude> parse in PARSING-EX1 : 1 + (2 x 3)
Nat: 1 + (2 % 3)
Maude> parse in PARSING-EX1 : (1 + 2) * 3 .
Nat: (1 + 2) * 3

Let us now consider the module PARSING-EX2, where _+_ and _*_ are declared with prece-
dences 33 and 31, respectively.

44 CHAPTER 3. SYNTAX AND BASIC PARSING

fmod PARSING-EX2 is
sort Nat .
ops 1 2 3 : -> Nat .
op _+_ : Nat Nat -> Nat [prec 33]
op _*_ : Nat Nat -> Nat [prec 31]
endfm

Now, parentheses are not necessary for parsing the term 1 + 2 * 3.

Maude> parse in PARSING-EX2 : 1 + 2 * 3 .
Nat: 1 + 2 % 3

Of course, we may still use parentheses.

Maude> parse in PARSING-EX2 : (1 + 2) * 3 .
Nat: (1 + 2) * 3

Since the default gathering patterns for binary operators like _+_ and _*_is (E E), a term
like 1 + 2 + 3 is ambiguous.

Maude> parse in PARSING-EX2 : 1 + 2 + 3 .
Warning: <standard input>, line 30: ambiguous term, two parses are:
1+ (2 + 3) -versus- (1 + 2) + 3

Arbitrarily taking the first as correct. Nat: 1 + (2 + 3)

As above, we may use parentheses to parse such terms.

Maude> parse in PARSING-EX2 : (1 + 2) + 3 .
Nat: (1 + 2) + 3

Maude> parse in PARSING-EX2 : 1 + (2 + 3)
Nat: 1 + (2 + 3)

Let us now consider the module PARSING-EX3, where _+_ and _*_ are declared to be left-
associative, that is, with gathering patterns (E e).

fmod PARSING-EX3 is
sort Nat .
ops 1 2 3 : -> Nat .
op _+_ : Nat Nat -> Nat [prec 33 gather (E e)]
op _*_ : Nat Nat -> Nat [prec 31 gather (E e)]
endfm

Now, the terms above have unambiguous parses.

Maude> parse in PARSING-EX3 : 1 + 2 * 3 .
Nat: 1 + 2 x 3

Maude> parse in PARSING-EX3 : 1 + 2 + 3 .
Nat: 1 + 2 + 3

Let us now consider the module PARSING-EX4, where _+_ and _*_ are declared to be asso-
ciative. Note that in this case, by default, they are assigned gathering patterns (E e).

fmod PARSING-EX4 is
sort Nat .
ops 1 2 3 : -> Nat .
op _+_ : Nat Nat -> Nat [prec 33 assoc]
op _*_ : Nat Nat -> Nat [prec 31 assoc]
endfm

3.9. PARSING

Maude>
Nat: 1

Maude>
Nat: 1

parse in PARSING-EX4 :

+ 2 % 3

parse in PARSING-EX4 :

+2+3

1

1

+ 2 % 3 .

+2+ 3.

45

We illustrate the use of the extended signature in which all terms are parsed with the

following

Maude>
Nat: 2

Maude>
Nat: 2

Maude>
Nat: 2

Maude>
Nat: 1

Maude>
Nat: 1

Maude>
Nat: 1

Maude>
Nat: if

Maude>

Nat: if

examples.

parse in PARSING-EX1 :

+ 3

parse in PARSING-EX1 :

+ 3

parse in PARSING-EX1 :

+ 3

parse in PARSING-EX1 :

+ (2 + 3)

parse in PARSING-EX1 :

+ (2 + 3)

parse in PARSING-EX4 :

+ 2+ 3

parse in PARSING-EX4 :

(

(

(2).Nat + (3).Nat .

(@ + (2 + 3N

i

2 + 3).Nat .

2).Nat + 3 .

+ (1, _+_(2, 3))

s =T

+.(1, 2, 3)

f 1 == 2 then 1 + 2 else

1 ==2then 1 + 2 else 1 + 2 fi

parse in PARSING-EX4 :

if _==_(1, 2)

then if_then_else_fi(1 + 2 ::

else _+_(1, 2)
fi .
1 ==

then if (1 + 2) :: Nat

then 1 * 1
else 2 * 1
fi

else 1 + 2

fi

+_(1, 2) fi .

Nat, 1 *x 1, 2 % 1)

46

CHAPTER 3. SYNTAX AND BASIC PARSING

Chapter 4

Functional Modules

Functional modules define data types and operations on them by means of equational theories.
The data types consist of elements that can be named by ground terms. Two ground terms
denote the same element if and only if they belong to the same equivalence class as determined
by the equations. That is, the mathematical semantics of a functional module is its initial
algebra. Maude’s functional modules are assumed to have the nice property that equations,
considered as simplification rules by using them only in the left to right direction, are Church-
Rosser and terminating (see Section. This means that repeated application of the equations
as simplification rules eventually reaches a term to which no further equations apply, and the
result, called the canonical form, is the same regardless of the order of application of the
equations. Thus each equivalence class has a natural representative, its canonical form, that
can be computed by equational simplification. As explained in Section this ensures that
the initial algebra and the canonical term algebra of the functional module are isomorphic, and
therefore that the module’s mathematical and operational semantics coincide.

The equational logic on which Maude functional modules are based is an extension of
order-sorted equational logic [78] called membership equational logic [106, I7]. Thus, func-
tional modules support multiple sorts, subsort relations, operator overloading, and assertions
of membership in a sort.

As was mentioned in Section a functional module is declared in Maude using the key-
words

fmod (ModuleName) is (DeclarationsAndStatements) endfm

For example,

fmod NUMBERS is

endfm
declares a module named NUMBERS. The dots stand for the actual declarations and statements
that may appear in the functional module. Declarations include the importation of other
functional modules (see Chapter @, and sort, subsort, and operator declarations. Statements

include equational and membership axioms. Declarations were discussed in Chapter [3] What
remains to be explained are equational and membership statements.

47

48 CHAPTER 4. FUNCTIONAL MODULES

4.1 Unconditional equations

Unconditional equations are declared using the keyword eq, followed by a term (its lefthand
side), the equality sign =, then a term (its righthand side), optionally followed by a list of
statement attributes (see Section later in this chapter) enclosed in square brackets, and
ending with white space and a period. Thus the general scheme is the following:

eq (Term-1) = (Term-2) [(StatementAtiributes)]

The terms t and t’ in an equation t = t’ must both have the same kind. In order for the
equation to be executable, any variable appearing in t’ must also appear in t. Equations not
satisfying this requirement can also be declared (for example, to document a lemma holding
true in the module) but in such a case they should always be specified with the nonexec
attribute (see Section . We can add equations axiomatizing the addition operation in our
NUMBERS module as follows, where we distinguish two cases for the second argument, according
to whether it is zero or not:

vars N M : Nat .
eq N + zero = N .
eq N+sM=s (N+M

The following equations define the symmetric difference operation sd on natural numbers,
which returns the result of subtracting the smaller from the larger of its two arguments.

eq sd(N, N) = zero .
eq sd(N, zero) = N .
eq sd(zero, N) = N .
eq sd(s N, s M) = sd(N, M) .

In general, in a functional module one can specify equations (and also conditional equations,
as explained in Section [4.3)) in three different ways:

1. in the style given above, in which case they are assumed to be executable as simplification
rules from left to right;

2. in the same style as above, but with the nonexec attribute (see Section [4.5.3)), in which
case Maude does not use them for simplification (except at the metalevel with a user-given

strategy, see Section [17.7)); and
3. as equational attributes of specific operators (see Section 4.4.1)).

For example, a binary operator £ can be declared assoc and comm, telling Maude that it
satisfies the associativity and commutativity axioms. Such equational attributes should not be
written explicitly as equations in the specification. There are two reasons for this. Firstly, this is
redundant, since they have already been declared as equational attributes. Secondly, although
declaring such equations either only explicitly as equations, or twice—one time as equational
attributes and another as explicit equations—does not affect the mathematical semantics of the
specification, that is, the initial algebra that the specification denotes (see Section , it does
however drastically alter the specification’s operational semantics. For example, if the comm
attribute for £ were to be stated as an equation £ (X, Y) = f£(Y, X), then using the equation
as a simplification rule applied to the term, say, f(a, b), would lead to the nonterminating
chain of equational simplifications

f(a, b) = f(b, a) = f(a, b) = f(b, a) = ...

4.2. UNCONDITIONAL MEMBERSHIPS 49

This is quite bad, since we want the equations specified by method (1) to be used as
simplification rules and assume them to be terminating and Church-Rosser, so that they always
simplify a term to a unique result that cannot be further simplified. Instead, if comm is declared
as an equational attribute, the above kind of looping does not happen: Maude then simplifies
terms modulo the declared equational attributes, so that the terms f (a, b) and £(b, a) would
indeed be treated as identical. For more on equational attributes see Section

4.2 Unconditional memberships

Unconditional membership axioms specify terms as having a given sort. They are declared with
the keyword mb followed by a term, followed by ¢:’; followed by a sort (that must always be
in the same kind as that of the term), followed by a period. As equations, memberships can
optionally have statement attributes (see Section [4.5)).

mb (Term) : (Sort) [(StatementAttributes)]

To illustrate this, consider the module 3*NAT with the basic Peano number declarations as
in the NUMBERS module and a new sort 3*Nat.

The fact that 3#Nat consists of multiples of 3 is expressed using the subsort declaration
Zero < 3*Nat < Nat and the membership statement mb (s s s M3) : 3xNat for M3 a vari-
able of sort 3*Nat.

fmod 3*NAT is
sort Zero Nat .
subsort Zero < Nat .
op zero : —> Zero .
op s_ : Nat -> Nat .

sort 3*xNat .

subsorts Zero < 3*Nat < Nat .

var M3 : 3*Nat .

mb (s s s M3) : 3*Nat .
endfm

Memberships axioms can interact in undesirable ways with operators that are declared with
the assoc or iter attributes (see later Sections and respectively). This is explained
and illustrated with examples in Sections [20.3.8] and [20.3.9}

4.3 Conditional equations and memberships

FEquational conditions in conditional equations and memberships are made up of individual
equations ¢ = ¢’ and memberships ¢ : s. A condition can be either a single equation, a single
membership, or a conjunction of equations and memberships using the binary conjunction
connective /\ which is assumed to be associative. Thus the general form of conditional equations
and memberships is the following:

ceq (Term-1) = (Term-2)
if (EqCondition-1) /\ ... /\ (EqCondition-k)
[(StatementAttributes)]

cmb (Term) : (Sort)
if (EqCondition-1) /\ ... /\ (EqCondition-k)
[(StatementAttributes)]

o0 CHAPTER 4. FUNCTIONAL MODULES

Furthermore, the concrete syntax of equations in conditions has three variants, namely:
e ordinary equations t = t’,
e matching equations t := t’, and

e abbreviated Boolean equations of the form t, with t a term in the kind [Bool], abbrevi-
ating the equation t = true.

Any term t in the kind [Bool] can be used as an abbreviated Boolean'] equation. The
Boolean terms appearing most often in abbreviated Boolean equations are terms using the
built-in equality _==_ and inequality _=/=_ predicates, and the built-in membership predicates
:: S with S a sort, including Boolean combinations of such terms with not, _and_, _or_ and
other Boolean connectives (see Section for a detailed description of all these operators). For
example, the following Boolean terms in the NUMBERS module (assuming that a “greater than”
operator _>_ has also been defined in NUMBERS),

N == zero

M =/= s zero

not (K :: NzNat)

(N > zero or M =/= s zero)

can appear as abbreviated Boolean equations in a condition, abbreviating, respectively, the
equations:

(N == zero) = true

(M =/= s zero) = true

not (K :: NzNat) = true

(N > zero or M =/= s zero) = true

To illustrate the use of conditional equations and memberships, let us reconsider the path
example from Section [3.5] The following conditional statements express the key membership
defining path concatenation and the associativity of this operator:

var E : Edge .
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P)
ceq (P ; Q@ ; R=P; (Q; R
if target(P) = source(Q) /\ target(Q) = source(R)

The conditional membership axiom (introduced by the keyword cmb) states that an edge
concatenated with a path is also a path when the target node of the edge coincides with the
source node of the path. This has the effect of defining path concatenation as a partial operation
on paths, although it is total on the kind [Path] of “confused paths.”

Assuming variables P, E, and S declared as above, source and target operations over paths
are defined by means of conditional equations with matching equations in conditions as followsﬂ

ceq source(P) = source(E) if E ; S := P .
ceq target(P) = target(S) if E ; S := P .

Matching equation&ﬂ are mathematically interpreted as ordinary equations; however, opera-
tionally they are treated in a special way and they must satisfy special requirements. Note that

1By default, any Maude module imports the predefined BOOL module (see Section .
2Note that the source and target operations can equivalently be declared as

eq source(E ; S) = source(E) .

eq target(E ; S) = target(S) .
3Similar constructs are used in languages like ASF+SDF [42] and ELAN [12].

4.3. CONDITIONAL EQUATIONS AND MEMBERSHIPS 51

the variables E and S in the above matching equations do not appear in the lefthand sides of the
corresponding conditional equations. In the execution of these equations, these new variables
become instantiated by matching the term E ; S against the canonical form of the subject term
bound to the variable P (see Section . In order for this match to decide the equality with
the ground term bound to P, the term E ; S must be a pattern. Given a functional module M,
we call a term ¢ an M -pattern if for any well-formed substitution o such that for each variable
z in its domain the term o(x) is in canonical form with respect to the equations in M, then
o(t) is also in canonical form. A sufficient condition for ¢ to be an M -pattern is the absence of
unifiers between its nonvariable subterms and lefthand sides of equations in M.

Ordinary equations ¢t = ¢’ in conditions have the usual operational interpretation, that is, for
the given substitution o, o(t) and o(t’) are both reduced to canonical form and are compared
for equality, modulo the equational attributes specified in the module’s operator declarations
such as associativity, commutativity, and identity. Finally, abbreviated Boolean equations are
just a special case of ordinary equations once they are expanded out.

The satisfaction of the conditions is attempted sequentially from left to right. Since in
Maude matching takes place modulo equational attributes, in general many different matches
may have to be tried until a match of all the variables satisfying the condition is found.

The above equations for source and target illustrate the use of matching equations to
bind variables locally, in much the same way that let is used in some functional programming
languages. In this example, since the matching is purely syntactic, the matching substitution is
unique and gives a simple way to name parts of a structure or to name a complicated expression
which appears multiple times in the main equation.

For M-patterns where some operators are matched modulo some equational attributes,
matching substitutions need not be unique. This provides another way of using matching
equations, namely to perform a search through a structure without any need to explicitly
define a function that does this. For example, for sequences of natural numbers we can define
a predicate _occurs-inner_ that determines if a number occurs in a sequence other than at
one of the ends. If one only cares about positive results[T] the following will work.

op _occurs-inner_ : [Nat] [NatSeq]l -> [Bool]
ceq N:Nat occurs-inner NS:NatSeq = true
if (NSO:NatSeq N:Nat NS1:NatSeq) := NS:NatSeq .

Note that this equation could also be written as
eq N:Nat occurs-inner NSO:NatSeq N:Nat NS1:NatSeq = true .

In both cases we check whether the sequence contains the natural number N:Nat, but making
sure that the sequence contains other elements both before and after N:Nat['] With the above
definition added to the numbers module, the term

zero occurs-inner (zero zero zero zero zero)

reduces to true, while the term

4Note that, since when the predicate is not true it remains unevaluated, we have defined it at the kind level,
that is, as a partial Boolean function; however, using the owise attribute (see Section it is very easy to
add an extra equation making _occurs-inner_ a total Boolean function.

5Note that here we assume the declaration of the NatSeq concatenation operator __ as given in page
where it is declared to be associative. If we consider the declaration of this operator given in page which is
also declared to have nil as identity element, then we should write this equation as

op _occurs-inner_: [Nat] [NatSeql -> [Booll

ceq N:Nat occurs-inner NS:NatSeq = true

if (I:Nat NSO:NatSeq N:Nat NS1:NatSeq M:Nat) := NS:NatSeq .

since the variables NSO:NatSeq and NS1:NatSeq might be instantiated to nil.

52 CHAPTER 4. FUNCTIONAL MODULES

zero occurs-inner (zero zero)

does not reduce further.

Matching equations in conditions give great expressive power, but some care is needed in
using them to define operations. Consider adding the following to the numbers module, in an
attempt to define a test for the presence of s s zero in a sequence of natural numbers.

op hasTwo : [NatSeql -> [Booll
ceq hasTwo(NS:NatSeq) = N:Nat == s s zero
if NSO:NatSeq N:Nat NS1:NatSeq := NS:NatSeq .

With this addition to the numbers module, hasTwo(zero zero) does not get reduced, since
the condition requires at least three numbers in the sequence. The term hasTwo(zero (s s
zero) zero) reduces to true. The term hasTwo(zero (s zero) (s s zero) zero) also gets
reduced, although it may return true or false; probably not what was intended. The problem
is that there are several matches, each giving a different answer, so the conditional equation
does not define a function. In fact, this conditional equation causes the Church-Rosser property
to fail, and semantically identifies true and false, thus leading to an inconsistent theory. In
contrast, as will be seen in Chapter 5| a rule with such a matching condition is not a problem,
and does have the effect of searching a sequence of natural numbers for s s zero.

In summary, all the sort, subsort, and operator declarations and all the statements in a
functional module (plus the functional modules imported if any) define an equational theory
in membership equational logic [106, [17]. Such a theory can be described in mathematical
notation as a pair (X, E U A), where ¥ is the signature, that is, the specification of the sorts,
subsorts, kinds, and operators in the module, F is the collection of statements (equations and
memberships, possibly conditional) and A is the set of equational attributes, such as assoc and
comm, declared for some operators (that is, extra equations that are treated in a special way by
the Maude interpreter to simplify modulo such attributes, see Section |4.4.1)).

The family of ground terms definable in the syntax of ¥ defines a model called a >-algebra
and denoted Tx. In Ty, terms syntactically different denote different elements, so that Ty will
not satisfy the equations in EF'U A, unless they are trivial equations such as f(X) = f(X). The
question is, what is the optimal model of the theory (X, FU A)? Goguen and Burstall’s answer
is: a model satisfying the axioms F U A and such that it has no junk (that is, all elements can
be denoted by ground X-terms), and no confusion (that is, only elements that are forced to
be equal by the axioms E U A are identified). Such a model, called the initial algebra of the
equational theory (X, E'U A), exists [106], is denoted T, pua, and provides the mathematical
semantics of the Maude functional module specifying (X, F U A).

Mathematically, Ty pua can be constructed as the quotient of T in which the equivalence
classes are those terms that are provably equal using the axioms EUA. Operationally, assuming
that the axioms E are Church-Rosser and terminating modulo A (see Section , there is a
much more intuitive equivalent description of Tx,pua, namely as the family of canonical forms
for the ground X-terms modulo A, that is, those terms that cannot be further simplified by the
equations in ' modulo A. That is, as explained in Section we have then an isomorphism

Ts/pua = Canspua

between the initial algebra Tx,pu4 and the canonical term algebra Cans pua-
The Maude interpreter computes such canonical forms, which can be viewed as the values de-

noted by the corresponding functional expressions, with the reduce command (see Section m
for details and Section for examples).

4.4. OPERATOR ATTRIBUTES 93

4.4 Operator attributes

Operator declarations may include attributes that provide additional information about the
operator: semantic, syntactic, pragmatic, etc. All such attributes are declared within a single
pair of enclosing square brackets, ‘[’ and ‘]’ after the sort of the result and before the ending
period. We discuss each of the categories of operator attributes below.

4.4.1 Equational attributes

Equational attributes are a means of declaring certain kinds of equational axioms in a way that
allows Maude to use these equations efficiently in a built-in way. Currently Maude supports
the following equational attributes:

e assoc (associativity),

e comm (commutativity),

e idem (idempotency),

e id: (Term) (identity, with the corresponding term for the identity element),

o left id: (Term) (left identity, with the corresponding term for the left identity element),
and

e right id: (Term) (right identity, with the corresponding term for the right identity
element).

An operator can be declared with several of these attributes, which may appear in any order
in the attribute declaration. However, these attributes are only allowed for binary operators
satisfying the following requirements:

e For left id:, it is required that the right domain sort and the range sort belong to the
same kind.

e For right id:, it is required that the left domain sort and range sort belong to the same
kind.

e For assoc, comm, id:, and idem, both domain sorts and the range sort must belong to
the same kind.

These requirements are checked at parse time, and if the check fails a warning is output and
the operator loses its attributes.
Furthermore, we have the following additional requirements:

e The attribute idem cannot be used in any combination of attributes that includes assoc,
because the necessary matching and normalization algorithms have not been implemented
yet. This requirement is quietly enforced by ignoring the attribute idem where necessary.

e Only one identity attribute (left id:, right id:, or id:) is allowed. This is enforced
by a warning and by ignoring all but the first such attribute.

e Combining the attribute comm with either left id: or right id: silently turns the
identity attribute into an id:.

o4 CHAPTER 4. FUNCTIONAL MODULES

e All subsort-overloaded instances of an operator must have the same attributes. This is
further explained in Section [£.4.6]

Semantically, declaring a set of equational attributes for an operator is equivalent to declar-
ing the corresponding equations for the operator. Operationally, using equational attributes to
declare such equations avoids termination problems and leads to much more efficient evaluation
of terms containing such an operator. In fact, the effect of declaring equational attributes is to
compute with equivalence classes modulo such equations. This, besides being very expressive,
avoids what otherwise would be insoluble termination problems. For example, if a commutativ-
ity equation like x + y = y + xis declared as an ordinary equation, then it will easily produce
looping, nonterminating simplifications. If it is instead declared with an equational attribute
comm, this looping behavior does not happen.

In our numbers example we can add a constant nil for the empty sequence and refine the
declaration of sequence concatenation so that concatenation is associative with identity nil.

op nil : -> NatSeq .
op __ : NatSeq NatSeq -> NatSeq [assoc id: nil]

As another example, we can form lists of Booleans as a supersort BList of Bool in an
extension of the BOOL module (see Section [7.1]) with a “cons” operator _._ having nil as a
right identity:

sort BList .

subsort Bool < BList .

op nil : -> BList .

op _._ : Bool BList -> BList [right id: nill

Note that, when equational attributes are declared, equational simplification using the other
equations in the module does not take place at the purely syntactic level of replacing syntactic
equals by equals, but is understood modulo the equational attributes. Therefore, the proper
understanding of the notions of Church-Rosser and terminating equations, and of canonical
forms, is now modulo the equational attributes that have been declared. We discuss matching
and equational simplification modulo axioms in Section [4.8]

For example, by declaring the addition operation on natural numbers modulo 3 as commu-
tative,

op _+_ : Nat3 Nat3 -> Nat3 [comm]

it is enough to have the following equations to define its behavior on all possible combinations
of arguments:

vars N3 : Nat3 .
eq N3 + 0 = N3 .
el +1=2.

eql + 2=
eq 2 + 2

]
= O

The equations

eq O + N3 = N3 .
eq2+1=0.

are not needed, because they are subsumed by the first and third equations above, due to
commutativity of _+_.

Notice that membership axioms and matching modulo associativity can interact in undesir-
able ways, as explained in Section

4.4. OPERATOR ATTRIBUTES 99

4.4.2 The iter attribute

Maude provides a built-in mechanism called the iter (short for iterated operator) theory whose
goal is to permit the efficient input, output, and manipulation of very large stacks of a unary
operator.

Unary operators may be declared to belong to the iter theory by including iter in their
attributes. After declaring

sort Foo .
op £ : Foo -> Foo [iter]

the term £ (f (f (X:Foo0))) can be input as £~3(X:Foo) and will be output in that form. A term
such as £71234567890123456789(X:Foo) is too large to be input, output or manipulated in
regular notation, but can be input and output in this compact notation and certain (built-in)
manipulations may thus be made efficient.

The precise form of the compact iter theory notation is the prefix name of the operator
followed by ~[1-9] [0-9]* (in Lex regular expression notation) with no intervening white space.
Note that £70123(X:Foo) is not acceptable. Of course, regular notation (and mixfix notation
if appropriate) can still be used.

Membership axioms may also interact in undesirable ways with operators declared with the
iter attribute; see Section for details.

4.4.3 Constructors

Assuming that the equations in a functional module are (ground) Church-Rosser and termi-
nating, then every ground term in the module (that is, every term without variables) will be
simplified to a canonical form, perhaps modulo some declared equational attributes. Construc-
tors are the operators appearing in such canonical forms. The operators that “disappear” after
equational simplification are instead called defined functions. For example, typical construc-
tors in a sort Nat are zero and s_, whereas in the sort Bool, true and false are the only
constructors.

It is quite useful for different purposes, including both debugging (see Chapter and
theorem proving, to specify when a given operator is a constructor. This can be done with
the ctor attribute. For example, we can refine our operator declarations in Section with
constructor information as follows:

op zero : -> Zero [ctor]
op s_ : Nat -> NzNat [ctor]

op nil : -> NatSeq [ctor].
op __ : NatSeq NatSeq -> NatSeq [ctor assoc id: nil]

Three slightly subtle points should be mentioned, namely the relationships of constructors to
operator overloading, to kinds, and to equations. The first key observation is that constructor
declarations are local to given sorts for the arguments and for the result. Nothing prevents an
operator from being a constructor at some level in the subsort ordering but being a defined
function at another. For example, we could have declared a successor function for integers,

op s_ : Int -> Int .

which is not a constructor. Indeed, we can define the sort Int with a subsort NzNeg of nonzero
negative numbers built up with a unary minus constructor —_, and we can then specify both
unary minus -_ and successor s_ as defined functions on the integers by giving the equations:

sorts NzNeg Int .
subsorts Nat NzNeg < Int .

o6 CHAPTER 4. FUNCTIONAL MODULES

op -_ : NzNat -> NzNeg [ctor]
op —_ : Int -> Int .
op s_ : Int -> Int .

var N : Nat .
eq - zero = zero .

eq - (- (sN) =sN.
eqs (- (sN) =-N.

A related observation is that a defined function, which totally disappears at some level in
the subsort ordering, might not go away for terms at the kind level. For example, even though
addition may be a defined function, we may encounter an arithmetic error expression in a kind
of numbers such as

(s s zero) + p zero
because the predecessor function p has been declared on nonzero natural numbers.
op p : NzNat -> Nat .

The last point is that constructors may obey certain equations; that is, they do not have to
be free constructors. The equations that they may obey (even as constructors, not just in other
overloaded variants such as the integer successor function above) may be either equational
attributes (such as the assoc attribute in the above concatenation operator for strings of
natural numbers), or ordinary equations, or both. For example, we can add a sort NatSet of
finite sets of natural numbers to our NUMBERS module by declaring a set union operation _;_
using equational attributes to declare that it is associative and commutative with identity the
empty set, and using an ordinary equation to express idempotencyﬁ

sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet [ctor]

op _;_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty]
eq N ; N=N .

Given an equational specification in which several operators have been declared as construc-
tors by means of the ctor attribute and such that the equations are terminating, the sufficient
completeness problem consists in verifying that the canonical forms of all well-typed ground
terms are constructor terms. Intuitively, this means that all defined operations (i.e., those that
are not declared as constructors) have been fully defined. Maude’s Sufficient Completeness
Checker (SCC) can be used to ensure that constructor declarations are really correct, so that
all functions are fully defined relative to those constructors. We can take the NUMBERS module,
incrementally introduced in Chapter [3| and the previous sections of this chapter, to illustrate
how the SCC can be used to help the specifier in this regard.

fmod NUMBERS is
sort Zero .
sorts Nat NzNat .
subsort Zero NzNat < Nat .
op zero : -> Zero [ctor]
op s_ : Nat -> NzNat [ctor]
op sd : Nat Nat -> Nat .

6Remember that the idem attribute cannot be specified together with an assoc attribute; therefore idempo-
tency must in this case be specified explicitly by an equation.

4.4. OPERATOR ATTRIBUTES o7

ops _+_ _*_ : Nat Nat -> Nat

op _+_ : NzNat Nat -> NzNat
op p : NzNat -> Nat .

vars I N M : Nat

eq N + zero = N .

eq N+sM=s (N+M

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M)

sort Nat3 .

ops 01 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 [comm]
vars N3 : Nat3 .

eq N3 + 0 = N3 .

eql +1=2.
eql1+2=0
eq2+2=1

sort NatSeq .

subsort Nat < NatSeq .

op nil : -> NatSeq [ctor].

op __ : NatSeq NatSeq -> NatSeq [ctor assoc id: nil]

sort NatSet
subsort Nat < NatSet
op empty : -> NatSet [ctor].

op _;_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty]
eq N ; N=DN .
endfm

For expository reasons, since the ctor declaration had not yet been explained, some oper-
ators and constants were declared without the ctor attribute when they were introduced in
Section[3.6] The SCC reports the first term it finds not reducible to a constructor. In this case,
the first such report we get is the following:

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which
will be ignored when checking.

Failure: The term O was found to be a counterexample. Since the
analysis is incomplete, it may not be a real counterexample.

We fix this error by adding the ctor attribute to the declaration of the constants 0, 1, and 2
of sort Nat3:

ops 0 1 2 : -> Nat3 [ctor].
After this declaration is corrected, a more serious bug is found by the SCC, namely,

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which
will be ignored when checking.

o8 CHAPTER 4. FUNCTIONAL MODULES

Failure: The term zero * zero was found to be a counterexample.
Since the analysis is incomplete, it may not be a real
counterexample.

This message shows that the definition of multiplication is incomplete, because we have declared
the operator without the ctor attribute but we have forgotten the equations defining such
operation on natural numbers. For example, we can add the following equations to make up
for this omission:

eq N * zero = zero .
eq N *s M= (NxM +0N .

A further iteration of the SCC on the amended specification shows that the equations for
the predecessor operation p are missing as well. Since p is only defined on nonzero natural
numbers, only one equation needs to be added:

eq p(s N) = N .

The corrected NUMBERS module after this analysis (together with some additional declara-
tions introduced in the following sections) is presented in Section Here is the tool output
on the corrected module:

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which
will be ignored when checking.

Success: NUMBERS is sufficiently complete under the assumption
that it is weakly-normalizing, confluent, and sort-decreasing.

4.4.4 Polymorphic operators

A number of Maude’s built-in operators are polymorphic in one or more arguments, in the
sense that the operator has meaning when these arguments are of any known sort. Examples
include Boolean operators such as the conditional, if_then_else_fi, which is polymorphic in
its second and third arguments, and the equality test _==_ which is polymorphic in both argu-
ments (see Section. The user can also define polymorphic operators using the polymorphic
attribute (abbreviated poly). This attribute takes a set of natural numbers enclosed in paren-
theses that indicates which arguments are polymorphic, with 0 indicating the range. For
polymorphic operators that are not constants, at least one argument should be polymorphic
to avoid ambiguities. Since there are no polymorphic equations, polymorphic operators are
limited to constructors and built-ins. Polymorphic operators are always instantiated with the
polymorphic arguments going to the kind level, which further limits their generality. The sort
name in a polymorphic position of an operator declaration is purely a place holder—any legal
type name could be used. The recommended convention is to use Universal.

One reasonable use for polymorphic operators beyond the existing built-ins is to define
heterogeneous lists, as follows, where CONVERSION denotes a predefined module described in
Section having types for different numbers as well as strings; this module is imported by
means of a protecting declaration, which will be explained in Section

fmod HET-LIST is
protecting CONVERSION .

sort List .
op nil : -> List .

4.4. OPERATOR ATTRIBUTES 99

op __ : Universal List -> List [ctor poly (1)]
endfm

As an example, we can form the following heterogeneous lists:

Maude> red 4 "foo" 4.5 1/2 nil .
result List: 4 "foo" 4.5 1/2 nil

Maude> red (4 "foo" nil) 4.5 1/2 nil .
result List: (4 "foo" nil) 4.5 1/2 nil

4.4.5 Format

The format attribute is intended to control the white space between tokens as well as color and
style when printing terms for programming-language-like specifications. Consider the following
mixfix syntax operator:

op (op_:_->_[_]1.) : Qid Typelist Type AttrSet —-> OpDecl .
There are eleven places where white space can be inserted:

op _ : _ > _ [_ 1

A format attribute must have an instruction word for each of these places. For example,
the formatting specification for the above operator could be chosen to be:

[format (ddddddsdds d]

Instruction words are formed from the following alphabet:

d default spacing

(cannot be part of a larger word: must occur on its own)
increment global indent counter

decrement global indent counter

space

tab

number of spaces determined by indent counter

newline

+

B H w0

Note that, in general, each place may have an entire word combining several of the above
symbols. We can illustrate how this feature is used in several operators in (submodules of) the
META-LEVEL module in the file prelude.maude (see Chapter [L7).

e Each assignment will be printed in a new line, indented one tab.

op _<-_ : Variable Term -> Assignment
[ctor prec 63 format (nt d d d)]

e Each importation after the first one will be printed in a new line, with the current inden-
tation.

op __ : ImportList ImportList -> ImportList
[ctor assoc id: nil format (d ni d4)]

e Each kind of declaration in a module will start in a new line, with the current indentation,
which is increased by two at the beginning and decreased by two at the end of the module.

60 CHAPTER 4. FUNCTIONAL MODULES

SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule
[ctor gather (& & & & & & &)
format (d d d n++i ni d d ni ni ni ni n--i d)]

op fmod_is_sorts_. endfm : Qid ImportList SortSet

Whether the format attribute is actually used or not when printing is controlled by the
command:

set print format on/off .

The following additional alphabet can be used to change the text color and style. These
colors, perhaps combined with spacing directives, can greatly ease readability, particularly in
complex terms for which they can serve as markers. They rely on ANSI escape sequences which
are supported by most terminal emulators, most notably the Linux console, Xterm, and Mac
Terminal windows, but not Emacs shell buffers, unless you use ansi-color.el[]

red

green
yellow
blue
magenta
cyan
underline
bold

revert to original color and style

- Ff 0O B o< 0@ R

o

By default ANSI escape sequences are suppressed if the environment variable TERM is set
equal to dumb (Emacs does this) or standard output is not a terminal; they are allowed oth-
erwise. This behavior can be overridden by the command line options -ansi-color and
-no-ansi-color.

You are allowed to give a format attribute even if there is no mixfix syntax. In this case
the format attribute must have two instruction words, indicating the desired format before and
after the operator’s name. For example,

fmod COLOR-TEST is
sorts Color ColorList .
subsort Color < ColorList .
op red : -> Color [format (r! o)]
op green : -> Color [format (g! o)]
op blue : -> Color [format (b! o)]
op yellow : -> Color [format (yu o)]
op cyan : -> Color [format (cu o)]
op magenta : -> Color [format (mu o)]
op __ : ColorList ColorList -> ColorList [assoc]
endfm

To see the colors in this module, load the COLOR-TEST module into Maude and execute the
command{f]

Maude> reduce red green blue yellow cyan magenta .
reduce in COLOR-TEST : red green blue yellow cyan magenta .

"There is a copy of this Emacs Lisp file with the Maude distribution just in case your Emacs distribution
lacks it.
8Try it in your terminal. The colors are not shown here for obvious reasons.

4.4. OPERATOR ATTRIBUTES 61

rewrites: O in Oms cpu (Oms real) (~ rews/sec)
result ColorList: red green blue yellow cyan magenta

Let us consider the following module FORMAT-DEMO, where a small programming language
is defined.

fmod FORMAT-DEMO is
sorts Variable Expression BoolExp Statement .
subsort Variable < Expression .

ops a b cd : -> Variable .

op 1 : -> Expression .

op _+_ : Expression Expression -> Expression [assoc comm]
op _;_ : Statement Statement -> Statement [assoc prec 50]
op _<=_ : Expression Expression -> BoolExp .

op while_do_od : BoolExp Statement -> Statement
[format (nir! o r! o++ --nir! o)]

op let_:=_ : Variable Expression -> Statement
[format (nir! o d d d)]
endfm
Note the use of the format attribute for operators while_do_od and let_:=_. Since both

represent statements, which should start in a new line, but at the current indentation level,
both include ni in the instruction words for their first positions; this position also has characters
r! in both cases, so that they start in boldface red font. Since there is a o for the next position,
reverting to original color and style, only the first word (while and let) is shown in red. In
the case of while_do_od, the condition of the loop starts at the second position. The do word
is shown in boldface red, and then the indentation counter is incremented, so that the body
of the while_do_od statement is indented. For the position marking the beginning of od, the
counter is decremented, so that it appears at the level of while in a new line (n), in boldface
red font (r!). The last position reverts the original color and style, although notice that the
indentation counter remains the same, so that successive statements will be given the same
level of indentation. In the case of let_:=_, the three last positions contain only d (default
spacing), since it is to be presented as a single-line statement in which let is shown in boldface
red.

We can illustrate the difference between using the format attribute and not using it with
the following commands (as before, you should execute the example in your terminal to see the
colors).

Maude> set print format off .
Maude> parse
while a <= d do
let a :=a + b ;
while b <= d do
let b :=b + c ;
let c :=c + 1
od
od

Statement: while a <= d do let a := a + b ; while b <= d do let b :=
b+c; let c :=c+ 1 od od

Maude> set print format on .

62 CHAPTER 4. FUNCTIONAL MODULES

Maude> parse
while a <= d do
let a :=a +b ;
while b <= d do
let b :=b + c ;
let c :=c + 1
od
od

Statement:
while a <= d do
let a :=a +b ;
while b <= d do
let b :=b + c ;
let c :=c + 1
od
od

For more examples of format attributes, you can see the operator declarations in the module
LTL (in the file model-checker.maude) discussed in Chapter or in the modules META-TERM
and META-MODULE (in the file prelude.maude), described in Chapter

4.4.6 Ditto

An operator can have several subsort-overloaded instances. Maude requires that all these
instances should have the same attributes, except for the case of the ctor attribute, that may
be present in some instances but absent in others (see Section [4.4.3)), and/or the metadata
attribute (see Section . It is for example forbidden to have a subsort-overloaded instance
in which an operator is declared assoc only, and another such instance in which it is declared
assoc and comm.

The ditto attribute can be given to an operator for which another subsort-overloaded
instance has already appeared, either in the same module or in a submodule. The ditto attribute
is just a shorthand stating that this operator, being subsort overloaded, should have the same
attributes as those appearing explicitly in a previous subsort-overloaded version, except for the
ctor and metadata attributes, which are outside the scope of ditto. In this way we can avoid
writing out a possibly long attribute list again and again.

It is not allowed to combine ditto with other attributes, except for ctor and metadata.
That is, an operator given the ditto attribute either has no other explicitly given attributes,
or can only have in addition either the ctor attribute if it is a constructor, or a metadata
attribute, or both the ctor and metadata attributes. Furthermore, it is forbidden to use ditto
on the first declared instance of an operator, since this is nonsensical.

In our numbers module we can add equational attributes to the declarations of _+_ and
*, and then use ditto to declare the same attributes in other subsort-overloaded versions.

ops _+_ _*_ : Nat Nat -> Nat [assoc comm].

op _+_ : NzNat Nat -> NzNat [ditto]
op _*_ : NzNat NzNat -> NzNat [ditto]

For an example making extensive use of the ditto attribute see the LTL-SIMPLIFIER module
(in the file model-checker.maude), discussed in Chapter

4.4. OPERATOR ATTRIBUTES 63

4.4.7 Operator evaluation strategies

If a collection of equations is Church-Rosser and terminating, given an expression, no matter
how the equations are used from left to right as simplification rules, we will always reach the
same final result. However, even though the final result may be the same, some orders of
evaluation can be considerably more efficient than others. More generally, we may be able to
achieve the termination property provided we follow a certain order of evaluation, but may lose
termination when any evaluation order is allowed. It may therefore be useful to have some way
of controlling the way in which equations are applied by means of strategies.

In general, given an expression f(¢i,...,t,) we can try to evaluate it to its reduced form in
different ways, such as:

e first obtaining the reduced form of all the ¢; and then applying equations for f at the top
of the term; this is called a bottom-up, or eager strategy;

e evaluating only some of the arguments, and then trying to evaluate at the top with
equations for f; for example, an if_then_else_fi operator will typically be evaluated
by evaluating first the first argument, and then the if_then_else_fi operator at the
top;

e trying to evaluate the top of the term first, and then, if this fails, either not evaluating
the subterms at all, or trying to evaluate only some of them, that is, some kind of lazy
evaluation strategy.

Typically, a functional language is either eager, or lazy with some strictness analysis added
for efficiency, and the user has to live with whatever the language provides. Maude adopts
OBJ3’s [79] flexible method of user-specified evaluation strategies on an operator-by-operator
basis, adding some improvements to the OBJ3 approach to ensure a correct implementation [58].

For an n-ary operator f an evaluation strategy is specified as a list of numbers from 0 to n
ending with 0. The nonzero numbers denote argument positions, and a 0 indicates evaluation
at the top of the given function symbol. The strategy then specifies what argument positions
must be simplified (in the order indicated by the list) before attempting simplification at the top
with the equations for the top function symbol. In functional programming terminology, the
argument positions to be evaluated are usually called strict argument positions, so we can view
an evaluation strategy as a flexible, user-definable way of specifying strictness requirements
on argument positions. In the simplest case, a strategy consists of a list of nonzero numbers
followed by a 0, so that some arguments are treated strictly and then the function symbol’s
equations are applied. For example, in Maude, if no strategy is specified, all argument positions
are assumed strict, so that for f with n argument positions its default strategy is (12...n0);
this is the “eager evaluation” case. The opposite extreme is a form of lazy evaluation such as
the lazy append operator in the SIEVE example below. This operator has strategy (0), thus
only equations at the top are tried during evaluation.

The syntax to declare an n-ary operator with strategy (iy ... ix 0), where i; € {0,...,n}
for j=1,...,k, is

op (OpName) : (Sort-1) ... (Sort-n) -> (Sort) [strat (i1 ... i 0)]

As a simple example consider the operators _and-then_ and _or-else_ in the module
EXT-BOOL, that can be found in the file prelude.maude (see Section |7.1)).

fmod EXT-BOOL is
protecting BOOL .
op _and-then_ : Bool Bool -> Bool

64 CHAPTER 4. FUNCTIONAL MODULES

[strat (1 0) gather (e E) prec 55]

op _or-else_ : Bool Bool -> Bool
[strat (1 0) gather (e E) prec 59]

var B : [Booll

eq true and-then B = B .

eq false and-then B = false .

eq true or-else B = true .

eq false or-else B = B .

endfm

These operators are computationally more efficient versions of Boolean conjunction and
disjunction that avoid evaluating the second of the two Boolean subterms in their arguments
when the result of evaluating the first subterm provides enough information to compute the
conjunction or the disjunction. For example, letting B: [Bool] stand for an arbitrary Boolean
expression

Maude> red false and-then B: [Booll]
result Bool: false

while if B: [Bool] does not evaluate to true or false, then false and B:[Bool] does not
evaluate to false, and if evaluation of B: [Bool] does not terminate then neither will evaluation
of false and B:[Bool].

If some of the argument positions are never mentioned in some of the operator strategies,
the notion of canonical form becomes now relative to the given strategies and may not coincide
with the standard notion. Let us consider as a simple example the following two functional
modules, which we have displayed side-by-side to emphasize their only difference, namely, the
evaluation strategy associated to the operator g.

fmod STRAT-EX1 is fmod STRAT-EX2 is
sort S . sort S .
ops ab: ->8 . ops ab: ->8 .
opg:S->8. opg: S ->8 [strat(0)]
eqa=">b. eqa=">b.

endfm endfm

The canonical form of the term g(a) in STRAT-EX1 is g(b), but in STRAT-EX2 it is g(a)
itself, because the equation cannot be applied inside the term due to the lazy strategy strat (0)
of the operator g.

This may be just what we want, since we may be able to achieve termination to a canonical
form relative to some strategies in cases when the equations may be nonterminating in the
standard sense. More generally, operator strategies may allow us to compute with infinite data
structures which are evaluated on demand, such as the following formulation of the sieve of
Eratosthenes, which finds all prime numbers using lazy lists.

The infinite list of primes is obtained from the infinite list of all natural numbers greater
than 1 by filtering out all the multiples of numbers previously taken. Thus, first we take 2
and delete all even numbers greater than 2; then we take 3 and delete all the multiples of 3
greater than 3; and so on. The operation nats-from_ generates the infinite list of natural
numbers starting in the given argument; the operation filter_with_ is used to delete all the
multiples of the number given as second argument in the list provided as first argument; and
the operation sieve_ is used to iterate this process with successive numbers.

Of course, since we are working with infinite lists, we cannot obtain as a result an infinite
list. Such an infinite structure is only shown partially by means of the operation show_upto_,
which shows only a finite prefix of the whole infinite list. Moreover, the generation and filtering
processes have to be done in a lazy way. This is accomplished by giving to the list constructor

4.4. OPERATOR ATTRIBUTES 65

. a lazy strategy strat(0) that avoids evaluating inside the term, and using an operation
force with an eager strategy strat(1 2 0) to “force” the evaluation of elements inside the
list. Specifically, in order to apply the first equation, we must evaluate the arguments L and S
before reconstructing the list L . S in the righthand side.

NAT denotes the predefined module of natural numbers and arithmetic operations on them
(see Section , which is imported by means of a protecting declaration, explained in Sec-
tion Note the use of the symmetric difference operator sd (see Section to decrement
I in the third equation, and the successor operator s_ to increment I in the sixth equation.

fmod SIEVE is
protecting NAT .
sort NatList .
subsort Nat < NatList .
op nil : -> NatList .
op _._ : NatList NatList -> NatList [assoc id: nil strat (0)]
op force : NatList NatList -> NatList [strat (1 2 0)]
op show_upto_ : NatList Nat -> NatList .
op filter_with_ : NatList Nat -> NatList .
op nats-from_ : Nat -> NatList .
op sieve_ : NatList -> NatList .
op primes : -> NatList .

vars P I E : Nat .
vars S L : NatList .

eq force(L, S) =L . S .
eq show nil upto I = nil .
eq show E . S upto I
=if I ==0
then nil
else force(E, show S upto sd(I, 1))
fi .
eq filter nil with P = nil .
eq filter I . S with P
= if (I rem P) ==
then filter S with P
else I . filter S with P
fi .
eq nats-from I = I . nats-from (s I)
eq sieve nil = nil .
eq sieve (I . S) = I . sieve (filter S with I)
eq primes = sieve nats-from 2 .
endfm

We can then evaluate expressions in this module with the reduce command (see Sections
and [23.2)). For example, to compute the list of the first ten prime numbers we evaluate the
expression:

Maude> reduce show primes upto 10 .
result NatList: 2 . 3 . 656 .7 .11 . 13 . 17 . 19 . 23 . 29

In the case of associative or commutative binary operators, evaluation strategies might
reduce some arguments that the user does not expect to be reduced. The reason is that in such
cases terms represent equivalence classes and it might be quite hard to say what is the first or
the second argument. The adopted solution is that mentioning either argument implies both.

66 CHAPTER 4. FUNCTIONAL MODULES

The paper [58] documents the operational semantics and the implementation techniques for
Maude’s operator evaluation strategies in much more detail. The mathematical semantics of
a Maude functional module having operator evaluation strategies is documented in [81] and is
further discussed in Section [£.7]

Of course, operator evaluation strategies, while quite useful, are by design restricted in their
scope of applicability to functional modulesﬂ As we shall see in Chapter |5, system modules,
specifying rewrite theories that are not functional, need not be Church-Rosser or terminating,
and require much more general notions of strategy. Such general strategies are provided by
Maude using reflection by means of internal strategy languages, in which strategies are defined
by rewrite rules at the metalevel (see Section . However, as discussed in Section m
specifying frozen arguments in operators restricts the rewrites allowed with rules in a system
module (as opposed to equations) in a way quite similar to how operator evaluation strategies
restrict the application of equations in a functional module.

4.4.8 Memo

If an operator is given the memo attribute, this instructs Maude to memoize the results of
equational simplification (that is, the canonical forms) for those subterms having that operator
at the top. This means that when the canonical form of a subterm having that operator at
the top is obtained, an entry associating to that subterm its canonical form is stored in the
memoization table for this operator. Whenever the Maude interpreter encounters a subterm
whose top operator has the memo attribute, it looks to see if its canonical form is already
stored. If so, that result is used; otherwise, equational simplification proceeds according to
the operator’s strategy. Giving to some operators the memo attribute allows trading off space
for time in equational simplifications: more space is needed, but if subcomputations involving
memoized operators have to be repeated many times, then a computation may be substantially
sped up, provided that the machine’s main memory limits are not exceeded.

An operator’s memo attribute and its user’s specified or default evaluation strategy (see
Section may interact with each other, impacting the size of the memoization table. The
issue is how many entries for different subterms, all having the same canonical form, may be
possibly stored in the memoization table. If the operator has the default, bottom-up strategy,
the answer is: only one such entry is possible. For other strategies, different terms having the
same canonical form may be stored, making the memoization table bigger. For example, using
the default strategy (1 2 0) for a memoized operator £, only subterms of the form £ (v, v’)
with v and v’ fully reduced to canonical form (up to the strategies given for all operators) will
be mapped to their corresponding canonical forms. This is because, with the default strategy,
equational simplification at the top of £ can only happen after all its arguments are in canonical
form. For other operator strategies this uniqueness may be lost, even when evaluating just one
subterm involving f. For example, if f’s strategy is (0 1 2 0), then both the starting term
f(t, t’) and the term f(v, v’) (where v and v’ are, respectively, the canonical forms of
t and t’) will be mapped to the final result, since the strategy specifies rewriting at the top
twice. That is, each time the operator’s strategy calls for rewriting at the top, Maude will
add the current version of the term to the set of terms that will be mapped to the final result.
Furthermore, other terms of the form f(u, u’), with u and u’ having also v and v’ as their
canonical forms may appear in other subcomputations, and will then also be stored in the
memoization table.

In general, whenever an application will perform an operation many times, it may be useful

9More precisely, the scope of applicability of operator evaluation strategies is restricted to functional modules
and to the equational part of system modules.

4.4. OPERATOR ATTRIBUTES 67

to give that operator the memo attribute. This may be due to the high frequency with which the
operator is called by other operators in a given application, or to the highly recursive nature
of the equations defining that operator. For example, the recursive definition of the Fibonacci
function is given as follows, where NAT denotes the predefined module of natural numbers and
arithmetic operations on them (as described in Section , which is imported by means of a
protecting declaration (see Section .

fmod FIBONACCI is
protecting NAT .
op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) =1 .

eq fibo(s s N) = fibo(N) + fibo(s N)
endfm

Due to the highly recursive nature of this definition of fibo, the evaluation of an expression
like £ibo (50) will compute many calls to the same instances of the function again and again,
and will expand the original term into a whole binary tree of additions before collapsing it to a
number. The exponential number of repeated function calls makes the evaluation of fibo with
the above equations very inefficient, requiring over 61 billion rewrite steps for £ibo (50):

Maude> red fibo(50)

reduce in FIBONACCI : fibo(50)

rewrites: 61095033220 in 132081000ms cpu (145961720ms real)
(462557 rews/sec)

result NzNat: 12586269025

If we instead give the Fibonacci function the memo attribute,
op fibo : Nat -> Nat [memo]
the change in performance is quite dramatic:

Maude> red fibo(50)

reduce in FIBONACCI : fibo(50)

rewrites: 148 in Oms cpu (Oms real) (~ rews/sec)
result NzNat: 12586269025

Maude> red fibo(100)

reduce in FIBONACCI : fibo(100)

rewrites: 151 in Oms cpu (lms real) (~ rews/sec)
result NzNat: 354224848179261915075

Maude> red fibo(1000)

reduce in FIBONACCI : fibo(1000)

rewrites: 2701 in Oms cpu (11lms real) (~ rews/sec)

result NzNat: 434665576869374564356885276750406258025646605173717804
024817290895365554179490518904038798400792551692959225930803226347
752096896232398733224711616429964409065331879382989696499285160037
04476137795166849228875

In some cases we may introduce a constant operator as an abbreviation for a possibly
complex expression that may require a substantial number of equational simplification steps to
be reduced to canonical form; furthermore, the operator may be used repeatedly in different

68 CHAPTER 4. FUNCTIONAL MODULES

subcomputations. In such cases one can declare a constant operator, give it the memo attribute,
and give an equation defining it to be equal to the expression of interest. For example, suppose
we have defined a search space with initial state myState and a function findAnswer to search
the space for a state satisfying some property. Then we can name the search result and use it
again without redoing an expensive computation as follows:

op myAns : -> Answer [memo]
eq myAns = findAnswer (myState)

Maude will then remember the result of rewriting the constant in the memoization table for that
operator and will not repeat the work until the memoization tables are cleared. Memoization
tables for the current module can be cleared explicitly by the command

do clear memo .
Automatic clearing before each top level rewriting command can be turned on and off with

set clear memo on .
set clear memo off .

By default, set clear memo is off.

4.4.9 Frozen arguments

The frozen attribute is only meaningful for system modules (see Chapter [5) that may have
both rules and equations. It has no direct effect for functional modules having only equations
and memberships: it can only have an indirect effect if the functional module is later imported
by a system module. For this reason, examples of the use of frozen operators are postponed to
Chapter

Given a system module M, by declaring a given operator, say f, as frozen, rewriting with
rules is always forbidden in all proper subterms of a term having f as its top operator. However,
it may still be possible to rewrite that term at the top, provided rules having f as the top symbol
of their lefthand side exist in M. To specify that all the arguments of an operator are frozen,
one includes the attribute frozen in the operator’s list of attributes; for example,

opf:S1 ... 8Sn ->S [frozen]

The freezing idea can be generalized, so that only specific argument positions of the operator
f are frozen. For example, in a system module specifying the semantics of a programming
language with rewrite rules, we may want to specify a sequential composition operator _;_ as
frozen in its second argument, but not in the first argument, so as to prevent any execution of
the second program fragment of the composition from happening before the first fragment has
been fully evaluated. We can specify this by stating

op _;_ : Program Program -> Program [frozen (2)]

More generally, if the list of argument positions in an operator f is 1...n, then we can
freeze any sublist of argument positions, say 41 .. .%,,, by declaring,

opf:8S1 ... 8Sn ->S [frozen (il ... im)]

Of course, if the actual list of specified positions is 1...n itself, then this is equivalent to
the first mode of declaring the frozen attribute for £ without listing any positions.

As for operator evaluation strategies (see Section , in the case of associative or com-
mutative binary operators mentioning either argument in the list of frozen positions implies
both.

4.5. STATEMENT ATTRIBUTES 69

4.4.10 Special

Many operators in predefined modules (see Chapters |z| and have the special attribute
in their declarations. This means that they are to be treated as built-in operators, so that,
instead of having the standard treatment of any user-defined operator, they are associated
with appropriate C++ code by “hooks” which are specified following the special attribute
identifier.

For example, the file prelude.maude contains a predefined module NAT for natural numbers
and usual operations on them (see Section . Among others, the declarations in the NAT
module for the operations of addition and of quotient of integer division, and for a less than
predicate are the following:

op _+_ : NzNat Nat -> NzNat

[assoc comm prec 33
special (id-hook ACU_NumberQOpSymbol (+)
op-hook succSymbol (s_ : Nat ~> NzNat))]
op _+_ : Nat Nat -> Nat [ditto]

op _quo_ : Nat NzNat -> Nat
[prec 31 gather (E e)
special (id-hook NumberOpSymbol (quo)
op-hook succSymbol (s_ : Nat “> NzNat))]

op _<_ : Nat Nat -> Bool
[prec 37
special (id-hook NumberOpSymbol (<)
op-hook succSymbol (s_ : Nat ~> NzNat)
term-hook trueTerm (true)
term-hook falseTerm (false))]

Notice that the special attribute exists in order to bind Maude syntax to built-in C++
functionality. It is absolutely not for users to mess with and it is absolutely not backwards
compatible; this is why Maude will sometimes crash or become unstable if the prelude from a
different version is loaded. For the same reason, other operator attributes that appear together
with special in an operator declaration cannot be modified either.

4.5 Statement attributes

In a functional module, statements are equations and membership axioms, conditional or not.
Any such statement may have associated attributes. Currently five attributes are available:
label, metadata, nonexec, owise, and print. The attributes label, metadata, nonexec, and
print can also be used on rules in system modules. Moreover, the attribute metadata can also
be associated to operator declarations.

4.5.1 Labels

The label attribute must be followed by an identifier. Statement labels can be used for tracing
and debugging and at the metalevel to name particular axioms. In our numbers example we
could label the axiom for idempotency for natural number sets

eq N ; N =N [label natset-idem]

Syntactic sugar for labels generalizing the Maude 1 style for rule labels is also supported.
Then the above label could have also been written

70 CHAPTER 4. FUNCTIONAL MODULES

eq [natset-idem] : N ; N =N .

4.5.2 Metadata

The metadata attribute must be followed by a string (that is, by a data element in the STRING
module, see Section. The metadata attribute is intended to hold data about the statement
in whatever syntax the user cares to create/parse. It is like a comment that is carried around
with the statement. Usual string escape conventions apply. For example, we could add the
distributive law

eq (N+ M) * I =N *1I)+ (M=* I) [metadata "distributive law"]

with the comment documenting that this is the distributive law.

The metadata attribute can also be associated to operator declarations. Note that, like
ctor, metadata is attached to a specific operator declaration and not to the (possibly over-
loaded) operator itself. Thus:

e two subsorted overloaded declarations may have different metadata attributes,
e a metadata attribute is not copied by the ditto attribute (see Section [4.4.6)), and

e a declaration may have a metadata attribute as well as a ditto attribute.

Under these conditions, the following ad-hoc example is therefore legal:

fmod METADATA-EX is
sorts Foo Bar .
subsort Foo < Bar .
op £ : Foo -> Foo [memo metadata "f on Foos"]
op £ : Bar -> Bar [ditto metadata "f on Bars"]
endfm

4.5.3 Nonexec

The nonexec attribute allows the user to include statements in a module that are ignored by
the Maude rewrite engine. For example we could make the distributive law nonexecutable as
follows.

eq (N+ M) I =N *1I)+ M=*1I)
[nonexec metadata "distributive law"]

Similarly, a rule can be declared with the nonexec attribute in a system module.

Although nonexecutable from the point of view of Core Maude, such statements are part
of the semantics of the module and can for example be used at the metalevel for controlled
execution or theorem proving purposes.

4.5.4 Otherwise

Sometimes, in the definition of an operation by equations, there are certain cases that can be
easily defined by equations, and then some remaining case or cases that it is more difficult
or cumbersome to define. One would in such situations like to say, otherwise, that is, in all
remaining cases not covered by the above equations, do so and SOE

Consider, for example, the problem of membership of a natural number in a finite set of
numbers.

10Tndeed, several languages have conventions of this kind, including ASF+SDF [42].

4.5. STATEMENT ATTRIBUTES 71

op _in_ : Nat NatSet -> Bool .
The easy part is to define when a number belongs to a set:

var N : Nat .
var NS : NatSet .
eq N in N ; NS = true .

It is somewhat more involved to define when it does not belong. A simple way is to use the
otherwise (abbreviated owise) attribute and give the additional equation:

eq N in NS = false [owise]

The intuitive operational meaning is clear: if the first equation does not match, then the
number in fact is not in the set, and the predicate should be false. But what is the mathematical
meaning? That is, how can we interpret the meaning of the second equation so that it becomes
a useful shorthand for an ordinary equation? After all, the second equation, as given, is even
more general than the first and in direct contradiction with it. We of course should reject any
constructs that violate the logical semantics of the language.

Fortunately, there is nothing to worry about, since the owise attribute is indeed a shorthand
for a corresponding conditional equation. We first explain the idea in the context of this example
and then discuss the general construction. The idea is that, whether an equation, or a set of
equations, defining the meaning of an operation f match a given term, is itself a property defined
by a predicate, say enableds, which is effectively definable by equations. In our example we
can introduce a predicate enabled-in, telling us when the first equation applies, by just giving
its lefthand side arguments as the predicate’s arguments:

op enabled-in : [Nat] [NatSet] -> [Bool]
eq enabled-in(N, N ; NS) = true .

Note that we do not have to define when the enabled-in predicate is false. That is,
this predicate is really defined on the kind [Bool]. Our second owise equation is simply a
convenient shorthand for the conditional equation

ceq N in NS = false if enabled-in(N, NS) =/= true .

This is just a special case of a completely general theory transformation that translates
a specification containing equations with the owise attribute into a semantically equivalent
specification with no such attributes at all. A somewhat subtle aspect of this transformatio
is the interaction between owise equations and the operator evaluation strategies discussed
in Section [£4.7] Suppose that an owise equation was used in defining the semantics of an
operator f. If f was (implicitly or explicitly) declared with a strategy, say,

fisi...sn = s [strat (iy...i40)].
then, the enabled; predicate should be defined with the same strategy,
enabledys : [s1]...[sn] = [Booll [strat (i1...i40)].

This will make sure that the reduction of f’s arguments prior to applying equations for f—
including the equations that will be introduced in our transformation to replace the owise
equations—takes place in exactly the same way for f and for enableds, so that failure of
matching the normal equations is correctly captured by the failure of the enabled; predicate.
Furthermore, as we shall see, after the failure of matching the non-owise equations, the match-
ing substitution obtained when we apply the desugared version of an owise equation will then

'We thank Joseph Hendrix for pointing out this subtlety.

72 CHAPTER 4. FUNCTIONAL MODULES

properly take into account the evaluation of those arguments of f specified by f’s evaluation
strategy.

In general, if we are defining the equational semantics of an operation f :s;...s, — s and
we have given a partial definition of that operation by (possibly conditional) equations

f(u%,,u}l) = tl Zf Cl

fl, .. uk) =ty if Cnp

then we can give one or more owise equations defining the function in the remaining cases by
means of equations of the form

flul,...,vh) =t} if O} [owisel
FE 0By =ty if O [owise]

We can view such owise equations as shorthand notation for corresponding ordinary conditional
equations of the form

fi,... yn) =t1 if enabled¢(yi,...,yn) # true
A enableds(v],...,v}) = enableds(yi,. .., yn)

A Cf

FWa,.. o yn) =t if enableds(yi,...,yn) # true
A enableds(vF,... vF) = enabled;(yy, ..., yn)

A Cy

where the variables y1,...,y, are fresh new variables not appearing in any of the above owise
equations, and with y; of kind [s;], 1 < ¢ < n. All this assumes that in the transformed
specification we have declared the predicate enableds : [s1]...[sp] — [Booll, with the same
evaluation strategy as f. Note the somewhat subtle use of the matching equations (see Sec-
tion enableds(v],...,v}) := enableds(y1,...,yn), 1 < j < k, in the conditions. Since
f and enabledy have the same strategy, after the arguments of the matching instance of the
expression enabled¢(y1, . .. ,yn) become evaluated according to the strategy, we are then able to
match enabled f(v{, ...,vJ) to that result, obtaining the desired substitution for the variables
of the lefthand side of the j** owise equation. That is, we obtain the same substitution as the
one we would have obtained matching f(v{,...,v) to the same subject term after its subterms
under f had been evaluated according to f’s strategy.

Of course, the semantics of the enableds predicate is defined in the expected way by the
equations

enableds(uj,...,us) = true if C; .
enableds(ul®,...,u') = true if Cp, .

The possibility of using multiple owise equations allows us to simplify definitions of func-
tions defined by cases on data with nested structure. Here is a simple, if silly, example in which
the sort R has elements a(n) and b(n), for natural numbers n, and the sort S has elements

4.5. STATEMENT ATTRIBUTES 73

g(r) and h(r), with r of sort R. The operation f treats constructors g and h differently, distin-
guishing only whether the subterm of sort R is constructed by a or not. Again, the predefined
module NAT of natural numbers (Section|7.2)) is imported by means of a protecting declaration

(Section [6.1.1)).

fmod OWISE-TEST1 is
protecting NAT .

sorts R S .

op f : S Nat -> Nat .
ops gh : R > 8 .
ops a b : Nat -> R .

var r : R .

vars m n : Nat .

eq f(g(a(m)), n) = n .

eq f(h(a(m)), n) =n + 1

eq £(g(r), n) = 0 [owise]

eq f(h(r), n) = 1 [owise]
endfm

The four cases are illustrated by the following reductions.

Maude> red f(g(a(0)), 3) .
result NzNat: 3

Maude> red f(g(b(0)), 3) .
result Zero: 0O

Maude> red f(h(b(0)), 3) .
result NzNat: 1

Maude> red f(h(a(0)), 3) .
result NzNat: 4

The subtle interaction between owise equations and operator evaluation strategies can be
illustrated by the following example:

fmod OWISE-TEST2 is
sort Foo .
ops abcd: -> Foo .
op £ : Foo -> Foo [strat (0 1 0)]
op g : Foo -> Foo [strat (0)]

var X : Foo .

eq b =c .

eq f(a) = 4d .

eq £(X) = g(X) [owise]
endfm

Now consider the term f (b). Intuitively, one could expect that, given that the first equation
for £ cannot be applied to this term, the owise equation is applied obtaining the term g(b),
and this is then expected to be the final result of the reduction, because the strategy (0) for g
forbids evaluating its argument. However, as we can see in the following reduction, this is not
the case.

74 CHAPTER 4. FUNCTIONAL MODULES

Maude> red f(b)
result Foo: g(c)

The result is g(c), because the owise equation is not considered until after evaluating the
final O in the strategy for £, and by then f(b) is simplified to £ (c) as instructed by the 1 in
such strategy; then, the owise equation applied to f(c) produces g(c).

It can be interesting to consider the semantically equivalent transformed specification:

fmod OWISE-TEST2-TRANSFORMED is
sort Foo .
ops abcd: ->Foo .
op £ : Foo -> Foo [strat (0 1 0)]
op enabled-f : Foo -> Bool [strat (0 1 0)]
op g : Foo -> Foo [strat (0)]

vars X Y : Foo .
eqb=c.
eq f(a) = 4d .
eq enabled-f(a) = true .
ceq £(Y) = g(X)
if enabled-f(Y) =/= true /\ enabled-f(X) := enabled-f(Y)
endfm

Maude> red f(b)
result Foo: g(c)

where, as pointed out in our comments on the general transformation, the fact that enabled-f
has the same strategy as £ and the use of the matching equation

enabled-f (X) := enabled-f(Y)

are crucial for obtaining a semantically equivalent specification.

4.5.5 Print

The print attribute allows the user to specify information to be printed when a statement
(equation, membership axiom, or rule) is executed. A print attribute declaration looks like

€q f(X) =b [print "X =" X]

The keyword print is followed by a possibly empty list of items where each item is either
a string constant or a variable. Mentioned variables must actually occur in the statement. If
a non-occurring variable appears as a print item, it will be pruned and Maude will issue a
warning.

Here is an example that uses the print attribute to track calls to a recursive function that
reverses a list.

fmod PRINT-ATTRIBUTE-EX is
sorts Foo FoolList .

ops a b : => Foo [ctor]

subsort Foo < Foolist .

op nil : -> FoolList [ctor]

op __ : FoolList Foolist -> Foolist [ctor assoc id: nil]

op reverse : FoolList -> FooList .
eq reverse(nil) = nil .

4.6. ADMISSIBLE FUNCTIONAL MODULES (6]

eq reverse(foo:Foo fl:Foolist) = reverse(fl:FooList) foo:Foo
[print "first = " foo:Foo ", rest = " fl:FoolList]
endfm

Maude will only use the print attribute in print attribute mode, which is off by default.
Thus to run the above example (after loading it into Maude) it is necessary to execute the
following command (see Section [23.9).

Maude> set print attribute on .

Then reducing the expression reverse(a b a b) results in the following output:

Maude> red in PRINT-ATTRIBUTE-EX : reverse(a b a b)
reduce in PRINT-ATTRIBUTE-EX : reverse(a b a b) .

first = a, rest = b a b

first = b, rest ab

first = a, rest = b

first = b, rest = nil

rewrites: 5 in Oms cpu (Oms real) (18587 rewrites/second)
result Foolist: b a b a

The print attribute is an alternative to tracing (see Section [20.1.1)) to find out which
statements Maude is executing. It allows the user control of what information is printed. It is
also a nice way to show what is going on in demos.

4.6 Admissible functional modules

The nonexec attribute allows us to include arbitrary equations or memberships, conditional or
not, in a functional module and likewise in a functional theory (see Section . Any such
statement is then disregarded for purposes of execution by the Maude engine: it can only be
used in a controlled way at the metalevel. But what about all the other statements? That is,
what requirements should be imposed on ezxecutable equations and memberships so that they
can be given an operational interpretation and can be executed by the Maude engine?

The intuitive idea is that we want to use such equations as simplification rules from left
to right to reach a single final result or canonical form. For this purpose, the executable
equations and memberships (that is, all statements not having the nonexec attribute) should
be Church-Rosser and terminating (modulo the equational attributes declared in the module)
in the sense explained in Section [£.7 below. This guarantees that, given a term ¢, all chains of
equational simplification using those equations and memberships end in a unique canonical form
(again, modulo the equational attributes). Furthermore, under the preregularity assumption
(see Section , such a canonical form has the smallest sort possible in the subsort ordering.

The traditional requirement in this context is that, given a conditional equationE t =
t' if CiA...AC,, the set of variables appearing in ¢ contains those appearing in both ¢’ and
in the conditions C;. In Maude, this requirement is relaxed to support matching equations in
conditions (see Section which can introduce new variables not present in ¢t. Specifically, all
executable conditional equations in a Maude functional module M have to satisfy the following
admissibility requirements, ensuring that all the extra variables will become instantiated by
matching:

12For the purposes of this discussion we can regard unconditional equations as the special case of conditional
equations with empty condition, or with the condition true = true.

76 CHAPTER 4. FUNCTIONAL MODULES

n
vars(t') C vars(t) U U vars(C}).
j=1
2. If C; is an equation u; = u} or a membership u; : s, then

i—1
vars(C;) C vars(t) U U vars(Cj).
j=1

3. If C; is a matching equation wu; := u}, then w; is an M-pattern and

i—1
vars(u;) C vars(t) U U vars(Cy).
j=1

In a similar way, all executable conditional memberships ¢ : s if Ci A...A (), must satisfy
conditions 2-3 above.

In summary, therefore, we expect all executable equations and memberships in a functional
module (and also in a system module) to be Church-Rosser and terminating (see Section
below, and [I7), Section 10.1]) and to satisfy the above admissibility requirements.

4.7 Matching and equational simplification

Although this section and the next are quite technical, and it may be possible to skip them in
a first reading, they introduce the concepts of matching and equational simplification that are
essential to understand how Maude works. Therefore, we advise the reader to come back to
them as needed to gain a better understanding of those concepts.

Recall from Section that a functional module defines an equational theory (X, E U A)
in membership equational logic, with A the equations specified as equational attributes in
operators (see Section , and E the (possibly conditional) equations and memberships
specified as statements.

Ground terms in the signature X form a Y-algebra denoted T;. Similarly, equivalence classes
of terms modulo F'U A define the Y-algebra denoted T,/ g4, which is the initial model for the
theory (2, E U A) specified by the module [106].

Given a set X of variables, we can add them to the signature ¥ as new constants, and get
in this way a term algebra Tx(X) where now the terms may have variables in X.

Given a set X of variables, each having a given kind, a (ground) substitution is a kind-
preserving function o : X — T¥,. Such substitutions may be used to represent assignments of
terms in 7% to the variables in X, and also assignments of elements in 7%, g4 to such variables
by o picking up a representative of the corresponding E U A-equivalence class. For example, a
very natural choice is to assign to each in X a term o(x) which is in canonical form according
to F U A. Furthermore, under the preregularity, Church-Rosser, and termination assumptions
(more on this below) this canonical form will have a least sort. Therefore, we may allow each
variable x in X to have either a kind or a sort assigned to it, and can call the substitution o well-
sorted relative to E'U A if the least sort of o(z) is smaller or equal to that of z. By substituting
terms for variables (as indicated by o) in the usual way, a substitution o : X — T is extended
to a homomorphic function on terms o : Ts;(X) — Tx that we denote with the same name.

4.7. MATCHING AND EQUATIONAL SIMPLIFICATION 7

t
E/ \\
tl,*

Bty

Figure 4.1: Confluence diagram

Given a term t € Tx(X), corresponding to the lefthand side of an oriented equation, and a
subject ground term u € Ty, we say that ¢ matcheﬁ u if there is a substitution o such that
o(t) = u, that is, o(t) and u are syntactically equal terms.

For an oriented Y-equation [= r to be used in equational simplification, it is required that
all variables in the righthand side r also appear among the variables of the lefthand side I.
In the case of a conditional equation [= r if cond, this requirement is relaxed, so that more
variables can appear in the condition cond, provided that they are introduced by matching
equations according to the admissibility requirements in Section then the variables in the
righthand side 7 must be among those in the lefthand side [or in the condition cond. Under
this assumption, given a theory (X, E) a term ¢ rewrites to a term t' using such an equation if
there is a subterm ¢t|, of ¢ at a given positioﬂ p of ¢t such that [matches t|, via a well-sorted
substitutiorﬂ o and t' is obtained from ¢ by replacing the subterm ¢|, = o(I) with the term
o(r). In addition, if the equation has a condition cond, the substitution o must make the
condition provably true according to the equations and memberships in E, which are assumed
to be Church-Rosser and terminating and are used also from left to right to try to simplify the
condition. Note that, in general, the variables instantiated by ¢ must contain both those in the
lefthand side, and those in the condition (which are incrementally matched using the matching
equations).

We denote this step of equational simplification by t —g t', where the possible equations
for rewriting are chosen in the set E. The reflexive and transitive closure of the relation — g is
denoted —7%.

In many texts, equational simplification is also called (equational) rewriting but, since in
Maude we have two very different types of rewriting, rewriting with equations in functional
modules, and rewriting with rules in system modules, each with a completely different seman-
tics, to avoid confusion we favor the terminology of equational simplification for the process of
rewriting with equations.

A set of equations F is confluent when any two rewritings of a term can always be unified
by further rewriting: if ¢ —7% t; and ¢t —%; to, then there exists a term ¢’ such that t; —7% t/
and t —7% t’. This is summarized in Figure

A set of equations E is terminating when there is no infinite sequence of rewriting steps

to > t1 gt —E ...

13Some authors would instead say that u matches t.

14We can represent a term t as a tree, and use strings of numbers to identify positions p in the tree, thus
identifying subterms t|,. For example, for t = f(g(a), (b)), we have t|,; = t, t|1 = g(a), t|11 = a, t|]2 = h(b),
and t‘zl =b.

15Note that if a variable = has a sort s instead of a kind, well sortedness of o means that o(x) must provably
have sort s (or lower) according to the equations F.

78 CHAPTER 4. FUNCTIONAL MODULES

If E is both confluent and terminating, a term ¢ can be reduced to a unique canonical form
tlg, that is, to a unique term that can no longer be rewritten. Therefore, in order to check
semantic equality of two terms ¢ = ¢’ (that is, that they belong to the same equivalence class),
it is enough to check that their respective canonical forms are equal, t .z = t' |z, but, since
canonical forms cannot be rewritten anymore, the last equality is just syntactic coincidence:
tig=t'lg.

In membership equational theories a third important property is sort decreasingness. In-
tuitively, this means that, assuming E is confluent and terminating, the canonical form ¢ |g
of a term ¢ by the equations F should have the least sort possible among the sorts of all the
terms equivalent to it by the equations F; and it should be possible to compute this least
sort from the canonical form itself, using only the operator declarations and the memberships.
By a Church-Rosser and terminating theory (X, FE) we precisely mean one that is confluent,
terminating, and sort-decreasing. For a more detailed treatment of these properties, we refer
the reader to the paper [17].

Since Maude functional modules have an initial algebra semantics, we are primarily in-
terested in ground terms. Therefore, we can relax the above Church-Rosser and termination
requirements by requiring that they just hold for ground terms, without losing the desired coin-
cidence between the mathematical and operational semantics. In this way, we obtain notions of
ground Church-Rosser, terminating, confluent, etc. specifications. In practice, some perfectly
reasonable Maude functional modules are ground confluent, but fail to be confluent. This how-
ever is not a problem, since ground confluence (together with ground termination) is just what
is needed to ensure uniqueness of canonical forms. Indeed, under the ground Church-Rosser
and termination assumptions, it is easy to prove that we have the desired isomorphism

Ty /g = Cany /g

ensuring the coincidence between the mathematical semantics of (X, E) provided by the initial
algebra Ty, /i, and its operational semantics by equational simplification provided by the algebra
Cany, g of canonical forms.

Equational specifications (X, F) in Maude functional modules (and in the equational part of
system modules), are assumed to be ground Church-Rosser and terminating up to the context-
sensitive strategy specified by the evaluation strategies declared for the operators in ¥ (see
Section . More precisely, we can view the information about operator evaluation strate-
gies as a function p that assigns to each operator f € ¥ with n argument sorts a string of
numbers indicating the argument positions to be evaluated and ended with a 0 (that is, the in-
formation given in the operator’s strat attribute, or, if no such information is given, the string
1...n0). This then defines a more restricted rewrite relation —% where we can only rewrite
in subterms in positions that can be evaluated according to p. If the relation —/ is (ground)
confluent, we call the specification (ground) p-confluent; similarly, if —*, is (ground) terminat-
ing, we call it (ground) p-terminating. We define the concepts of (ground) p-sort-decreasing
and (ground) p-Church-Rosser in the same way. When we talk about the specification be-
ing “ground Church-Rosser and terminating up to the context-sensitive strategy specified by
the evaluation strategies,” we exactly mean that it is ground p-Church-Rosser and ground
p-terminating. Of course, when no such strategies are declared, this specializes to the usual
notions of ground Church-Rosser and ground terminating. Under the ground p-Church-Rosser
and ground p-terminating assumptions, the p-canonical forms define a canonical term algebra
Can, /B (see [81]), which provides a perfect mathematical model for the module’s operational
semantics, since its elements are the values that the user gets when evaluating expressions in
such a module. The question then arises: how is this model related to the module’s mathe-
matical semantics? In general, the quotient map ¢ — [t] g sending each p-canonical form to its

4.8. MORE ON MATCHING AND SIMPLIFICATION MODULO 79

FE-equivalence class is a surjective homomorphism
: 7
q: CanZ/E — Ty/E,

but not necessarily an isomorphism. If ¢ fails to be an isomorphism, this means that py-rewriting
is a sound deductive method for proving F-equalities, but it is incomplete. Therefore we call the
specification p-semantically complete iff ¢ is an isomorphism. p-semantic completeness there-
fore expresses the complete agreement between the mathematical and operational semantics of
the module. Specifications where evaluation strategies are used mainly for efficiency and/or
termination purposes, that is, those where the execution becomes more efficient by avoiding
wasteful computation in unnecessary parts of the term and/or that would not terminate with-
out the strategy restrictions are typically p-semantically complete. Instead, specifications such
as the sieve of Eratosthenes in Section where the main intent is to compute with infinite
data structures in a lazy way, are typically p-semantically incomplete. Not all is lost in this
second case: we still have a good mathematical model associated to our specification, namely,
Canl, /B but this is a more concrete model than Ty, g, that is, one in which fewer elements are
identified.

What are the appropriate notions when we have a theory of the form (X, U A)? Then
matching must be defined modulo the equational axioms A, and all the above concepts, in-
cluding those for p-rewriting, must be generalized to equational simplification, confluence, and
termination modulo A. We discuss this in more detail in Section [4.8 below. See also [81] for a
detailed treatment of p-rewriting and p-semantic completeness modulo axioms A.

As already mentioned, the operational semantics of functional modules is equational sim-
plification, that is, equational rewriting of terms until a canonical form is obtained in the sense
explained above. Notice that the system does not check the ground confluence and termination
properties: they are left to the user’s responsibility. However, in some cases it is possible to check
these properties with Maude’s Church-Rosser checker and termination tools [30} 54, 47, [46].
Similar checkings are also possible for functional modules with evaluation strategies; for exam-
ple, the Maude’s MTT termination tool can check p-termination (also called context-sensitive
termination [94]). Moreover, although the relations between the standard Church-Rosser prop-
erty and the pu-Church-Rosser property are somewhat subtle [93] 95], the work in [81] shows how
one can use standard tools in conjunction with Maude’s Sufficient Completeness Checker [83]
to check both the pu-Church-Rosser property and p-semantic completeness. See Section
for some examples of the use of these formal tools.

4.8 More on matching and simplification modulo

In the Maude implementation, rewriting modulo A is accomplished by using a matching modulo
A algorithm. More precisely, given an equational theory A, a term ¢ (corresponding to the
lefthand side of an equation) and a subject term u, we say that ¢ matches u modulo A (or
that ¢ A-matches u) if there is a substitution o such that o(t) =4 u, that is, o(t) and u are
equal modulo the equational theory A (compare with the syntactic definition of matching in
Section {4.7| above).

Given an equational theory A = U;A;, corresponding to all the attributes declared in
different binary operators, Maude synthesizes a combined matching algorithm for the theory
A, and does both equational simplification (with equations) and rewriting (with rules in system
modules, see Chapter [5) modulo the axioms A.

Note, however, that for operators f whose equational axioms A include the associativity
axiom, to achieve the effect of simplification modulo A using an A-matching algorithm, we

80 CHAPTER 4. FUNCTIONAL MODULES

have to attempt matching a lefthand side of the form f(¢1, t2) not only on a subject term w,
but also on all its f-subterms, that is, on those “fragments” of the top structure of the term
that could be matched by f(¢1, t2). For example, assuming a binary associative operator f
and constants a, b, ¢, and d of the appropriate sort, the term ¢t = f (a,b) does not match the
term v = f(a, £(b, £(c, d))), that is, there is no substitution making both terms equal
modulo associativity; however, because of associativity of f, u is equivalent to f(f(a, b),
f(c, d)) and then t trivially matches the first subterm. This becomes easier to see using
mixfix notation; if f =_._,thent=a . bandu=a . b . ¢ . d, and we clearly see that ¢
matches a fragment of u. For the case where the only axiom is associativity, the _._-subterms
ofa . b.c . dare

a.b
a.b.c
b.c
b.c.d
c.d
If the operation _._ had been declared both associative and commutative, then we should add

to those the additional subterms

. d
. d

Mo T e
O T Qo0

If the term f(t1, t2) matches either u or an f-subterm of w modulo A, then we say that
f(t1, t2) matches u with extension modulo A (or that f(t1, t2) A-matches u with extension).
For example, the lefthand side of the equation a . b = e matchesa . b . ¢ . d with exten-
sion modulo associativity, and the lefthand side of a . d = g matchesa . b . ¢ . d with
extension modulo associativity and commutativity.

For f a binary operator with equational attributes Ay including the associativity axiom, we
now define how a subject term wu is A-rewritten with extension using an equation f(t1, t2) = v.
First of all, f(t1, t2) must Ay-match with extension a mazimal f-subterm w of u (that is, an
f-subterm of u that is not itself an f-subterm of a bigger f-subterm). This means that there
is an f-subterm wp of w and a substitution o such that o(f(t:, t2)) =a, wo. Then, the
corresponding A y-rewriting with extension step rewrites u to the term obtained by replacing
the subterm wq by o(v).

Note that a term f(t1, t2) A-matches with extension a maximal f-subterm if and only if it
Ag-matches without extension some f-subterm. This is of course the important practical ad-
vantage of A-matching and A-rewriting with extension, namely, that only maximal f-subterms
of a term have to be inspected to get the effect of rewriting equivalence classes modulo A. For
more technical details on rewriting modulo a set of axioms, see, e.g., [40].

Matching with extension for an associative operator essentially corresponds to matching
without extension for a collection of associated equations. For example, we could have “gener-

alized” the equation a . b = e with _._ associative to the equations
eqa.b=e.

egX .a.b=X.ce

eqa .b.Y=e.Y.

eqX.a.b.Y¥Y=X.e.VY.

so that we could have achieved the same effect by rewriting only at the top of maximal f-
subterms (without extension). Similarly, for _._ associative and commutative, we could have
generalized the same equation a . b = e to the equations

4.8. MORE ON MATCHING AND SIMPLIFICATION MODULO 81

eqa . b=e.
eqa . b.Y=e.Y.

In Maude this generalization does not have to be performed explicitly as a transformation of
the specification. It is instead achieved implicitly in a built-in way by performing A-matching
with extension. If the equational axioms declared for a binary operator f include the asso-
ciativity axiom, then a subject term w with f as its top operator is internally represented
(but this representation can also be externally used, see Section as the flattened term
fluy, ..., uy,), with the uy, ..., u, having top operators different from f. Furthermore, if a
(two-sided) identity element e has been declared for f, then w; # e, 1 < ¢ < n. That is, we
assume in this case that all identities have been simplified away.

Relative to this internal representation, it is then easy to define the notion of an f-subterm.
If the axioms of f include associativity but not commutativity, then the f-subterms of the term
fuy, ..., up) are all terms of the form f(ug, ..., uptp) withl <k <n—-landl1<h<n-—k.

Similarly, if the axioms of f include associativity and commutativity, then the f-subterms
of f(uy, ..., up) are all terms of the form f(ug,, ..., ug,) with 1 <k; <--- <k;, <n,and
2<h<n.

The concepts of positions in a term and depth of a term, that are important in many situa-
tions, refer to this flattened form. The compact notation for terms constructed with operators
having the iter attribute (Section is also considered a form of flattened notation, so
that, for the purpose of calculating term depth, if the top level is at level 0, then the occurrence
of X:Foo in £~3(X:Foo) is at level 1, not level 3.

Adding axioms for an identity element e to a possibly associative and/or commutative
operation f leads to some subtle cases, where the proper application of the general notions
may not always coincide with the user’s expectations. To begin with, unexpected cases of
nontermination may be introduced by an unwary user. For example, the equation

eqa . X=Db . a.

will cause nontermination when _._ is declared associative with identity 1, since we have, for
example,

by instantiating each time the variable X to the identity element 1.

A second source of unexpected behavior is the fact that a lefthand side involving an as-
sociative operator may, in the presence of an additional identity attribute, match a term not
involving at all that operator. Thus, for the above equation, we have also the nonterminating
chain of rewriting steps

82 CHAPTER 4. FUNCTIONAL MODULES

In a similar way, in the presence of an identity element, the user’s expectations about when
a lefthand side will match with extension a subject term may not fully agree with the proper
technical definition. Consider, for example, a binary operation _._ that is associative and
commutative, and that has an identity element 1, and let

egqa . X=c .
be an equation. Then,

1. The lefthand side a . X matches the subject term a modulo the axioms by instantiating
X to 1, giving rise to the simplification

a — CcC.

2. The same lefthand side matches the subject term a . b . c with extension in three
different ways, namely, with substitutions X — b . ¢, X — b, and X — ¢, giving rise to
the three simplifications

a.b.c — c

a.b.c — c.c

a.b.c — b.c

3. For the same subject term a . b . c, the substitution X +— 1 s not a match with
extension of the above lefthand side, because the term a . 1 is not a _._-subterm of

the term a . b . c. However, because of item 1 above, we know that the equation will
match that way not at the top, but “one level down,” leading to the simplification

a.b.c — c.b.c

It is also important to realize that there is no match with extension between the lefthand
side of the equation a = b and the subject term a . b . ¢ (because the lefthand side a is not
a _._-term), although again the equation will match that way not at the top, but “one level
down,” leading to the simplification

a.b.c — b.Db.c

Of course, lefthand sides may contain several operators, each matched modulo a different
theory. Maude will then match each fragment of a lefthand side according to its given theory.

Consider, for example, the following specification where _._ is associative and _+_ is asso-
ciative and commutative:

fmod XMATCH-TEST is

sort Elt .
ops abcde: ->Elt .
op _._ : Elt Elt -> Elt [assoc]

op _+_ : Elt Elt -> Elt [assoc comm]

vars X Y Z : Elt .

eqX . Y+2)=&.Y) + X . 2 [metadata "distributivity"]
endfm

The lefthand side of the distributivity equation will produce 12 matches with extension for
the subject term

a.b. (c+d+e)

4.8. MORE ON MATCHING AND SIMPLIFICATION MODULO 83

Enumerating these by hand would be tedious and error prone, however Maude provides the
xmatch command (see also Section [23.3)) for just this purpose:

xmatch X . (Y +2Z) <=7 a .b. (c+d+e)

The output given by Maude consists of the substitution for each match with extension
together with the portion of the subject actually matched:

Maude> xmatch X . (Y + Z) <=7 a . b . (c +d + e)
xmatch in XMATCH-TEST : X . Z+ Y <=7 a . b . c+d+ e .
Decision time: Oms cpu (Oms real)

Solution 1

Matched portion = (whole)
X:Elt -=-=>a . b

Y:Elt --> ¢

Z:Elt —-—> d + e

Solution 2

Matched portion =b . (c +d + e)
X:Elt -=> b

Y:Elt --> ¢

Z:Elt --=> d + e

Solution 3

Matched portion = (whole)
X:Elt -=-=> a . b

Y:E1lt --> d

Z:Elt -=> c + e

Solution 4

Matched portion =b . (c +d + e)
X:Elt --> b

Y:Elt --> d

Z:Elt -=> c + e

Solution 5

Matched portion = (whole)
X:Elt -=-=> a . b

Y:E1t --> e

Z:Elt -=> c + d

Solution 6

Matched portion =b . (c +d + e)
X:Elt --> b

Y:E1t --> e

Z:Elt -=> c + d

Solution 7

Matched portion = (whole)
X:Elt -=-=> a . b

Y:Elt -=-=> c + d

Z:Elt --> e

Solution 8

84 CHAPTER 4. FUNCTIONAL MODULES

Matched portion = b . (c + d + e)

X:Elt -==> b
Y:Elt -=-=> ¢ + d
Z:Elt -—> e
Solution 9

Matched portion = (whole)
X:Elt -=-=>a . b

Y:Elt -==> c + e

Z:Elt --> d

Solution 10
Matched portion = b . (c +d + e)

X:Elt -=-=> b
Y:E1lt --> c + e
Z:Elt -—> d

Solution 11

Matched portion = (whole)
X:Elt -=-=> a . b

Y:E1t --> d + e

Z:Elt --> ¢

Solution 12
Matched portion = b . (c + d + e)

X:Elt -=-=> b
Y:E1lt --> d + e
Z:E1lt --> ¢

Note that extension is only used for matching the top operation, _._ in this example, but
not _+_. This is the reason why the subterm Y + Z of the lefthand side should match the entire
maximal _+_-subterm of the subject term, and not just some _+_-subterm.

For operators with the iter attribute, the situation with matching is analogous to the assoc
theory, so that proper subterms of say £~3(X:Foo), such as £"2(X:Foo) and f(X:Foo), can
also be matched by means of extension.

4.9 The reduce, match, trace, and show commands

Here we assemble the whole module for the NUMBERS running example to illustrate some of the
basic commands for interacting with Maude. See Chapter [23| for full details about these and
other Maude commands.

Notice that, since the result of the _in_ predicate is a Boolean value, we import the pre-
defined module BOOL (see Section by means of a protecting declaration (described in

Section [6.1.1]).

fmod NUMBERS is
protecting BOOL .

sort Zero .

sorts Nat NzNat .

subsort Zero NzNat < Nat .
op zero : -> Zero [ctor]

op s_ : Nat -> NzNat [ctor]

4.9. THE REDUCE, MATCH, TRACE, AND SHOW COMMANDS

op sd : Nat Nat -> Nat
ops _+_ _*_ : Nat Nat -> Nat [assoc comm]

op _+_ : NzNat Nat -> NzNat [ditto]

op _*_ : NzNat NzNat -> NzNat [ditto]

op p : NzNat -> Nat .

vars I N M : Nat

eq N + zero = N .

eqN+sM=s (N+M

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M)

eq N * zero = zero .

eq N*sM=(N*xM +N .

eq p(s N) = N [label partial-predecessor]

eq W+ M) *I=(N=*1I)+ M=*I)
[nonexec metadata "distributive law"]

sort Nat3 .

ops 0 1 2 : -> Nat3 [ctor]

op _+_ : Nat3 Nat3 -> Nat3 [comm]
vars N3 : Nat3 .

eq N3 + 0 = N3 .

eql +1=2.

eq 1 +2
eq 2 + 2

1]
= O

sort NatSeq .

subsort Nat < NatSeq .

op nil : -> NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc id: nill

sort NatSet .

subsort Nat < NatSet

op empty : -> NatSet

op _;_ : NatSet NatSet -> NatSet [assoc comm id: empty]
eq N ; N = N [label natset-idem]

op _in_ : Nat NatSet -> Bool .

var NS : NatSet

eq N in N ; NS = true

eq N in NS = false [owise]
endfm

85

First, we evaluate some expressions using the reduce command. Maude repeats the com-
mand filling in any omitted optional information. Then statistics about the execution are

printedF;G] Finally, the result is printed, prefaced by its least sort.
The first two examples evaluate the sum of three ones in Nat and in Nat3.

Maude> red s zero + s zero + s zero .

16The cpu and real time information is not printed if the user has made use of the set show timing off

command (see Section [23.11)).

86

reduce in NUMBERS :

S 8 8

CHAPTER 4. FUNCTIONAL MODULES

S zero + s zero + s zero .
rewrites: 4 in Oms cpu (Oms real) (~ rews/sec)
result NzNat:

zero

Maude> red 1 + (1 + 1)
reduce in NUMBERS :
rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
result Nat3: O

1+ @ +1)

The next example illustrates the effect of the idempotency equation for sets of natural

numbers.

Maude> red zero ;

reduce in NUMBERS :
rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
result NatSet:

zero

S Zero ; zero ; S zero .

; S zero ; zero ; S zero .

Zero ; s zero

Finally we convince ourselves that the owise attribute works.

Maude> red zero in s zero ; zero ; s s zero .
reduce in NUMBERS :

rewrites:

1 in Oms

result Bool: true

Maude> red zero in
reduce in NUMBERS :

rewrites:

1 in Oms

result Bool: false

zZero

in s zero ; zero ; S s zero .

cpu (Oms real) (~ rews/sec)

S zero

zero

; S s zero .
in s zero ; s s zero .

cpu (Oms real) (~ rews/sec)

The commands xmatch and match operate in the same way, unless the subject term has
an operator that needs extension on top, in which case it can match proper subterms in the
same theory layer, as required for rewriting modulo that theory. The xmatch command was
illustrated in Section Here we compare match and xmatch on a pattern that splits a
sequence of natural numbers into two parts. To be safe, we ask for at most five matches, but
in fact there are only four.

Maude> match [56] NSO:NatSeq NS1:NatSeq <=7 zero zero zero .

match [5] in NUMBERS :

NSO:NatSeq NS1:NatSeq <=7 zero zero zero .

Decision time: Oms cpu (Oms real)

Solution 1
NSO:NatSeq
NS1:NatSeq

Solution 2
NSO:NatSeq
NS1:NatSeq

Solution 3
NSO:NatSeq
NS1:NatSeq

Solution 4
NSO:NatSeq
NS1:NatSeq

nil
zero

zero
zero

zZero
zZero

zero
nil

zero

zero

zero

zero

zero

zero

4.9. THE REDUCE, MATCH, TRACE, AND SHOW COMMANDS 87

Using the xmatch command for the same pattern and term, we see that in addition to the
whole term matches, Maude also reports matches within the subterm zero zero. In fact, there
are two occurrences of this subterm. We only show five of the matches.

Maude> xmatch [5] NSO:NatSeq NS1:NatSeq <=7 zero zero zero .
xmatch [5] in NUMBERS : NSO:NatSeq NS1:NatSeq <=7 zero zero zero .
Decision time: Oms cpu (7ms real)

Solution 1

Matched portion = zero zero
NSO:NatSeq --> nil
NS1:NatSeq --> zero zero

Solution 2

Matched portion = zero zero
NSO:NatSeq --> zero
NS1:NatSeq --> zero

Solution 3

Matched portion = zero zero
NSO:NatSeq --> zero zero
NS1:NatSeq --> nil

Solution 4

Matched portion = (whole)
NSO:NatSeq --> nil
NS1:NatSeq --> zero zero zero

Solution 5

Matched portion = (whole)
NSO:NatSeq --> zero
NS1:NatSeq --> zero zero

Let us consider now a small example using the trace command. We turn on selective
tracing and choose to trace only uses of the equation labeled partial-predecessor.

Maude> set trace on .
Maude> set trace select on .
Maude> trace select partial-predecessor .

Maude> red s s p(s zero) + s p(s zero)

reduce in NUMBERS : s s p(s zero) + s p(s zero)
*kkkkokkokkkk equation

eq p(s N) = N [label partial-predecessor]

N --> zero

p(s zero)

-—>

zero

rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result NzNat: s s s zero

Note that Maude only reports one use of this equation, despite the fact that there are two
occurrences in the term. This is because, when performing equational simplification, occur-
rences of the same subterm are internally shared!’| and hence there is only one occurrence of

1"However, this sharing—i.e., treating the term as a dag instead of as a tree—is not done in a mazimal way, so

88

CHAPTER 4. FUNCTIONAL MODULES

the subterm p(s zero) in the internal representation.
We can ask Maude to show the module FIBONACCI (assuming it has been loaded).

Maude> show module FIBONACCI .
fmod FIBONACCI is
protecting NAT .
op fibo : Nat -> Nat [memo]
var N : Nat

eq fibo(0)
eq fibo(1)

0 .
1

eq fibo(s s N) = fibo(N) + fibo(s N)
endfm

The show sorts command shows all the sorts declared and for each sort its sub- and super-

sorts.

Maude> show sorts NUMBERS .

sort
sort
sort
sort
sort
sort
sort

Bool .

Zero . subsorts Zero < Nat NatSet NatSeq .

Nat . subsorts NzNat Zero < Nat < NatSet NatSeq .
NzNat . subsorts NzNat < Nat NatSet NatSeq .

Nat3 .

NatSeq . subsorts NzNat Zero Nat < NatSeq .
NatSet . subsorts NzNat Zero Nat < NatSet .

The show components command shows the connected components (kinds) in the sort partial

order.

Maude> show components NUMBERS .
[Bool]:

1 Bool

[NatSeq, NatSet]:

1 NatSeq
2 NatSet
3 Nat

4 Zero

5 NzNat

[Nat3] (error free):

1 Nat3

Note that the name of the kind corresponding to the connected component containing the
natural numbers contains the names of two sorts. These are the maximal sorts in the component.
The (error free) comment about the sort Nat3 means that all terms of kind [Nat3] are in
fact of sort Nat3.

that all subterms that can be shared are; instead, term sharing is itself introduced incrementally by equational
simplification, since Maude analyzes righthand sides of equations to identify its shared subterms. As explained
by Eker in [58], in the presence of operator evaluation strategies (Section term sharing has to be done
carefully. Furthermore, when rewriting is performed with a rule in a system module (see Chapter , rather
than with an equation, Maude will incrementally unshare those parts of the subject term needed to ensure that
all possible rewrite with rules are considered. This is because rules in system modules need not be confluent.
As a consequence, two identical subterms could be rewritten in totally different ways; but this of course would
be prevented if they were to be shared.

Chapter 5

System Modules

A Maude system module specifies a rewrite theory. A rewrite theory has sorts, kinds, and
operators (perhaps with frozen arguments), and can have three types of statements: equations,
memberships, and rules, all of which can be conditional. Therefore, any rewrite theory has
an underlying equational theory, containing the equations and memberships, plus the rules.
What is the intuitive meaning of such rules? Computationally, they specify local concurrent
transitions that can take place in a system if the pattern in the rule’s lefthand side matches a
fragment of the system state and the rule’s condition is satisfied. In that case, the transition
specified by the rule can take place, and the matched fragment of the state is transformed into
the corresponding instance of the righthand side. Logically, that is, when we use rewriting logic
as a logical framework to represent other logics as explained in Section [1.4] a rule specifies a
logical inference rule, and rewriting steps therefore represent inference steps.

As was mentioned in Section [3.2] a system module is declared in Maude using the keywords

mod (ModuleName) is (DeclarationsAndStatements) endm

As for functional modules the first bit of information in the specification is the module’s name,
which must be an identifier. For example,

mod VENDING-MACHINE is

ent.il.n'
where the dots stand for all the declarations and statements in the module, which can be:

1. module importations,

2. sort and subsort declarations,

3. operator declarations,

4. variable declarations,

5. equation and membership statements, and

6. rule statements.

Since declarations (1)—(4) and equational statements (5) are exactly as for functional mod-
ules, all we have left to explain is how rules (conditional or not) are declared. As for equation
and membership statements, rules can be declared with any of the attributes label, metadata,
nonexec, and print (see Section . However, the owise attribute can only be used with
equations.

89

90 CHAPTER 5. SYSTEM MODULES

5.1 Unconditional rules

Mathematically, an unconditional rewrite rule has the form [: ¢ — ¢/, where t,¢' are terms of
the same kind, which may contain variables, and [is the label of the rule. Intuitively, a rule
describes a local concurrent transition in a system: anywhere in the distributed state where a
substitution instance o(t) of the lefthand side ¢ is found, a local transition of that state fragment
to the new local state o(t') can take place. And if many instances of the same or of several
rules can be matched in different nonoverlapping parts of the distributed state, then all of them
can fire concurrently.
An unconditional rule is introduced in Maude with the following syntax:

rl [(Label)] : (Term-1) => (Term-2) [{StatementAttributes)]

As explained in Section[£.5.1] a label can alternatively be declared as a statement attribute;
also, Maude allows declaration of unlabeled rules. In these two cases, the part “[{Label)] :7
is omitted.

As a first example of a system module we consider the following specification of a vending
machine which dispenses apples and cakes. The module VENDING-MACHINE-SIGNATURE is the
underlying functional module. This module is imported by the system module VENDING-MACHINE,
which then adds the rules for operating the machine. Although not necessary, in addition to
making the underlying functional module explicit, such splitting of modules can be useful in or-
ganizing a large specification, where a functional part may be shared by several system modules;
see Chapter [f] for a discussion on module importation.

The constants $ and q represent coins of one dollar and one quarter, respectively, while the
constants a and c represent apples and cakes, respectively.

fmod VENDING-MACHINE-SIGNATURE is
sorts Coin Item Marking .
subsorts Coin Item < Marking .
op __ : Marking Marking -> Marking [assoc comm id: null]
op null : -> Marking .
op $: -> Coin [format (r! o)]

op q : -> Coin [format (r! o)]

op a : -> Item [format (b! o)]

op ¢ : -> Item [format (b! o)]
endfm

The format declaration for each constant (see Section |4.4.5)) is used to print the constants
using different colors, so that coins can easily be separated from items in a given marking.

mod VENDING-MACHINE is
including VENDING-MACHINE-SIGNATURE .
var M : Marking .
rl [add-q] : M => M q .

rl [add-$] : M => M § .

rl [buy-c] : $ => c .

rl [buy-al : $ => a q .

rl [change]l : g qqq=>§$.
endm

This module specifies a concurrent machine to buy cakes and apples with dollars and quar-
ters. A cake costs a dollar, and an apple three quarters. We can insert dollars and quarters
in the machine, although due to an unfortunate design, the machine only accepts buying cakes
and apples with dollars. When the user buys an apple the machine takes a dollar and returns a
quarter. To alleviate in part this problem, the machine can change four quarters into a dollar.

5.2. CONDITIONAL RULES 91

The machine is concurrent, because we can push several buttons at once (that is, we can
apply several rules at once), provided enough resources exist in the corresponding slots, called
places. For example, if we have one dollar in the $ place and four quarters in the q place,
we can simultaneously push the buy-a and change buttons, and the machine returns, also
simultaneously, one dollar in $, one apple in a, and one quarter in q.

Note that, since the Maude interpreter is sequential, the above concurrent transitions in the
VENDING-MACHINE module are simulated by corresponding interleavings of sequential rewriting
steps. In a socket-based concurrent implementation, it is possible to execute concurrently many
rewriting steps for a wide range of system modulesﬂ

We might have tried a simpler alternative, namely, using the rule null => q instead of
the add-q rule. However, this would not work. Instead, we have to write M => M q with M
a variable of sort Marking. The reason is that the constant null is not a __-subterm of any
marking except itself, and therefore it would be impossible to apply the rule null => g with
extension (see Section .

5.2 Conditional rules

Conditional rewrite rules can have very general conditions involving equations, memberships,
and other rewrites; that is, in their mathematical notation they can be of the form

Lt =t if (Nwi=vi) A(Nwis5) A (N\pe— ar)
i i k

with no restriction on which new variables may appear in the righthand side or the condition.
There is no need for the condition listing first equations, then memberships, and then rewrites:
this is just a notational abbreviation, since they can be listed in any order. However, in Maude,
conditions are evaluated from left to right, and therefore the order in which they appear,
although mathematically inessential, is very important operationally (see Section .

In their Maude representation, conditional rules are declared with syntax

crl [(Label)] : (Term-1) => (Term-2)
if (Condition-1) /\ ... /\ (Condition-k)
[(StatementAttributes)]

where the rule’s label can instead be declared as a statement attribute, or can be omitted
altogether. In either of these two alternatives, the square brackets enclosing the label and the
colon are then omitted.

As in conditional equations, the condition can consist of a single statement or can be a
conjunction formed with the associative connective /\. But now conditions are more general,
since in addition to equations and memberships they can also contain rewrite expressions, for
which the concrete syntax t => t’ is used. Furthermore, equations, memberships, and rewrites
can be intermixed in any order. As for functional modules, some of the equations in conditions
can be either matching equations or abbreviated Boolean equations.

We can illustrate the usefulness of rewrite expressions in rule conditions by presenting a
small fragment of a Maude operational semantics for Milner’s CCS language given in [136]:

sorts Label Act Process ActProcess .
subsorts Qid < Label < Act .
subsort Process < ActProcess .

1See |29, Chapter 16] for an interesting example of this kind: a concurrent implementation of a mobile
language entirely programmed in Maude using sockets as external objects in the way explained in Section

92 CHAPTER 5. SYSTEM MODULES

op “_ : Label -> Label .

op tau : -> Act .

op {_}_ : Act ActProcess -> ActProcess [frozen]

op _|_ : Process Process -> Process [frozen assoc comm]
vars P P’ Q Q’ : Process .

var L : Label .

crl [par] : P | Q => {tau} (P’ | Q)
if P=>{L}y P> /AN Q= {" L} Q@

The conditional rule par expresses the synchronized transition of two processes composed
in parallel. The condition of the rule states that the synchronized transition can take place
if one process can perform an action named L and the other can perform the complementary
action named ~ L. In this representation of CCS, the action performed is remembered by the
resulting expression, which is a term of sort ActProcess.

Note the use of the frozen attribute in some of the operators (see Section .

5.3 Admissible system modules

The same way that equations or memberships expressed in their fullest possible generality
cannot be executed by the Maude engine except in a controlled way at the metalevel, conditional
rewrite rules in their fullest generality cannot be executed either, except with a strategy at the
metalevel. Nonexecutable rules should be identified by giving them the nonexec attribute.

As for functional modules, the question now becomes: what are the executability require-
ments on the executable statements (i.e., those without the nonexec attribute) of a system
module? It turns out that a quite general class of system modules, called admissible mod-
ules, are executable by Maude’s default interpreter using the rewrite, frewrite, and search
commands, that will be introduced and illustrated in Section and are further explained in
Sections and 234

The admissibility requirements for the module’s equations and memberships are exactly as
for functional modules; they were explained in Section [4.6] and are further discussed below.
Two more requirements are needed:

e cach executable conditional rule should be admissible, and

e the rules should be coherent relative to the equations, as has already been mentioned in
the introduction.

We explain each of these requirements below.
Given a system module M, a conditional’] rule of the form

l:t—=t if C1A...ANC,

such that it does not have the nonexec attribute is called admissible if it satisfies the exact
analogues of the admissibility requirements 1-3 in Section for conditional equations, plus
the additional requirement

2For the purposes of this discussion, we view unconditional rules as a special case of conditional rules. The
general admissibility requirement specializes then to a very easy requirement for an unconditional rule ¢t — ¢/,
namely, that each variable of ' must appear in t.

5.3. ADMISSIBLE SYSTEM MODULES 93

4. If C; is a rewrite u; — ul, then
i1
vars(u;) C vars(t) U U vars(Cy),
j=1

and furthermore v} is an £(M)-pattern (for the notion of pattern see Section for
E(M) the equational theory underlying the module M.

Operationally, we try to satisfy such a rewrite condition by reducing the substitution in-
stance o(u;) to its canonical form v; with respect to the equations, and then trying to find a
rewrite proof v; — w; (perhaps after many steps of rewriting) with w; in canonical form with
respect to the equations and such that w; is a substitution instance of w}. Search for such a w;
is performed by the Maude engine using a breadth-first strategy.

As for functional modules, when executing an admissible conditional rule in a system mod-
ule, the satisfaction of all its conditions is attempted sequentially from left to right; but notice
that now, besides the fact that many matches for the equational conditions may be possible
due to the presence of equational attributes, we also have to deal with the fact that solving
rewrite conditions requires search, including searching for new solutions when previous ones fail
to satisfy subsequent conditions.

We now explain the coherence requirement. A rewrite theory has both rules and equations,
so that rewriting is performed modulo such equations. However, this does not mean that the
Maude implementation must have a matching algorithm for each equational theory that a user
might specify, which is impossible, since matching modulo an arbitrary equational theory is
undecidable.

The equations and memberships specified in a system module M are divided into a set A
of axioms corresponding to equational attributes such as associativity, commutativity, idempo-
tency, and (left-, right- or two-sided) identity declared for different operators in the module (see
Section , for which matching algorithms exist in the Maude implementation, and a set E
of equations and memberships specified in the ordinary way. As already mentioned, for M to
be executable, the set of executable statements in £ must be Church-Rosser and terminating
modulo A, or at least ground Church-Rosser and terminating modulo A; that is, we require
that the equational part must be equivalent to an executable functional module.

Moreover, we require that the rules R in the module are coherent [I38] with respect to the
equations E modulo A, or at least ground coherent. Coherence means that, given a term ¢, for
each one-step rewrite of it with some rule in R modulo the axioms A to some term ¢’, which we
denote t —>}%/A t', if u is the canonical term we obtain by rewriting ¢ with the equations and
memberships in E to canonical form modulo A, denoted ¢ —>}3 /A Us then there is a one-step
rewrite of u with some rule in R modulo A, u —>}:{/A u/, such that ¢’ =gua v/, which by the
Church-Rosser and termination properties of £ modulo A is equivalent to ¢’ and u’ having the
same canonical form modulo A by E. This requirement is described graphically in Figure

Ground coherence is a weaker requirement: we require the exact same diagram to exist only
for ground terms, and E only needs to be ground Church-Rosser and terminating modulo A.

As explained in [I38] (for the free case and for coherence modulo associativity and com-
mutativity), for unconditional rules R, coherence can be checked by checking “critical pairs”
between rules R and equations F/, and showing that the corresponding instance of the coherence
diagram can be filled in for all such pairs. That is, we have to look for appropriate overlaps
between lefthand sides of rules and equations using an A-unification algorithm, generate the
corresponding critical pairs, and check their coherence. In the case of ground coherence, it is
not necessary that the critical pairs can be filled in: it is enough to show that each ground

94 CHAPTER 5. SYSTEM MODULES

/
_ >
t R/At
!
E//!4 w
EJA
E/AY) 1,
R/A

Figure 5.1: Coherence diagram

instance of such pairs can be filled in. See Section 7.8 of [29] for an example of a system
module that is not coherent, a discussion of the critical pairs involved, and a method to make
the specification coherent. See also Section 13.4 of [29] for an example of how coherence can be
checked by critical pair analysis. Similarly, for ground coherence and how to check it, see the
example in Section [I1.4]

Why is coherence so important? What does it mean intuitively? Rewriting modulo an
equational theory F U A, which is what a rewrite theory R = (3, E U A, ¢, R) really does, is
in general undecidable. The undecidability has to do with the fact that we may need to search
an entire F' U A-equivalence class before we can know if a class representative can be rewritten
with R, that is, if the U A-equivalence class can be rewritten. Coherence makes the problem
decidable: all we need to do is to reduce the term to its canonical form by E modulo A, and
then rewrite with R such a canonical form. In a sense, coherence reduces rewriting with R
modulo E'U A to rewriting with £ and R modulo A, which is decidable, because we assume we
have an A-matching algorithm.

Could we miss any rewrites that way? Coherence guarantees to us that we could not, since
any rewrite of a term ¢ with R must also be possible with ¢’s canonical form. Maude implicitly
assumes this coherence property. For example, the rewrite command will at each step first
reduce the term to canonical form with F modulo A, and then perform a rewrite step with
R in a rule-fair manner. The frewrite command uses a somewhat different rewrite strategy
to ensure both local fairness and rule fairness, but assumes the same coherence (or ground
coherence) property (see Section and examples in Section below).

A last point about the execution of system modules regards frozen argument positions in
operators (see Section . This poses a general constraint on any rewriting strategy what-
soever, including those directly supported by Maude for the rewrite and frewrite commands
(see Section . The general constraint is that rewriting will never happen below one of the
frozen argument positions in an operator. That is, even though many rewritings may be possi-
ble and there can be a large amount of nondeterminism (so that different rewriting strategies
may lead to quite different results) rewriting under frozen arguments is always forbidden. In
fact, this does not only belong to the module’s operational semantics, but also to the latest
initial model semantics for rewrite theories developed in [19]; we give a brief informal summary
of this semantics below.

Mathematically, a system module, when “flattened” with its imported submodules, exactly
specifies a (generalized) rewrite theory in the sense of [19], that is, a four-tuple

R:(E7EUA7¢7R)’

where (3, E U A) is the membership equational theory specified by the signature, equational
attributes, and equation and membership statements in the module (just as in the case of

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 95

functional modules); ¢ is a function, assigning to each operator in 3 the set of natural numbers
corresponding to its frozen arguments (the empty set when no argument is frozen); and R is the
collection of (possibly conditional) rewrite rules specified in the module and its submodules.

Intuitively, such a rewrite theory specifies a concurrent system. The equational theory
(X, E U A) specifies the “statics” of the system, that is, the algebraic structure of the setE| of
states, which is specified by the initial algebra T /gy 4. The rules R and the freezing information
¢ specify the concurrent system’s “dynamics,” that is, the possible concurrent transitions that
the system can perform. In rewriting logic, such, possibly complex, concurrent transitions
exactly correspond to rewrite proofs; but since several rewrite proofs can indeed correspond to
the same concurrent computation (describing, for example, different semantically equivalent
interleavings), rewriting logic has an equational theory of proof equivalence [102, 19].

The initial model T of the rewrite theory R associates to each kind k a labeled transition
system (in fact, a category) whose set of states is Ts,pua,k, and whose labeled transitions
have the form [a] : [t] — [t'], with [t],[t'] € Ty puak, and with [a] an equivalence class of
rewrite proofs modulo the equational theory of proof equivalence. Indeed what the different [«]
represent are the different “truly concurrent” computations of the system specified by R.

5.4 The rewrite, frewrite, and search commands

Now we illustrate the use of the Maude commands available for system modules. Recall the
vending machine example:

mod VENDING-MACHINE is
including VENDING-MACHINE-SIGNATURE .
var M : Marking .
rl [add-q] : M => M q .
rl [add-$] : M =>M $.
rl [buy-c] : $§ => c .
rl [buy-al : $ => a q .
rl [changel: 9 g qq =>§$.
endm

In addition to the show commands discussed in Section[4.9] there is an additional show rls
command for system modules to show the rules of a module. For example, showing the sorts
and the rules of the VENDING-MACHINE module we get:

Maude> show sorts VENDING-MACHINE .

sort Bool .
sort Coin . subsort Coin < Marking .
sort Item . subsort Item < Marking .

sort Marking . subsorts Item Coin < Marking .

Maude> show rls VENDING-MACHINE .
rl M => q M [label add-q]

rl M => $ M [label add-$]

rl $ => ¢ [label buy-c]

rl $ => q a [label buy-al

rl g g q g =>$ [label changel

3More precisely, each kind k in X corresponds to a different choice for a set of states, namely the set Ts/BUAK-

96 CHAPTER 5. SYSTEM MODULES

5.4.1 The rewrite command

We can use the rewrite command (abbreviated rew) to explore the behavior of different initial
markings. The bracketed number between the command and the term to be rewritten provides
an upper bound for the number of rule applications that are allowed.

Maude> rew [1] in VENDING-MACHINE : $ $ q q .
rewrite [1] in VENDING-MACHINE : $ $ q q .
rewrites: 1 in Oms cpu (9ms real) (~ rews/sec)
result Marking: $ $ q q q

Maude> rew [2] $ $ q q .

rewrite [2] in VENDING-MACHINE : $ $ q q .
rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ $ $qqq

Maude> rew [3] $ $ qq .

rewrite [3] in VENDING-MACHINE : $ $ q q .
rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ $ $ 9 9 q q

Maude> rew [4] $ $qq .

rewrite [4] in VENDING-MACHINE : $ $ q q .
rewrites: 4 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ $$$qqqq

Maude> rew [5] $ $ q q .

rewrite [56] in VENDING-MACHINE : $ $ q q .
rewrites: 5 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ $ $ $ ¢

Maude> rew [6] $ $ q q .

revrite [6] in VENDING-MACHINE : $ $ q q .
rewrites: 6 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ $ $ $ $ q

Maude> rew [200] $ $ q q .

rewrite [200] in VENDING-MACHINE : $ $ q q .

rewrites: 200 in 10ms cpu (10ms real) (20000 rews/sec)

result Marking: $§ $ $ $ $ $ $$$ 3533535383838 85
$338$33588358833588358833588888883
$$338$3358835883888358838588888883
$3$583358833588338888888qqq4q

Executing one rewrite starting with two dollars and two quarters, Maude chooses to apply
the add-q rule. If we allow two rewrites Maude applies add-q and then add-$. The third rule
to be applied is add-q again; then, add-$. It goes on applying add-q and add-$ until the rule
change can be applied. The top-down rule-fair rewrite strategy keeps trying to apply rules
on the top operator (__ in this case) in a fair way. The rules applicable at the top are add-q,
add-$, and change, which are tried in this order. Since the top operator is always the same
one, no other rules are used. We can modify the rules buy-c and buy-a so that the lefthand
side has an explicit top level __ as follows:

mod VENDING-MACHINE-TOP is
including VENDING-MACHINE-SIGNATURE .

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 97

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M =>M $.

rl [buy-c] : $§ M =>c M .

rl [buy-al] : $ M=>aqlM.

rl [change]l: g 9 qq=>§$.
endm

Now starting with two dollars and two quarters, and executing increasing numbers of rewrites
we see that Maude applies the rules add-$, add-q, buy-c, buy-a, and change.

Maude> rew [2] in VENDING-MACHINE-TOP : $ $ q q .

Advisory: "v.maude", line 18 (mod VENDING-MACHINE-TOP): collapse at
top of $§ M may cause it to match more than you expect.

Advisory: "v.maude", line 19 (mod VENDING-MACHINE-TOP): collapse at
top of $§ M may cause it to match more than you expect.

rewrite [2] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)

result Marking: $ $ $qqq

Maude> rew [3] $ $ q q .

revrite [3] in VENDING-MACHINE-TOP : $ $ q q .
rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ $ 9 qq ¢

Maude> rew [4] $ $ q q .

rewrite [4] in VENDING-MACHINE-TOP : $ $ q q .
rewrites: 4 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $9qqqac

Maude> rew [6] $ $ q q .
rewrite [5] in VENDING-MACHINE-TOP : $ $ q q .
rewrites: 5 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $§ $ a ¢

The advisory is about the modified rules for buying. Maude is letting us know that the pattern
$ M will match a term not containing the top-level operator __, when M is instantiated to null.
This is exactly what we want in this case, but it may not always be what the user intended, so
Maude gives you a heads up; see Section for more details.

Notice that rewriting in VENDING-MACHINE is not terminating. If we remove the rules for
adding coins we obtain a terminating system and can explore vending behavior using unbounded
rewriting. Let us consider the following module SIMPLE-VENDING-MACHINE.

mod SIMPLE-VENDING-MACHINE is
including VENDING-MACHINE-SIGNATURE .
rl [buy-c] : § => c .
rl [buy-al : $ => a q .
rl [changel: g g qq=>§$.

endm

For example, starting with two dollars and rewriting as much as possible we can get an
apple, a cake and a quarter in change.

Maude> rew in SIMPLE-VENDING-MACHINE : $ § .
rewrite in SIMPLE-VENDING-MACHINE : § $.
rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)

98 CHAPTER 5. SYSTEM MODULES

result Marking: q a c

Starting with two dollars and three quarters and using only three rewrite rule applications
we get an apple and a cake with a dollar left over.

Maude> rew [3] $ $qqq .

rewrite [3] in SIMPLE-VENDING-MACHINE : $ $ q q q .
rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result Marking: $ a c

The command continue (Bound) (abbreviated cont) tells Maude to continue rewriting
using at most (Bound) additional rule applications. For example, we can continue the last
rewrite command (that performed three rewrites) for one more step to get an apple and two
cakes:

Maude> cont 1 .
rewrites: 1 in Oms cpu (Oms real) (~ rews/sec)
result Marking: a c ¢

5.4.2 The frewrite command

Let us see now what happens when we use another strategy for rewriting in the original
VENDING-MACHINE module. The frewrite command (abbreviated frew) rewrites a term using
a depth-first position-fair strategy that makes it possible for some rules to be applied that could
be “starved” using the leftmost, outermost rule fair strategy of the rewrite command. The
strategies for the rewrite and frewrite commands are described in detail in Section [23.2

Maude> frew [2] in VENDING-MACHINE : $ $ q q .
frewrite [2] in VENDING-MACHINE : $ $ q q .

rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
result (sort not calculated): ($ q) ($ $) q q

Maude> frew [12] $ $ q q .

frewrite [12] in VENDING-MACHINE : $ $ q q .
rewrites: 12 in Oms cpu (Oms real) (~ rews/sec)
result (sort not calculated):

c(ga) 3 3% @ (39 (@a)qggq

With two rewrites, one quarter and one dollar are added. With sufficiently many rewrites
(twelve will do), a cake and an apple can be obtained.

In contrast to rewrite, that reduces the whole term using equations after each rule rewrite,
frewrite only reduces the subterm rewritten (to preserve positions not yet visited). Thus,
when rewriting stops, the term may not be fully reduced and hence Maude will not know the
exact least sort of the term yet. This is the reason for the (sort not calculated) comment
in place of a sort in the result line. In the case of a term with an associative and commutative
top operator, the term may not be in its fully flattened form with canonical order of subterms.
This accounts for the parentheses in the result term and the fact that the coins and items are
not listed in order as they are in the result of a rewrite.

The top-down rule-fair strategy of the rewrite command can result in nontermination
even though there is a terminating sequence of rewrites. As an example consider the following
module:

mod BB-TEST is
sort Expression .

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 99

ops a b bingo : -> Expression .
op f : Expression Expression -> Expression .

rl a=>b.

rl b =>a .

rl £(b, b) => bingo .
endm

Giving the rewrite command with input term f (a, a) will result in the following looping
computation:

f(a, a) => f(b, a) => f(a, a) => f(b, a) => f(a, a) => ...

This is because using the top-down rule-fair strategy of the rewrite command, the third rule
always fails to match and never gets a chance to be applied. As already mentioned above, the
frewrite command uses on the other hand a position-fair bottom-up strategy that makes it
possible for other rules to be applied. As a consequence, some rewriting computations that
could be nonterminating using the rewrite command become terminating with frewrite. For
example, using the frewrite command in place of rewrite in the above example we get

Maude> frew in BB-TEST : f(a, a) .

frewrite in BB-TEST : f(a, a) .

rewrites: 3 in Oms cpu (Oms real) (~ rews/sec)
result Expression: bingo

5.4.3 The search command

The rewrite and frewrite commands each explore just one possible behavior (sequence of
rewrites) of a system described by a set of rewrite rules and an initial state. The search
command allows one to explore (following a breadth-first strategy) the reachable state space in
different ways. Its syntax conforms to the following general scheme

search [n, m 1 in (Modld) : (Term-1) (SearchArrow) (Term-2)
such that (Condition) .

where
e 1 is an optional argument providing a bound on the number of desired solutions;

e m is another optional argument stating the maximum depth of the search;

the module (ModId) where the search takes place can be omitted;

Term-1) is the starting term;

Term-2) is the pattern that has to be reached;

(
(
(SearchArrow) is an arrow indicating the form of the rewriting proof from (Term-1) until
(Term-2):

— =>1 means a rewriting proof consisting of exactly one step,

— =>+ means a rewriting proof consisting of one or more steps,

— =>% means a proof consisting of none, one, or more steps, and

— =>! indicates that only canonical final states are allowed, that is, states that cannot
be further rewritten; and

100 CHAPTER 5. SYSTEM MODULES

The one step arrow =>1 is an abbreviation of the one-or-more steps arrow =>+ with the
depth bound m set to 1.

e (Condition) states an optional property that has to be satisfied by the reached state;
the syntactic form of the condition is the same as the one of conditions for conditional

rules (see Section [5.2)).

For example, for our finite vending machine, SIMPLE-VENDING-MACHINE, we can use the
search command to answer the question: if I have a dollar and three quarters, can I get a cake
and an apple? This is done by searching for states that match a corresponding pattern. In this
example, we use the =>! symbol, meaning that we are searching for terminal states, that is, for
states that cannot be further rewritten. Moreover, no bound in the number of solutions or in
the depth of the search is needed.

Maude> search in SIMPLE-VENDING-MACHINE :
$ 9 qq=>!ac M:Marking .
search in SIMPLE-VENDING-MACHINE : $ q q q =>! a c M:Marking .

Solution 1 (state 4)
states: 6 rewrites: 5 in Oms cpu (Oms real) (~ rews/sec)
M:Marking --> null

No more solutions.
states: 6 rewrites: 5 in Oms cpu (lms real) (~ rews/sec)

The answer is yes, and the desired state is numbered 4. To see the sequence of rewrites that
allowed us to reach this state we can type

Maude> show path 4 .

state 0, Marking: $ q q q

===[rl $§ => q a [label buy-al] .]===>
state 2, Marking: g g q q a

===[rl q g q q => $ [label change] .]===>
state 3, Marking: $ a

===[rl $§ => c [label buy-c] .]===>

state 4, Marking: a c

One can get just the sequence of labels of applied rules with a similar command:

Maude> show path labels 4 .
buy-a
change
buy-c

It is also possible to print out the current search graph generated by a search command

using the command show search graph. After the above search we get

Maude> show search graph .

state 0, Marking: $ q q q

arc 0 ===> state 1 (rl $ => c [label buy-c] .)
arc 1 ===> state 2 (rl $ => q a [label buy-al] .)

state 1, Marking: 9 q q ¢

state 2, Marking: q g q q a
arc 0 ===> state 3 (rl q q q q => $ [label change] .)

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 101

state 0: $q949q

buj;g//// \\\\gzy-a

state 1: g qq c state 2: g g qq a

change

v
state 3: $ a

buy;g//// \\\\E:y-a

state 4: a c state 5: q a a

Figure 5.2: Graphical representation of search graph in example

state 3, Marking: $ a
arc 0 ===> state 4 (rl $ => c [label buy-c] .)
arc 1 ===> state 5 (rl $ => q a [label buy-al .)

state 4, Marking: a c

state 5, Marking: q a a

This search graph is represented graphically in Figure
From the same initial state, $ q q g, we can see if it is possible to reach a final state with
an apple and more things, learning that there are exactly two possibilities:

Maude> search $ q q q =>! a M:Marking such that M:Marking =/= null .
search in SIMPLE-VENDING-MACHINE : $ q q q =>! a M:Marking
such that M:Marking =/= null = true .

Solution 1 (state 4)
states: 6 rewrites: 6 in Oms cpu (Oms real) (~ rews/sec)
M:Marking --> ¢

Solution 2 (state 5)

states: 6 rewrites: 7 in Oms cpu (Oms real) (~ rews/sec)
M:Marking --> q a

No more solutions.

states: 6 rewrites: 7 in Oms cpu (Oms real) (~ rews/sec)

In the following example with a different initial state, namely, $ q q q q, we are looking
for intermediate states from which it is possible to get later either two apples (and two quarters
left) or two cakes, getting exactly one solution.

Maude> search $ q q q q =>+ M:Marking
such that M:Marking => a a q q /\ M:Marking => c c .
search in SIMPLE-VENDING-MACHINE : $ q q q q =>+ M:Marking
such that M:Marking => q q a a /\ M:Marking => c ¢ .

102 CHAPTER 5. SYSTEM MODULES

Solution 1 (state 1)
states: 2 rewrites: 10 in Oms cpu (Oms real) (96153 rewrites/second)
M:Marking --> $ $

No more solutions.
states: 9 rewrites: 38 in Oms cpu (Oms real) (95477 rewrites/second)

Sometimes it is necessary to impose a limit on the number of solutions searched for, since
in general the number of such solutions could be infinite. In the previous examples there were
only one or two solutions, so imposing a bound would not make any difference. But, returning
to the coin generating (and thus nonterminating) vending machine module VENDING-MACHINE,
the search space becomes now infinite, so it is important to be able to limit either the number
of solutions sought or the depth of the search, or both.

We can look for different ways to use a dollar and three quarters to buy an apple and two
cakes. First we ask for one solution, and then use the bounded continue command to see
another solution. Note that here we use the search mode =>+, which means searching for states
reachable by at least one rewrite. Searching for terminal states in the VENDING-MACHINE module
is futile!

Maude> search [1] in VENDING-MACHINE : $§ q q q =>+ a c c M:Marking .
search in VENDING-MACHINE : $§ g g q =>+t acc M .

Solution 1 (state 108)
states: 109 rewrites: 1857 in Oms cpu (41ms real) ("rews/sec)

M-->gdqqq

Maude> cont 1 .

Solution 2 (state 113)

states: 114 rewrites: 185 in Oms cpu (4ms real) (~ rews/sec)
M --> null

We can also use the maximum depth optional argument, but if we put a too small depth,
we do not get any solution:

Maude> search [, 4] $ q q q =>+ a ¢ ¢ M:Marking .
search [, 4] in VENDING-MACHINE : $ g qq =>+ acc M .

No solution.
states: 66 rewrites: 875 in 10ms cpu (3ms real) (87500 rews/sec)

By increasing the depth to 10 we will get 98 solutions. If we are interested in only a few of
those, we can set both bounds, like in the following example:

Maude> search [4, 10] $ q q q =>+ a ¢ ¢ M:Marking .
search [4, 10] in VENDING-MACHINE : $§ q q q =>+ ac c M .

Solution 1 (state 108)
states: 109 rewrites: 1857 in Oms cpu (7ms real) (~ rews/sec)

M-->gdqqq

Solution 2 (state 113)
states: 114 rewrites: 2042 in Oms cpu (7ms real) (~ rews/sec)
M --> null

Solution 3 (state 160)
states: 161 rewrites: 3328 in Oms cpu (1lms real) (~ rews/sec)

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 103

M-->gdq9qqq

Solution 4 (state 164)
states: 165 rewrites: 3524 in Oms cpu (12ms real) (~ rews/sec)
M-->q

If we insist now in the marking M being different from null, then one of the previous solutions
is discarded, but we still get four solutions:

Maude> search [4, 10] $ q q q =>+ a ¢ ¢ M:Marking
such that M:Marking =/= null .
search [4, 10] in VENDING-MACHINE : $ g q q =>+ a c ¢ M
such that M =/= null = true .

Solution 1 (state 108)
states: 109 rewrites: 1858 in Oms cpu (5ms real) (~ rews/sec)

M-->q9qqgq

Solution 2 (state 160)
states: 161 rewrites: 3331 in 10ms cpu (13ms real) (333100 rews/sec)

M-->gdq9qqgq

Solution 3 (state 164)
states: 165 rewrites: 3528 in 10ms cpu (14ms real) (352800 rews/sec)
M-->q

Solution 4 (state 175)
states: 176 rewrites: 3904 in 10ms cpu (15ms real) (390400 rews/sec)

M-->%$q9qqgq

In Chapter [11] we will see how the search command can be used to model check invariant
properties of a concurrent system specified in Maude as a system module.

In case you forget to set a bound on the search command or on its continuation, you can
also interrupt a search in progress by typing control-C. In this case one of two things will
happen, depending on what Maude is doing at the instant you hit control-C. If Maude is not
doing a rewrite, the command will exit. If Maude is doing a rewrite, you will end up in the
debugger. In this latter case it is probably best to type abort, since the debugger has no special
support for search at the moment. See Sections [20.1.9] and 23.14] for more information on the
debugger.

The full syntax and different options for the search command and for all the other com-
mands illustrated in this section are explained in detail in Chapter

104 CHAPTER 5. SYSTEM MODULES

Chapter 6

Module Operations

Specifications and code should be structured in modules of relatively small size to facilitate
understandability of large systems, increase reusability of components, and localize the effects
of system changes. In Maude, these goals are achieved by means of a module algebra that
supports parameterized programming techniques in the OBJ3 style [79] as well as the definition
of module hierarchies, i.e., acyclic graphs of module importations; that is, each functional or
system module can import other Maude modules as submodules. Since the submodule relation
is transitive, we can in this way develop module hierarchies. Mathematically, we can think
of such hierarchies as partial orders of theory inclusions, that is, the theory of the importing
module contains the theories of its submodules as subtheories.

As in Clear [21I], OBJ [79], and other specification languages in that tradition, the abstract
syntax for writing specifications in Maude can be seen as given by module expressions, where
the notion of module expression is understood as an expression that defines a new module
out of previously defined modules by combining and/or modifying them according to a spe-
cific set of operations. In fact, structuring is essential in all specification languages, not only
to facilitate the construction of specifications from already existing ones—with more or less
flexible reusability mechanisms—but also for managing the complexity of understanding and
analyzing large specifications. Maude supports module operations for summation, renaming,
and instantiation of parameterized modules.

Section [6.1] introduces module importations and the different modes in which such impor-
tations can take place. Section discusses the summation and renaming module expressions.
Section [6.3] introduces parameterized programming, including the use of theories and views,
the parameterization of functional and system modules, and the instantiation of parameterized
modules. We refer to [44] 52 [53] for a deeper discussion on the semantics of the Maude module
operations.

6.1 Module importation

Recall that a functional module M specifies a membership equational theory of the form (X, EU
A), with ¥ its signature, A the equational attributes specified for its operators, and E its set of
equations and memberships. A submodule M’ of M is either a module directly imported by M,
or a submodule of one of the modules directly imported by M. Then M’ specifies a membership
equational subtheory (X', E'UA’) C (X, EUA). Specifically, we have three inclusions: ¥’ C ¥,
E' C E, and A’ C A. Furthermore, since in Maude subsort-overloaded operators must have
the same equational attributes, Maude will enforce that the inclusion A’ C A satisfies this

105

106 CHAPTER 6. MODULE OPERATIONS

property.

In a similar way, a system module @) specifies a rewrite theory (X, EUA, ¢, R). A submodule
Q' of Q will likewise specify a rewrite subtheory (X', E' U A’, ¢/, R") C (X, EU A, ¢, R). This
means that we have inclusions ¥/ C X, ' C E, A’ C A (again, with the same equational
attributes for subsort-overloaded operators), ¢’ C ¢, and R’ C R, where ¢’ C ¢ is an inclusion
of functions and means that the freezing function ¢ extends the function ¢’. Note that Q' could
be a functional module, which is then understood as the rewrite theory (X', E‘'UA’, ¢, (), where
¢’ specifies whatever freezing information has been given to the operators of ¥’ in Q’. A system
module cannot be imported into a functional module.

In Maude, a module—any module expression giving rise to a module—can be imported as
a submodule of another in three different modes: protecting, extending, or including. This
is done with the syntax declarations

protecting (ModuleEzxpression) .
extending (ModuleEzpression) .
including (ModuleEzpression) .

which can be abbreviated, respectively, to

pr (ModuleEzxpression) .
ex (ModuleEzpression) .
inc (ModuleExpression) .

In addition to being allowed as arguments of a protecting, extending, or including
importation, module expressions can also appear as the source or target of a view (see Sec-
tion[6.3.2)), or as the parameter of a module, provided the top level is a theory (see Section[6.3.3).

Each of the importation modes places specific semantic constraints on the corresponding
inclusion between the theory of the submodule and that of the supermodule. The user must
be aware that, as explained later, the Maude system does not check that these constraints are
satisfied, that is, the different modes of importation can be understood as promises by the user,
which would need to be proved by him/herself. Although those importation modes have no
effect operationally, they do crucially affect the interpretation given to a module by the theorem
proving tools. If a user is doubtful about the appropriate importation mode the default should
be to use the including mode, which places weaker requirements on the importation.

Importation statements take a module expression as argument, which may be a module
name, the summation of module expressions, the renaming of a module expression, or the
instantiation of a parameterized module expression. Modules are constructed for each subex-
pression of a module expression, and so each submodule signature must be legal. Modules and
module expressions are cached both to save time and so that the same module corresponding
to a module expression will not be imported twice via a diamond of imports. Mutually or self
recursive imports occurring through module expressions are detected and disallowed. Cached
modules generated by module expressions that no longer have any users (if the module(s) con-
taining the module expression have been replaced) are deleted. When a module M used in
a module expression is modified, any modu