
ıMoudE E

Maude Manual

(Version 3.1)

Manuel Clavel
Francisco Durán

Steven Eker
Santiago Escobar
Patrick Lincoln

Narciso Mart́ı-Oliet
José Meseguer
Rubén Rubio

Carolyn Talcott

October 2020

ii

Maude 3 is copyright 1997-2020 SRI International, Menlo
Park, CA 94025, USA.

The Maude system is free software; you can redistribute
it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option)
any later version.
The Maude system is distributed in the hope that it will
be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a par-
ticular purpose. See the GNU General Public License for
more details.

Contents

1 Introduction 1
1.1 Simplicity, expressiveness, and performance 1

1.1.1 Simplicity . 1
1.1.2 Expressiveness . 4
1.1.3 Performance . 8

1.2 The logical foundations of Maude . 9
1.3 Programming, specification, and verification 11
1.4 A high-performance logical framework . 14
1.5 Core Maude vs. Full Maude . 16
1.6 Manual structure . 16
1.7 The Maude book . 18

I Core Maude 21

2 Using Maude 23
2.1 Getting Maude . 23
2.2 Running Maude . 23
2.3 Getting support and more information . 27
2.4 Reporting bugs in Maude . 28

3 Syntax and Basic Parsing 29
3.1 Identifiers . 29
3.2 Modules . 30
3.3 Sorts and subsorts . 31
3.4 Operator declarations . 33
3.5 Kinds . 35
3.6 Operator overloading . 36
3.7 Variables . 36
3.8 Terms and preregularity . 37
3.9 Parsing . 38

3.9.1 Default precedence values . 40
3.9.2 Default gathering patterns . 40
3.9.3 The extended signature of a module . 42
3.9.4 Parsing examples . 43

4 Functional Modules 47
4.1 Unconditional equations . 48
4.2 Unconditional memberships . 49

iii

iv CONTENTS

4.3 Conditional equations and memberships . 49
4.4 Operator attributes . 53

4.4.1 Equational attributes . 53
4.4.2 The iter attribute . 55
4.4.3 Constructors . 55
4.4.4 Polymorphic operators . 58
4.4.5 Format . 59
4.4.6 Ditto . 62
4.4.7 Operator evaluation strategies . 63
4.4.8 Memo . 66
4.4.9 Frozen arguments . 68
4.4.10 Special . 69

4.5 Statement attributes . 69
4.5.1 Labels . 69
4.5.2 Metadata . 70
4.5.3 Nonexec . 70
4.5.4 Otherwise . 70
4.5.5 Print . 74

4.6 Admissible functional modules . 75
4.7 Matching and equational simplification . 76
4.8 More on matching and simplification modulo 79
4.9 The reduce, match, trace, and show commands 84

5 System Modules 89
5.1 Unconditional rules . 90
5.2 Conditional rules . 91
5.3 Admissible system modules . 92
5.4 The rewrite, frewrite, and search commands 95

5.4.1 The rewrite command . 96
5.4.2 The frewrite command . 98
5.4.3 The search command . 99

6 Module Operations 105
6.1 Module importation . 105

6.1.1 Protecting . 107
6.1.2 Extending . 108
6.1.3 Including . 108
6.1.4 Default conventions in module importations 109
6.1.5 Some module hierarchy examples . 109

6.2 Module summation and renaming . 111
6.2.1 The summation module expression . 111
6.2.2 Module renaming . 112

6.3 Parameterized programming . 115
6.3.1 Theories . 115
6.3.2 Views . 120
6.3.3 Parameterized modules . 124
6.3.4 Module instantiation . 128
6.3.5 Lists . 134
6.3.6 Sorted lists . 135
6.3.7 Parameterized views . 138

CONTENTS v

7 Predefined Data Modules 143
7.1 Boolean values . 144
7.2 Natural numbers . 148
7.3 Random numbers and counters . 152
7.4 Integer numbers . 154
7.5 Machine integers . 157
7.6 Rational numbers . 160
7.7 Floating-point numbers . 164
7.8 Strings . 168
7.9 String and number conversions . 171
7.10 Quoted identifiers . 173
7.11 Conversions between strings and lists of quoted identifiers 174
7.12 Basic theories and standard views . 176

7.12.1 TRIV . 177
7.12.2 DEFAULT . 177
7.12.3 STRICT-WEAK-ORDER and STRICT-TOTAL-ORDER 178
7.12.4 TOTAL-PREORDER and TOTAL-ORDER . 180

7.13 Containers: lists and sets . 182
7.13.1 Lists . 182
7.13.2 Sets . 184
7.13.3 Relating lists and sets . 187
7.13.4 Generalized lists . 188
7.13.5 Generalized sets . 190
7.13.6 Sortable lists . 193
7.13.7 Making lists out of sets . 199

7.14 Maps and arrays . 201
7.14.1 Maps . 202
7.14.2 Arrays . 203

7.15 A linear Diophantine equation solver . 205
7.16 Predefined Parameterized Views . 208

8 Object-Based Programming 211
8.1 Configurations . 211
8.2 Object-message fair rewriting . 221
8.3 Example: data agents . 223

9 External Objects and IO 231
9.1 Standard streams . 232

9.1.1 The Hello Word! example . 233
9.1.2 A ROT13 cypher example . 233
9.1.3 A calculator example . 235

9.2 File I/O . 236
9.2.1 A file copy example . 239

9.3 Sockets . 240
9.3.1 An HTTP/1.0 client example . 242
9.3.2 Buffered sockets . 246

9.4 Processes . 249
9.4.1 A desk calculator process . 251
9.4.2 Python and Maude processes . 253

9.5 Control-C on external events . 257

vi CONTENTS

10 Strategy Language 261
10.1 The strategy language . 262

10.1.1 Basic control combinators . 265
10.1.2 Rewriting of subterms . 268
10.1.3 The one operator . 269
10.1.4 Strategy calls . 270

10.2 Strategy modules . 271
10.2.1 Module importation . 274

10.3 Parameterization in strategy modules . 275
10.4 Strategy search and the dsrewrite command 279
10.5 Case study: logic programming . 281

10.5.1 Negation as failure . 287
10.5.2 Cuts . 288

11 Model Checking Invariants Through Search 293
11.1 Invariants . 293
11.2 Model checking of invariants . 294
11.3 Bounded model checking of invariants . 297
11.4 Verifying infinite-state systems through abstractions 299

12 LTL Model Checking 303
12.1 LTL formulas and the LTL module . 303
12.2 Associating Kripke structures to rewrite theories 305
12.3 LTL model checking . 309
12.4 The LTL satisfiability and tautology checker 315
12.5 Other model-checking examples . 317

13 Unification 319
13.1 Introduction . 319
13.2 Order-sorted unification . 320

13.2.1 A hybrid approach to equational order-sorted unification 321
13.3 Theories currently supported . 321
13.4 The unify command . 323

13.4.1 Non-supported unification examples . 325
13.4.2 Associative-commutative (AC) unification examples 325
13.4.3 Unification examples with the iter attribute 326
13.4.4 Associative-commutative with identity (ACU) unification examples . . 327
13.4.5 Unification examples with an identity symbol 329
13.4.6 Associative (A) unification examples 331
13.4.7 Associative with identity (AU) unification examples 334

13.5 Some applications of unification . 335
13.5.1 Narrowing-based unification . 335
13.5.2 Symbolic reachability analysis in rewrite theories 336
13.5.3 Other automated deduction applications 338

13.6 Endogenous vs. exogenous order-sorted unification algorithms 339
13.7 Some notes on the implementation of unification 340

13.7.1 Combining unification algorithms . 340
13.7.2 Combining incomplete unification algorithms 341
13.7.3 Diophantine basis element selection . 342

CONTENTS vii

14 Variants and Variant Unification 345
14.1 Introduction . 345
14.2 Term variants . 345
14.3 Theories currently supported . 347
14.4 The get variants command . 348
14.5 Variant generation with irreducibility constraints 352
14.6 Incremental variant generation . 353
14.7 Variant generation in incomplete unification examples 354
14.8 Variant-based equational order-sorted unification 356
14.9 The variant unify command . 357
14.10 Variant-based unification with irreducibility constraints 358
14.11 Incremental variant unification . 358
14.12 Variant unification in incomplete unification examples 359
14.13 The variant match command . 359

15 Narrowing 361
15.1 Introduction . 361
15.2 Applications . 363
15.3 Completeness of narrowing . 363
15.4 Narrowing with simplification . 364
15.5 Theories supported for narrowing reachability 365
15.6 The vu-narrow command . 366
15.7 The fvu-narrow command . 369
15.8 Narrowing with extra variables in righthand sides of rules 372

16 SMT Solving 375
16.1 Boolean formulas . 376
16.2 Formulas using integer linear arithmetic . 377
16.3 Formulas using rational linear arithmetic . 378
16.4 Formulas using rational and integer linear arithmetic 379
16.5 Satisfiability of formulas . 379
16.6 A brief introduction to variant satisfiability 380

17 Reflection, Metalevel Computation, and Internal Strategies 381
17.1 Reflection and metalevel computation . 381
17.2 The META-TERM module . 383

17.2.1 Metarepresenting sorts and kinds . 383
17.2.2 Metarepresenting terms . 384

17.3 The META-STRATEGY module: Metarepresenting the strategy language 385
17.4 The META-MODULE module: Metarepresenting modules 386
17.5 The META-VIEW module: Metarepresenting views 390
17.6 The META-LEVEL module: Metalevel operations 392

17.6.1 Moving between reflection levels: upModule, upTerm, and others 392
17.6.2 Simplifying: metaReduce and metaNormalize 395
17.6.3 Rewriting: metaRewrite and metaFrewrite 397
17.6.4 Applying rules: metaApply and metaXapply 398
17.6.5 Matching: metaMatch and metaXmatch 401
17.6.6 Searching: metaSearch and metaSearchPath 404
17.6.7 Rewriting using strategies: metaSrewrite 406
17.6.8 Unification . 407

viii CONTENTS

17.6.9 Variants: metaGetVariant . 411
17.6.10 Variant Matching and Unification . 414
17.6.11 Narrowing . 416
17.6.12 Checking satisfiability modulo theories: metaCheck 420
17.6.13 Parsing and pretty-printing: metaParse and metaPrettyPrint 420
17.6.14 Sort operations . 424
17.6.15 Other metalevel operations: wellFormed 430

17.7 Internal strategies . 431

18 User Interfaces and Metalanguage Applications 435
18.1 User interfaces . 435
18.2 The interaction with the system . 439
18.3 Tokens, bubbles, and metaparsing . 440
18.4 The LOOP-MODE module (deprecated) . 446

19 Meta-interpreters 449
19.1 Maude meta-interpreters . 449
19.2 A Russian dolls example . 450
19.3 An execution environment for Mini-Maude . 452

20 Debugging and Troubleshooting 461
20.1 Debugging approaches . 461

20.1.1 Tracing . 461
20.1.2 Term coloring . 469
20.1.3 The debugger . 470
20.1.4 Status report . 473
20.1.5 The profiler . 474
20.1.6 Performance note . 482

20.2 Debugging strategy executions . 484
20.3 Traps and known problems . 488

20.3.1 Associativity and idempotency . 488
20.3.2 Segmentation fault (core dumped) . 489
20.3.3 Bare variable lefthand sides . 490
20.3.4 Operator overloading and associativity 490
20.3.5 Preregularity and equational attributes 491
20.3.6 Collapse theories . 492
20.3.7 One-sided identities and associativity 494
20.3.8 Memberships for associative operators 495
20.3.9 Memberships for iterated operators . 498
20.3.10 Ambiguity in print attribute items . 499

II Full Maude 501

21 Full Maude: Extending Core Maude 503
21.1 Running Full Maude . 504
21.2 Using Core Maude modules in Full Maude . 508
21.3 Additional module operations in Full Maude 509

21.3.1 The tuple and power module expressions 511
21.4 Moving up and down between reflection levels 513

CONTENTS ix

21.4.1 Up . 513
21.4.2 Down . 514

21.5 Ax-coherence completion . 516
21.6 Differences between Full Maude and Core Maude 519

22 Object-Oriented Modules 521
22.1 Object-oriented systems . 521

22.1.1 Objects and messages . 521
22.1.2 Classes . 522
22.1.3 Inheritance . 523
22.1.4 Object-oriented rules . 524

22.2 Example: a rent-a-car store . 527
22.3 Object-oriented parameterized programming 530

22.3.1 Theories . 531
22.3.2 Views . 531
22.3.3 Parameterized object-oriented modules 531

22.4 Module operations on object-oriented modules 534
22.4.1 Module summation and renaming . 534
22.4.2 Module instantiation . 535

22.5 Example: extended rent-a-car store . 536
22.6 A strategy for sequential rule execution . 540
22.7 Model checking a round-robin scheduling algorithm 544
22.8 From object-oriented modules to system modules 548

III Reference 553

23 Complete List of Maude Commands 555
23.1 Command line flags . 555
23.2 Rewriting commands . 556
23.3 Matching commands . 558
23.4 Searching commands . 559
23.5 Strategic rewriting commands . 560
23.6 Unification, variants, and narrowing commands 560
23.7 SMT commands . 561
23.8 Tracing commands . 562
23.9 Print attribute commands . 563
23.10 Print option commands . 563
23.11 Show option commands . 564
23.12 Show commands . 565
23.13 Profiler commands . 566
23.14 Debugger commands . 566
23.15 Miscellaneous commands . 567
23.16 System level commands . 567

24 Core Maude Grammar 569
24.1 The grammar . 569
24.2 Synonyms . 574
24.3 Lexical Issues . 576

x CONTENTS

Bibliography 588

Subject Index 589

Index of Maude Modules 597

Index of Maude Theories 601

Index of Maude Views 603

List of Figures

2.1 Maude home page at maude.cs.illinois.edu 24
2.2 Running Maude inside Emacs . 27

4.1 Confluence diagram . 77

5.1 Coherence diagram . 94
5.2 Graphical representation of search graph in example 101

6.1 Hierarchy of order theories . 119
6.2 Structure of LEX-PAIR . 127

7.1 Importation (protecting) graph of predefined modules 144
7.2 Importation graph of parameterized list and set modules 182
7.3 From lists to weakly sortable lists . 194
7.4 From weakly sortable lists to sortable lists . 196
7.5 Another version of sortable lists . 197

8.1 Importation graph of bank modules . 216
8.2 Importation graph of ticker modules . 219
8.3 Importation graph of data-agents modules . 228

10.1 Behavior of the amatchrew combinator . 269
10.2 Family tree defined by the example predicates 282

12.1 Importation graph of model-checking modules 313
12.2 Graphical representation of a Kripke structure 316

17.1 Importation graph of metalevel modules . 383
17.2 Folding variant narrowing tree for the term < $ q q X Y >. 413

19.1 MiniMaude’s statechart. 454

20.1 Number of rewrites and CPU time for different versions of the sorting algorithms 483

xi

xii LIST OF FIGURES

Chapter 1

Introduction

This introduction tries to give the big picture on the goals, design philosophy, logical founda-
tions, applications, and overall structure of Maude. It is written in an impressionistic, conver-
sational style, and should be read in that spirit. The fact that occasionally some particular
technical concept mentioned in passing (for example, “the Church-Rosser property”) may be
unfamiliar should not be seen as an obstacle. It should be taken in a relaxed, sporting spirit:
those things will become clearer in the body of the manual; here it is just a matter of gaining
a first overall impression.

1.1 Simplicity, expressiveness, and performance

Maude’s language design can be understood as an effort to simultaneously maximize three
dimensions:

• Simplicity : programs should be as simple as possible and have clear meaning.

• Expressiveness: a very wide range of applications should be naturally expressible: from
sequential, deterministic systems to highly concurrent nondeterministic ones; from small
applications to large systems; and from concrete implementations to abstract specifi-
cations, all the way to logical frameworks, in which not just applications, but entire
formalisms, other languages, and other logics can be naturally expressed.

• Performance: concrete implementations should yield system performance competive with
other efficient programming languages.

Although simplicity and performance are natural allies, maximizing expressiveness is per-
haps the key point in Maude’s language design. Languages are after all representational devices,
and their merits should be judged on the degree to which problems and applications can be
represented and reasoned about generally, naturally, and easily. Of course, domain-specific lan-
guages also have an important role to play in certain application areas, and can offer a useful
“economy of representation” for a given area. In this regard, Maude should be viewed as a
high-performance metalanguage, through which many different domain-specific languages can
be developed.

1.1.1 Simplicity

Maude’s basic programming statements are very simple and easy to understand. They are
equations and rules, and have in both cases a simple rewriting semantics in which instances of

1

2 CHAPTER 1. INTRODUCTION

the lefthand side pattern are replaced by corresponding instances of the righthand side.
A Maude program containing only equations is called a functional module. It is a functional

program defining one or more functions by means of equations, used as simplification rules. For
example, if we build lists of quoted identifiers (which are sequences of characters starting with
the character ‘’’ and belong to a sort1 Qid) with a “cons” operator denoted by an infix period,

op nil : -> List .

op _._ : Qid List -> List .

then we can define a length function and a membership predicate by means of the operators
and equations

op length : List -> Nat .

op _in_ : Qid List -> Bool .

vars I J : Qid .

var L : List .

eq length(nil) = 0 .

eq length(I . L) = s length(L) .

eq I in nil = false .

eq I in J . L = (I == J) or (I in L) .

where s_ denotes the successor function on natural numbers, _==_ is the equality predicate
on quoted identifiers, and _or_ is the usual disjunction on Boolean values. Such equations
(specified in Maude with the keyword eq and ended with a period) are used from left to right
as equational simplification rules. For example, if we want to evaluate the expression

length(’a . ’b . ’c . nil)

we can apply the second equation for length to simplify the expression three times, and then
apply the first equation once to get the final value s s s 0:

length(’a . ’b . ’c . nil)

= s length(’b . ’c . nil)

= s s length(’c . nil)

= s s s length(nil)

= s s s 0

This is the standard “replacement of equals by equals” use of equations in elementary
algebra and has a very clear and simple semantics in equational logic. Replacement of equals
by equals is here performed only from left to right and is then called equational simplification
or, alternatively, equational rewriting. Of course, the equations in our program should have
good properties as “simplification rules” in the sense that their final result exists and should
be unique. This is indeed the case for the two functional definitions given above.

In Maude, equations can be conditional ; that is, they may only be applied if a certain
condition holds. For example, we can simplify a fraction to its irreducible form using the
conditional equation

vars I J : NzInt .

ceq J / I = quot(J, gcd(J, I)) / quot(I, gcd(J, I))

if gcd(J, I) > s 0 .

1In Maude, types come in two flavors, called sorts and kinds (see Section 3, and the discussion of user-
definable data in Section 1.1.2 below).

1.1. SIMPLICITY, EXPRESSIVENESS, AND PERFORMANCE 3

where ceq is the Maude keyword introducing conditional equations, NzInt is the sort of nonzero
integers, and where we assume that the integer quotient (quot) and greatest common divisor
(gcd) operations have already been defined by their corresponding equations.

A Maude program containing rules and possibly equations is called a system module. Rules
are also computed by rewriting from left to right, that is, as rewrite rules, but they are not
equations; instead, they are understood as local transition rules in a possibly concurrent system.
Consider, for example, a distributed banking system in which we envision the account objects
as floating in a “soup,” that is, in a multiset or bag of objects and messages. Such objects and
messages can “dance together” in the distributed soup and can interact locally with each other
according to specific rewrite rules. We can represent a bank account as a record-like structure
with the name of the object, its class name (Account) and a bal(ance) attribute, say, a natural
number. The following are two different account objects in our notation:

< ’A-001 : Account | bal : 200 >

< ’A-002 : Account | bal : 150 >

Accounts can be updated by receiving different messages and changing their state accord-
ingly. For example, we can have debit and credit messages, such as

credit(’A-002, 50)

debit(’A-001, 25)

We can think of the “soup” as formed just by “juxtaposition” (with empty syntax) of objects
and messages. For example, the above two objects and two messages form the soup

< ’A-001 : Account | bal : 200 >

< ’A-002 : Account | bal : 150 >

credit(’A-002, 50)

debit(’A-001, 25)

in which the order of objects and messages is immaterial. The local interaction rules for
crediting and debiting accounts are then expressed in Maude by the rewrite rules

var I : Qid .

vars N M : Nat .

rl < I : Account | bal : M > credit(I, N)

=> < I : Account | bal : (M + N) > .

crl < I : Account | bal : M > debit(I, N)

=> < I : Account | bal : (M - N) >

if M >= N .

where rules are introduced with the keyword rl and conditional rules (like the above rule for
debit that requires the account to have enough funds) with the crl keyword.

Note that these rules are not equations at all : they are local transition rules of the dis-
tributed banking system. They can be applied concurrently to different fragments of the soup.
For example, applying both rules to the soup above we get the new distributed state:

< ’A-001 : Account | bal : 175 >

< ’A-002 : Account | bal : 200 >

Note that the rewriting performed is multiset rewriting, so that, regardless of where the
account objects and the messages are placed in the soup, they can always come together and
rewrite if a rule applies. In Maude this is specified in the equational part of the program (system
module) by declaring that the (empty syntax) multiset union operator satisfies the associativity
and commutativity equations:

4 CHAPTER 1. INTRODUCTION

X (Y Z) = (X Y) Z

X Y = Y X

This is not done by giving the above equations explicitly. It is instead done by declaring
the multiset union operator with the assoc and comm equational attributes (see Section 4.4.1
and Section 1.1.2 below), as follows, where Configuration denotes the multisets or soups of
objects and messages.

op __ : Configuration Configuration -> Configuration [assoc comm] .

Maude then uses this information to generate a multiset matching algorithm, in which the
multiset union operator is matched modulo associativity and commutativity.

Again, a program involving such rewrite rules is intuitively very simple, and has a very simple
rewriting semantics. Of course, the systems specified by such rules can be highly concurrent
and nondeterministic; that is, unlike for equations, there is no assumption that all rewrite
sequences will lead to the same outcome. For example, depending on the order in which debit

or credit messages are consumed, a bank account can end up in quite different states, because
the rule for debiting can only be applied if the account balance is big enough. Furthermore,
for some systems there may not be any final states: their whole point may be to continuously
engage in interactions with their environment as reactive systems.

1.1.2 Expressiveness

The above examples illustrate a general fact, namely, that Maude can express with equal ease
and naturalness deterministic computations, which lead to a unique final result, and concurrent,
nondeterministic computations. The first kind is typically programmed with equations in
functional modules, and the second with rules (and perhaps with some equations for the “data”
part) in system modules.

In fact, functional modules define a functional sublanguage2 of Maude. In a functional
language true to its name, functions have unique values as their results, and it is neither easy
nor natural to deal with highly concurrent and nondeterministic systems while keeping the
language’s functional semantics. It is well known that such systems pose a serious expressiveness
challenge for functional languages. In Maude this challenge is met by system modules, which
extend the purely functional semantics of equations to the concurrent rewriting semantics of
rules.3 Although certainly declarative in the sense of having a clear logical semantics, system
modules are of course not functional: that is their entire raison d’être.

Besides this generality in expressing both deterministic and nondeterministic computations,
further expressiveness is gained by the following features:

• equational pattern matching,

• user-definable syntax and data,

• types, subtypes, and partiality,

• generic types and modules,

• support for objects, and

2This sublanguage is essentially an extension of the OBJ3 equational language [79], which has greatly influ-
enced the design of Maude.

3As explained in Section 1.2, mathematically this is achieved by a logic inclusion, in which the functional
world of equational theories is conservatively embedded in the nonfunctional, concurrent world of rewrite theo-
ries.

1.1. SIMPLICITY, EXPRESSIVENESS, AND PERFORMANCE 5

• reflection.

We briefly discuss each of these features in what follows.

Equational pattern matching

Rewriting with both equations and rules takes place by matching a lefthand side term against
the subject term to be rewritten. The most common form of matching is syntactic matching, in
which the lefthand side term is matched as a tree on the (tree representation of the) subject term
(see Section 4.7). For example, the matching of the lefthand sides for the equations defining
the length and _in_ functions above is performed by syntactic matching. But we have already
encountered another, more expressive, form of matching, namely, equational matching in the
bank accounts example: the lefthand side

< I : Account | bal : M > credit(I, N)

has the (empty syntax) multiset union operator __ as its top operator, but, thanks to its assoc
and comm equational attributes, it is matched not as a tree, but as a multiset. Therefore,
the match will succeed provided that the subject multiset contains instances of the terms
< I : Account | bal : M > and credit(I, N) in which the variable I is instantiated the
same way in both terms, regardless of where those instances appear in the multiset, that is,
modulo associativity and commutativity.

In general, a binary operator declared in a Maude module can be defined with any4 combina-
tion of equational attributes of: associativity, commutativity, left-, right-, or two-sided identity,
and idempotency. Maude then generates an equational matching algorithm for the equational
attributes of the different operators in the module, so that each operator is matched modulo its
equational attributes. This manual will illustrate with various examples the expressive power
afforded by this form of equational matching (see Section 4.8).

User-definable syntax and data

In Maude the user can specify each operator with its own syntax, which can be prefix, postfix,
infix, or any “mixfix” combination. This is done by indicating with underscores the places where
the arguments appear in the mixfix syntax. For example, the infix list cons operator above is
specified by _._, the (empty syntax) multiset union operator by __, and the if-then-else operator
by if_then_else_fi. In practice, this improves readability (and therefore understandability)
of programs and data. In particular, for metalanguage uses, in which another language or logic
is represented in Maude, this can make a big difference for understanding large examples, since
the Maude representation can keep essentially the original syntax. The combination of user-
definable syntax with equations and equational attributes for matching leads to a very expressive
capability for specifying any user-definable data. It is well known that any computable data
type can be equationally specified [10]. Maude gives users full support for this equational style
of defining data which is not restricted to syntactic terms (trees) but can also include lists
(modulo associativity), multisets (modulo associativity and commutativity), sets (adding an
idempotency equation), and other combinations of equational attributes that can then be used
in matching. This great expressiveness for defining data is further enhanced by Maude’s rich
type structure, as explained below.

Types, subtypes, and partiality

Maude has two varieties of types: sorts, which correspond to well-defined data, and kinds,
which may contain error elements. Sorts can be structured in subsort hierarchies, with the
subsort relation understood semantically as subset inclusion. For example, for numbers we can
have subsort inclusions

4Except for any combination including both associativity and idempotency, which is not currently supported.

6 CHAPTER 1. INTRODUCTION

Nat < Int < Rat

indicating that the natural numbers are contained in the integers, and these in turn are con-
tained in the rational numbers. All these sorts determine a kind (say the “number kind”) which
is interpreted semantically as the set containing all the well-formed numerical expressions for
the above number systems as well as error expressions such as, for example, 4 + 7/0. This
allows support for partial functions in a total setting, in the sense that a function whose appli-
cation to some arguments has a kind but not a sort should be considered undefined for those
arguments (but notice that functions can also map undefined to defined results, for example
in the context of error recovery). Furthermore, operators can be subsort-overloaded, providing
a useful form of subtype polymorphism. For example, the addition operation _+_ is subsort
overloaded and has typings for each of the above number sorts. A further feature, greatly
extending the expressive power for specifying partial functions, is the possibility of defining
sorts by means of equational conditions. For example, a sequential composition operation _;_

concatenating two paths in a graph is defined if and only if the target of the first path coincides
with the source of the second path. In Maude this can be easily expressed with the “conditional
membership” (see Section 4.3):

vars P Q : Path .

cmb (P ; Q) : Path if target(P) = source(Q) .

Generic types and modules

Maude supports a powerful form of generic programming that substantially extends the param-
eterized programming capabilities of OBJ3 [79]. The analogous terminology to express these
capabilities in higher-order type theory would be parametric polymorphism and dependent types.
But in Maude the parameters are not just types, but theories, including operators and equations
that impose semantic restrictions on the parameterized module instantiations. Thus, whereas a
parametric LIST module can be understood just at the level of the parametric type (sort) of list
elements, a parameterized SORTING module has the theory TOSET of totally ordered sets as its
parameter, including the axioms for the order predicate, that must be satisfied in each correct
instance for the sorting function to work properly. Types analogous to dependent types are
also supported by making the parameter instantiations depend on specific parametric constants
in the parameter theory, and by giving membership axioms depending on such constants. For
example, natural numbers modulo n (see Section 22.7), and arrays of length n, can be easily
defined this way. The fact that entire modules, and not just types, can be parametric provides
even more powerful constructs. For example, TUPLE[n] (see Section 21.3.1) is a “dependent
parameterized module” that assigns to each natural number n the parameterized module of
n-tuples (together with the tupling and projection operations) with n parameter sorts.

Support for objects

The bank accounts example illustrates a general point, namely, that in Maude it is very easy to
support objects and distributed object interactions in a completely declarative style with rewrite
rules. Although such object systems are just a particular style of system modules in which object
interactions (through messages or directly between objects) are expressed by rewriting, Maude
provides special support for object-based programming and for fair execution of object-based
applications (see Chapter 8). Furthermore, the Full Maude extension provides special syntax
in object-oriented modules (see Chapter 22). Such modules directly support object-oriented
concepts like objects, messages, classes, and multiple class inheritance. Moreover, the support
for communication with external objects (see Section 9) allows Maude objects to interact by
message passing with internet sockets and, through them, with all kinds of other external

1.1. SIMPLICITY, EXPRESSIVENESS, AND PERFORMANCE 7

objects, such as files, databases, graphical user interfaces, sensors, robots, and so on. All this
is achieved without compromising Maude’s declarative nature: interaction with normal Maude
objects and with external objects can both be programmed with rewrite rules. Using internet
sockets as external objects, it is also easy to develop distributed implementations in Maude,
where a “soup” of objects and messages is not realized just as a multiset data structure in a
single sequential machine, but as a “distributed soup,” with objects and messages in different
machines or in transit.

Reflection

This is a very important feature of Maude. Intuitively, it means that Maude programs can
be metarepresented as data, which can then be manipulated and transformed by appropriate
functions. It also means that there is a systematic causal connection between Maude mod-
ules themselves and their metarepresentations, in the sense that we can either first perform
a computation in a module and then metarepresent its result, or, equivalently, we can first
metarepresent the module and its initial state and then perform the entire computation at the
metalevel. Finally, the metarepresentation process can itself be iterated giving rise to a very
useful reflective tower. Thanks to Maude’s logical semantics (more on this in Section 1.2), all
this is not just some kind of “glorified hacking,” but a precise form of logical reflection with a
well-defined semantics (see Chapter 17 and [33, 34]). There are many important applications
of reflection. Let us mention just three:

• Internal strategies. Since the rewrite rules of a system module can be highly nondeter-
ministic, there may be many possible ways in which they can be applied, leading to quite
different outcomes. In a distributed object system this may be just part of life: provided
some fairness assumptions are respected, any concurrent execution may be acceptable.
But what should be done in a sequential execution? Maude does indeed support two
different fair execution strategies in a built-in way through its rewrite and frewrite

commands (see Section 5.4). But what if we want to use a different strategy for a given
application? The answer is that Maude modules can be executed at the metalevel with
user-definable internal strategies5 (see Section 17.7). Such internal strategies can be de-
fined by rewrite rules in a metalevel module that guides the possibly nondeterministic
application of the rules in the given “object level” module. This process can be iterated
in the reflective tower. That is, we can define meta-strategies, meta-meta-strategies, and
so on.

• Module algebra. The entire module algebra in which parameterized modules can be com-
posed and instantiated becomes expressible within the logic, and extensible by new mod-
ule operations that transform existing modules metarepresented as data. This is of more
than theoretical interest: Maude’s module algebra is realized exactly in this way by Full
Maude, a Maude program defining all the module operations and easily extensible with
new ones (see Part II of this manual).

• Formal tools. The verification tools in Maude’s formal environment must take Maude
modules as arguments and perform different formal analyses and transformations on such
modules. This is again done by reflection in tools such as Maude’s inductive theorem
prover, the Church-Rosser checker, the Maude termination tool, the Real-Time Maude
tool, and so on.

5That is, internal to Maude’s logic, in the sense of being definable by logical axioms.

8 CHAPTER 1. INTRODUCTION

1.1.3 Performance

Achieving expressiveness in all the ways described above without sacrificing performance is
a nontrivial matter. Successive Maude implementations have been advancing this goal while
expanding the set of language features. More work remains ahead, but it seems fair to say that
Maude, although still an interpreter, is a high-performance system that can be used for many
non-toy applications with competitive performance and with many advantages over conventional
code. Without in any way trying to extrapolate a specific experience into a general conclusion,
a concrete example from the Maude user’s trenches may illustrate the point. A formal tool
component to check whether a trace of events satisfies a given linear temporal logic (LTL)
formula was written in Maude at NASA Ames by Grigore Roşu in about one page of Maude
code. The component had a trivial correctness proof—the Maude module was based on the
equational definition of the LTL semantics for the different connectives. This replaced a similar
component having about 5,000 lines of Java code that had taken over a month to develop by an
experienced colleague. The Java tool used a translation of LTL formulas into Büchi automata
(the usual method to efficiently model check an LTL formula) and run about three times more
slowly than the Maude code. It would have been very difficult to prove the correctness of the
Java tool and, having a better and clearly correct alternative in the Maude implementation,
this was never done.

Generally and roughly speaking, the current Maude implementation can execute syntac-
tic rewriting with typical speeds from half a million to several million rewrites per second,
depending on the particular application and the given machine. Similarly, associative and
associative-commutative equational rewriting with term patterns used in practice6 can be per-
formed at the typical rate of one hundred thousand to several hundred thousand rewrites per
second.

These figures must be qualified by the observation that, until recently, the cost of an associa-
tive or associative-commutative rewriting step depended polynomially on the size of the subject
term, even with the most efficient algorithms. In practice this meant that this kind of rewriting
was not practical for large applications, in which the lists or multisets to be rewritten could have
millions of elements. This situation has been drastically altered by a recent result of Steven
Eker [59] providing new algorithms for associative and associative-commutative rewriting that,
for patterns typically encountered in practice, can perform one step of associative rewriting
in constant time, and one associative-commutative rewriting step in time proportional to the
logarithm of the subject term’s size. Maude supports equational rewriting with these new
algorithms.

The reason why the Maude interpreter achieves high performance is that the rewrite rules are
carefully analyzed and are then semicompiled into efficient matching and replacement automata
[57] with efficient matching algorithms. One important advantage of semicompilation is that
it is possible to trace every single rewriting step. More performance is of course possible by
full compilation. Maude has an experimental compiler for a subset of the language which can
typically achieve a fivefold speedup over the interpreter.

Four other language features give the user different ways of optimizing the performance of
his/her code. One is profiling, allowing a detailed analysis of which statements are most expen-
sive to execute in a given application (see Section 20.1.5). Another is evaluation strategies (see
Section 4.4.7), giving the user the possibility of indicating which arguments and in which order
to evaluate before simplifying a given operator with the equations. This can range from “no

6In its fullest generality, it is well known that associative-commutative rewriting is an NP-complete problem.
In programming practice, however, the patterns used as lefthand sides allow much more efficient matching,
so that the theoretical limits only apply to “pathological” patterns not encountered in typical programming
practice.

1.2. THE LOGICAL FOUNDATIONS OF MAUDE 9

arguments” (a lazy strategy) to “all arguments” (an eager bottom-up strategy) to something in
the middle (like evaluating the condition before simplifying an if-then-else expression). Evalu-
ation strategies control the positions in which equations can be applied. But what about rules?
The analogous feature for rules is that of frozen argument positions; that is, declaring certain
argument positions in an operator with the frozen attribute (see Section 4.4.9) blocks rule
rewriting anywhere in the subterms at those positions. A fourth useful feature is memoization
(see Section 4.4.8). By giving an operator the memo attribute, Maude stores previous results
of function calls to that symbol. This allows trading off space for time, and can lead in some
cases to drastic performance improvements.

One nagging question may be reflection. Is reflection really practical from a performance
perspective? The answer is yes. In Maude, reflective computations are performed by descent
functions that move metalevel computations to the object level whenever possible (see Sec-
tion 17.6). This, together with the use of caching techniques, makes metalevel computations
quite efficient. A typical metalevel computation may perform millions of rewrites very efficiently
at the object level, paying a cost (linear in the size of the term) in changes of representation
from the metalevel to the object level and back only at the beginning and at the end of the
computation.

1.2 The logical foundations of Maude

The foundations of a house do not have to be inspected every day: one is grateful that they are
there and are sound. This section describes the logical foundations of Maude in an informal,
impressionistic style, not assuming much beyond a cocktail party acquaintance with logic and
mathematics. The contents of this section may be read in two ways, and at two different
moments:

• before reading the rest of the manual, to obtain a bird’s-eye view of the mathematical
ideas underlying Maude’s design and semantics; or

• after reading the rest of the manual, to gain a more unified understanding of the language’s
design philosophy and its foundations.

Readers with a more pragmatic interest may safely skip this section, but they may miss
some of the fun.

Maude is a declarative language in the strict sense of the word. That is, a Maude program
is a logical theory, and a Maude computation is logical deduction using the axioms specified in
the theory/program. But which logic? There are two, one contained in the other. The seamless
integration of the functional world within the broader context of concurrent, nondeterministic
computation is achieved at the language level by the inclusion of functional modules as a
special case of system modules. At the mathematical level this inclusion is precisely the sublogic
inclusion in which membership equational logic [106, 17] is embedded in rewriting logic [102, 19].

A functional module specifies a theory in membership equational logic. Mathematically, we
can view such a theory as a pair (Σ, E∪A). Σ, called the signature, specifies the type structure:
sorts, subsorts, kinds, and overloaded operators. E is the collection of (possibly conditional)
equations and memberships declared in the functional module, and A is the collection of equa-
tional attributes (assoc, comm, and so on) declared for the different operators. Computation
is of course the efficient form of equational deduction in which equations are used from left to
right as simplification rules.

Similarly, a system module specifies a rewrite theory, that is, a theory in rewriting logic.
Mathematically, such a rewrite theory is a 4-tuple R = (Σ, E ∪ A, φ,R), where (Σ, E ∪ A) is

10 CHAPTER 1. INTRODUCTION

the module’s equational theory part, φ is the function specifying the frozen arguments of each
operator in Σ, and R is a collection of (possibly conditional) rewrite rules. Computation is
rewriting logic deduction, in which equational simplification with the axioms E∪A is intermixed
with rewriting computation with the rules R.

We can of course view an equational theory (Σ, E ∪ A) as a degenerate rewrite theory of
the form (Σ, E ∪ A, φ∅, ∅), where φ∅(f) = ∅, that is, no argument of f is frozen, for each
operator f in the signature Σ. This defines a sublogic inclusion from membership equational
logic (MEqLogic) into rewriting logic (RWLogic) which we can denote

MEqLogic ↪→ RWLogic.

In Maude this corresponds to the inclusion of functional modules into the broader class of
system modules. However, Maude’s inclusion is more general: the user can give the desired
freezing information for each operator in the signature of a functional module, not just the φ∅
above.

Another important fact is that each Maude module specifies not just a theory, but also an
intended mathematical model. This is the model the user has intuitively in mind when writing
the module. For functional modules such models consist of certain sets of data and certain
functions defined on such data, and are called algebras. For example, the intended model for
a NAT module is the natural numbers with the standard arithmetic operations. Similarly, a
module LIST-QID may specify a data type of lists of quoted identifiers, and may import NAT

and BOOL as submodules to specify functions such as length and _in_. Mathematically, the
intended model of a functional module specifying an equational theory (Σ, E ∪A), with Σ the
signature defining the sorts, subsorts, and operators, E the equations and memberships, and
A the equational attributes like assoc, comm, and so on, is called the initial algebra of such a
theory and is denoted TΣ/E∪A.

In a similar way, a system module specifying a rewrite theory R = (Σ, E ∪ A, φ,R) has an
initial model, denoted TR, which in essence is an algebraic (labeled) transition system.7 The
states and data of this system are elements of the underlying initial algebra TΣ/E∪A. The state
transitions are the (possibly complex) concurrent rewrites possible in the system by application
of the rules R. For our bank accounts example, these transitions correspond to all the possible
concurrent computations that can transform a given “soup” of account objects and messages
into another soup. Again, this is the model the programmer of such a system has in mind.

How do the mathematical models associated with Maude modules and the computations
performed by them fit together? Very well, thanks. This is the so-called agreement between the
mathematical semantics (the models) and the operational semantics (the computations). In this
introduction we must necessarily be brief; see Sections 4.6 and 4.7 and [17] for the whole story in
the case of functional modules, and Section 5.3 and [138] for the case of system modules. Here is
the key idea: under certain executability conditions required of Maude modules, both semantics
coincide. For functional modules we have already mentioned that the equations should have
good properties as simplification rules, so that they evaluate each expression to a single final
result. Technically, these are called the Church-Rosser and termination assumptions. Under
these assumptions, the final values, called the canonical forms, of all expressions form an algebra
called the canonical term algebra. By definition, the results of operations in this algebra are
exactly those given by the Maude interpreter: this is as computational a model as one can
possibly get. For example, the results in the canonical term algebra of the operations

length(’a . ’b . ’c . nil)

’b in (’a . ’b . ’c . nil)

7With additional operations, including a sequential composition operation for labeled transitions.

1.3. PROGRAMMING, SPECIFICATION, AND VERIFICATION 11

are, respectively,

s s s 0

true

Suppose that a functional module specifies an equational theory (Σ, E∪A) and satisfies the
Church-Rosser and termination assumptions. Let us then denote by CanΣ/E∪A the associated
canonical term algebra. The coincidence of the mathematical and operational semantics is then
expressed by the fact that we have an isomorphism

TΣ/E∪A ∼= CanΣ/E∪A.

In other words, except for a change of representation, both algebras are identical.
For system modules, the executability conditions center around the notion of coherence

between rules and equations (see [138] and Section 5.3). The equational part E ∪A should be
Church-Rosser and terminating as before. A reasonable strategy (the one adopted in Maude
by the rewrite command, see Chapter 5) is to first apply the equations to reach a canonical
form, and then do a rewriting step with a rule in R. But is this strategy complete? Couldn’t we
miss rewrites with R that could have been performed if we had not insisted on first simplifying
the term to its canonical form with the equations? Coherence guarantees that this kind of
incompleteness cannot happen (see Section 5.3).

1.3 Programming, specification, and verification

The observations in the previous section about the agreement between mathematical and op-
erational semantics in Maude programs are of enormous importance for reasoning about them
and verifying their correctness. The key point is that there are three different uses of Maude
modules:

1. As programs, to solve some application. In principle we could have programmed such
an application in some other programming language, but we may have chosen Maude
because its features make the programming task easier and simpler.

2. As formal executable specifications, that provide a rigorous mathematical model of an
algorithm, a system, a language, or a formalism. Because of the agreement between
operational and mathematical semantics, this mathematical model is at the same time
executable. Therefore, we can use it as a precise prototype of our system to simulate
its behavior. The system itself could be implemented in a conventional language, or
perhaps in Maude itself (as in (1) above) as a more detailed Maude program, or maybe
our specification is already detailed and efficient enough to be directly used as its own
implementation.

3. As models that can be formally analyzed and verified with respect to different properties
expressing various formal requirements. For example, we may want to prove that our
Maude module terminates; or that its equations have the Church-Rosser property; or that
a given function, equationally defined in the module, satisfies some properties expressed
as first-order formulas. Similarly, given a system module we may want to model check
some properties about it, such as the satisfaction of some invariants or, more generally,
of some temporal logic formulas.

Note that the distinction between uses (1) and (2) is, for the most part, in the eyes of
the beholder. In fact, there is a seamless integration of specifications and code. The same

12 CHAPTER 1. INTRODUCTION

Maude module can simultaneously be viewed as an executable formal specification and as a
program. Furthermore, certain kinds of formal requirements needed for verification in (3) can
be expressed at the Maude level, either in Maude theories (see Section 6.3.1), or by including
some nonexecutable statements in a Maude module giving them the nonexec attribute (see
Section 4.5.3). This can be very useful in several ways. For example, we may include lemmas
that we have proved about a module, either in theories or as nonexecutable statements in the
module itself. Similarly, we may begin with some nonexecutable specifications in a Maude
theory, and then refine them using views (see Section 6.3.2) into the desired Maude module
satisfying them.

There is, however, no need for all the properties that we wish to formally verify in (3) to be
in the logic of Maude, that is, to be statements in membership equational logic or in rewriting
logic. More generally, properties can be expressed, for example, as arbitrary first-order logic
formulas, or as temporal logic formulas. An interesting issue is then to explain precisely what
it means for a Maude module, defined in membership equational logic or in rewriting logic,
to satisfy a formula in one of those logics. Here is where the Maude initial model semantics
explained in Section 1.2 becomes crucial. Such a semantics means that what a Maude module
denotes is a specific mathematical model, namely, the initial one. Satisfaction of any property,
expressed as some kind of formula, means satisfaction of that formula in the initial model. This
is an important observation, even when the formula in question is expressed in Maude’s native
logic. Let us explain this idea in more detail.

Consider, for example, that we have defined natural number addition in a Maude functional
module with Peano notation, so that zero is represented as the constant 0, and there is a
successor function s_ so that, for example, 2 is represented as s s 0. Natural number addition
can then be defined by the equations

op _+_ : Nat Nat -> Nat .

vars N M K : Nat .

eq N + 0 = N .

eq N + (s M) = s (N + M) .

The initial model of these equations is precisely the algebra of the natural numbers with
zero, successor, and the usual addition function. For example, using the canonical term algebra
representation (see Section 1.2), when we add s s 0 and s s 0 in this algebra we obtain the
result s s s s 0.

Consider now two relevant properties of natural number addition, namely, associativity and
commutativity. These properties are precisely described by the respective equations

eq N + M = M + N [nonexec] .

eq N + (M + K) = (N + M) + K [nonexec] .

where we have used the nonexec attribute to emphasize that these equations are not part of
our natural number addition module, and are not meant to be executed (in fact, if executed
the first equation would loop). They may, for example, be stated in a separate Maude theory
as properties we wish to verify.

The first thing to observe is that the above associativity and commutativity equations are
not provable by equational deduction, that is, they do not follow by replacing equals by equals
from the two equations defining the addition function. They are in fact inductive properties of
the addition function. Therefore, in order to prove them, using for example Maude’s inductive
theorem prover (ITP), we need to use a stronger proof method, namely, Peano induction. But
for any equational specification, being an inductive property and being a property satisfied by
its initial model are one and the same thing [111]. Therefore, what we mean when we say that
our natural number addition module satisfies the associativity and commutativity equations is
precisely that its initial model does.

1.3. PROGRAMMING, SPECIFICATION, AND VERIFICATION 13

Of course, associativity and commutativity are properties expressible in Maude’s native
logic (in fact, just in its equational sublogic). But the case of arbitrary first-order formulas is
entirely similar. Consider, for example, the property that any even number is the sum of two
odd numbers, which can be expressed as the first-order formula

∀n : Nat (even(n) =⇒ ∃x, y : Nat (odd(x) ∧ odd(y) ∧ n = x+ y)).

Let us assume, for argument’s sake, that we had also defined the odd and even predicates
in our Maude natural number module. What does it mean for our module to satisfy the
above formula? Just as before, it exactly means that the initial model denoted by our Maude
specification satisfies the formula. The point is that membership equational logic is a sublogic
of many-kinded first-order logic with equality (MKFOL=) that we can represent with a sublogic
inclusion

MEqLogic ↪→ MKFOL=.

Therefore, our initial model is also a first-order logic model, and it is perfectly clear what it
means for it to satisfy a first-order formula.

In a similar way, if we have a Maude system module and choose an initial state for it, we may
be interested in verifying that it satisfies a given temporal logic formula. Defining satisfaction in
this case is not as direct as for first-order formulas, because we do not have a sublogic inclusion
from rewriting logic into temporal logic. However, the meaning of satisfaction in this case is
also fairly straightforward. The point is that to such a system module, that is, to a rewrite
theory in which we have defined some atomic state predicates equationally, we can naturally
associate a Kripke structure (see Section 12.2). Since Kripke structures are the standard models
of temporal logic, satisfaction of the given temporal logic formula exactly means that the Kripke
structure associated to the module satisfies the formula. In fact, such a Kripke structure and
the initial model of the rewrite theory are intimately related, so that the initial model can be
used to define the corresponding Kripke structure. As explained in Chapters 11 and 12, if our
system module is such that the set of states reachable from the initial state is finite, we can
use Maude’s search command and Maude’s model checker for linear temporal logic (LTL) as
decision procedures to verify, respectively, the satisfaction of invariants and of LTL properties.

Besides being able to use Maude’s inductive theorem prover (ITP) to verify inductive prop-
erties of functional modules, and the above-mentioned built-in support for verifying invariants
and LTL formulas through the search command and Maude’s LTL model checker, we can use
the following Maude tools to formally verify other properties:

• the Maude Termination Tool (MTT) [47, 46] can be used to prove termination of func-
tional modules (see Section 11.4);

• the Maude Church-Rosser Checker (CRC) [54, 56, 30, 48] can be used to check the Church-
Rosser property of unconditional functional modules (see Section 11.4);

• the Maude Coherence Checker (ChC) [55, 56] can be used to check the coherence (or
ground coherence) of unconditional system modules (see Section 11.4); and

• the Maude Sufficient Completeness Checker (SCC) [83] can be used to check that defined
functions have been fully defined in terms of constructors (see Sections 4.4.3 and 11.4).

These tools are integrated in what is called the Maude Formal Environment (MFE), available
at https://github.com/maude-team/MFE. Furthermore, if we are dealing with rewriting logic
specifications of real-time and hybrid systems, we can use the Real-Time Maude tool to both
simulate such specifications and to perform search and model-checking analysis of their LTL
properties [121, 122].

https://github.com/maude-team/MFE

14 CHAPTER 1. INTRODUCTION

In summary, therefore, Maude supports three seamlessly integrated tasks: programming,
executable formal specification, and formal analysis and verification. For analysis and verifi-
cation purposes, the Maude interpreter itself is the first and most obvious tool. It is in fact a
high-performance logical engine that can be used to prove certain kinds of logical facts about
our theories. For example, we can use the Maude interpreter as a decision procedure for equa-
tional deduction if the desired theory has good properties. Similarly, as already mentioned, we
can use it also to verify invariants and LTL properties of finite-state system modules. More
generally, we can use other tools in Maude’s formal environment, such as the ITP, MTT, CRC,
ChC, and SCC tools (or Real-Time Maude for real-time systems) to formally verify a variety
of other properties.

1.4 A high-performance logical framework

Our previous discussion of the programming, executable specification, and formal verification
uses of Maude makes clear that we can distinguish two different levels of formal specification:
a system specification level, and a property specification one. In a system specification we are
after an unambiguous specification of a given system and how it actually works. Ideally this
specification should be both formal and executable, and should therefore provide an executable
mathematical model of the system we are interested in. This is exactly what Maude modules
provide.

By contrast, when specifying properties of a system we are not necessarily after an executable
model of our system. Instead, we assume it, as either already given or to be developed later, and
specify such properties in a typically nonexecutable manner: for example in first-order logic,
higher-order logic, or some temporal logic. That is, the properties we specify have an intended
model, namely the system design captured by a system specification, and we are interested in
verifying by different methods that the intended model satisfies the properties stated in our
property specification. In the context of Maude, such property specifications can be given in a
variety of ways:

• as nonexecutable equations, memberships, and rules in Maude’s native logics;

• as first-order logic formulas; or

• as invariants or, more generally, linear temporal logic formulas.

We can then use Maude itself and its formal tool environment to try to verify that a given
system specified as a Maude module satisfies the desired properties.

Since Maude system specifications should be both formal and executable, Maude native
logics, namely, membership equational logic and its rewriting logic extension, should be com-
putational logics, that is, logics in which computation and deduction coincides, and simple
enough to allow a high-performance implementation as a declarative programming language.
This is what the Maude implementation provides. Of course, as mentioned in Section 1.2 and
further explained in Sections 4.6 and 5.3, Maude modules should be theories that satisfy some
reasonable executability requirements, making possible not only their efficient execution, but
also the already-mentioned coincidence between mathematical and operational semantics.

However, not all computational logics are equally expressive. For example, equational log-
ics (in either first-order or higher-order versions) are very well suited to specify deterministic
systems under the Church-Rosser assumption, but poorly equipped to specify concurrent and
highly nondeterministic systems. The whole point of extending membership equational logic
to rewriting logic is to seamlessly integrate the specification of deterministic systems, through

1.4. A HIGH-PERFORMANCE LOGICAL FRAMEWORK 15

equational specifications in functional modules, and of concurrent and nondeterministic sys-
tems, through rewriting logic specifications in system modules, within the same language.
Experience has shown that this makes rewriting logic a very expressive semantic framework for
system specification. Here we only mention some relevant areas:

• Models of computation. Many models of computation, including a very wide range of
concurrency models, can be naturally specified as different theories within rewriting logic,
and can be executed and analyzed in Maude.

• Programming languages. Rewriting logic has very good properties—combining in a sense
the best features of denotational semantics’ equational definitions with the strengths of
structural operational semantics—to give formal semantics to a programming language.
Furthermore, in Maude such semantics definitions become the basis of interpreters, model
checkers, and other program analysis tools for the language in question.

• Distributed algorithms and systems. Because of its good features for concurrent, object-
based specification, many distributed algorithms and systems, including, for example,
network protocols and cryptographic protocols, can be easily specified and analyzed in
Maude. Furthermore, making use of Maude’s external object facility to program interac-
tions with internet sockets, one can not just specify but also program various distributed
applications in a declarative way (see Section 9).

• Biological systems. Cell dynamics is intrinsically concurrent, since many different bio-
chemical reactions happen concurrently in a cell. By modeling such biochemical reactions
with rewrite rules, one can develop useful symbolic mathematical models of cell biology.
Such models can then be used to study and predict biological phenomena.

Furthermore, other application areas can be naturally supported in appropriate extensions
of rewriting logic and Maude. For example, real-time and hybrid systems can be specified as
real-time rewrite theories. Such specification can be executed and analyzed in the Real-Time
Maude tool [121, 122]. Similarly, probabilistic systems can be specified as probabilistic rewrite
theories, and can be simulated in PMaude and analyzed in the VeStA tool [90, 2].

The fact that in a computational logic computation and deduction coincide, so that they
are like two sides of the same coin, can be used in two ways: we can use the logic as a semantic
framework to specify different computational entities as just explained; or we can use it as a
logical framework to represent many other logics in it. That is, if our computational logic has
good representational features, it can be used as a universal logic which can faithfully express
the inference systems of many other logics.

Since the logic is computational and presumably has an efficient implementation, this is not
just a purely theoretical exercise: we can use such an implementation to mechanize deduction
in any logic that we can faithfully represent inside our logical framework. Experience has shown
that rewriting logic has very good properties as a logical framework in precisely this sense. An
important practical consequence is that it becomes quite easy to use Maude to develop a variety
of formal tools for different logics. The point is that any such tool has an associated inference
system, so it is just a matter of representing such an inference system as a rewrite theory and
guiding the application of the inference rules with suitable strategies (see Section 17.7). In
addition, since such formal tools often manipulate and transform not only formulas but also
theories, Maude’s reflective capabilities, which allow manipulating theories as data, become
enormously useful [30, 31].

Reflection and the existence of initial models (and therefore of induction principles for such
models) have one further important consequence, namely, that rewriting logic has also good

16 CHAPTER 1. INTRODUCTION

properties as a metalogical framework. A metalogical framework is a logical framework in
which we can not only represent and simulate many other logics: we can also reason within
the framework about the metalogical properties of the logics thus represented. As explained
in [9], this is exactly what can be done in rewriting logic using Maude and Maude’s inductive
theorem prover (ITP).

1.5 Core Maude vs. Full Maude

We call Core Maude the Maude 2 interpreter implemented in C++ and providing all of Maude’s
basic functionality. Part I explains in detail all the aspects of Core Maude, including its syntax
and parsing, functional and system modules, module hierarchies, module parameterization
with theories and module instantiation with views, its suite of predefined modules, the model-
checking capabilities, object-based programming, reflection, and metalanguage uses.

Full Maude is an extension of Maude, written in Maude itself, that endows the language with
an even more powerful and extensible module algebra than that available in Core Maude. As in
Core Maude, modules can be parameterized and instantiated with views, but in addition views
can also be parameterized. Full Maude also provides generic modules for n-tuples. Object-
oriented modules (which can also be parameterized) support notation for objects, messages,
classes, and inheritance.

Full Maude itself can be used as a basis for further extensions, by adding new functionality.
It is possible both to change the syntax or the behavior of existing features, and to add new
features. In this way Full Maude becomes a common infrastructure on top of which one can
build tools, such as, e.g., the Church-Rosser and coherence checkers, as well as environments for
other languages, such as, e.g., the Real-Time Maude tool for specifying and analyzing real-time
systems [121, 122], and the Maude MSOS tool for modular structural operational semantics
[22].

1.6 Manual structure

The present manual documents Maude 3, and explains Maude’s basic concepts in a leisurely
and mostly informal style. The material is basically presented following a “grammatical” order;
for example, all features related with operators are discussed together. Concepts are introduced
by concrete examples, that may be fragments of modules. The complete module examples are
available in the official webpage http://maude.cs.illinois.edu. We follow the convention of
naming each file in that site as the module it contains, or if a file contains several modules, as
the main one. In most cases, the rewriting or search commands and the corresponding outputs
are also included in the files.

The manual is divided in three parts: Part I is devoted to Core Maude, Part II is devoted
to Full Maude, and Part III is a reference manual. Here is a brief summary of what can be
found in the remaining chapters:

Part I. Core Maude.

Chapter 2 explains how to get Maude, how to install the system on the different plat-
forms supported, and how to run it. It also includes pointers on how to get additional
information and support.

Chapter 3 describes the basic syntactic constructs of the language, including what is
an identifier, a sort, and an operator. The different kinds of declarations that can

http://maude.cs.illinois.edu

1.6. MANUAL STRUCTURE 17

be included in the different types of modules are explained here, in addition to
fundamental concepts such as kinds or terms, and a discussion on parsing.

Chapter 4 introduces functional modules, and the different statements that can be found
in this kind of modules, namely equations and membership axioms. Operator and
statement attributes are also introduced. The final part of this chapter is devoted
to the use of functional modules for equational simplification, for which matching
modulo axioms is a fundamental feature.

Chapter 5 introduces system modules, and is mainly devoted to rules, term rewriting,
and the search command.

Chapter 6 explains the support for modularity provided by Core Maude. It describes
first the different modes of module importation, namely protecting, extending, and
including. Then it introduces the module summation and renaming operations. Fi-
nally, this chapter explains the powerful form of parameterized programming avail-
able in Core Maude, based on theories and views.

Chapter 7 provides detailed descriptions of the different predefined data types available,
including Booleans, natural numbers, integers, rationals, floating-point numbers,
strings, and quoted identifiers. It also describes the generic containers provided by
Maude, namely lists, sets, maps, and arrays. The chapter finishes with a description
of a built-in linear Diophantine equation solver.

Chapter 8 explains the basic support for object-based programming, with special em-
phasis on the standard notation for object systems.

Chapter 9 explains Maude’s support for rewriting with external objects and the imple-
mentation of sockets, standard streams, and files.

Chapter 10 describes Maude’s object-level strategy language and the corresponding
strategy modules. It contains many examples of using strategies to control rewriting.

Chapter 11 explains how to use the search command to model check invariant prop-
erties of concurrent systems specified as system modules in Maude.

Chapter 12 introduces linear temporal logic (LTL) and describes the facilities for LTL
model checking provided by the Maude system. This procedure can be used to prove
properties when the set of states reachable from an initial state in a system module is
finite. When this is not the case, it may be possible to use an equational abstraction
technique for reducing the size of the state space.

Chapter 13 describes Maude’s support of order-sorted unification modulo axioms such
as either commutativity or associativity and commutativity. The importance of
this feature is made explicit in an overview of several interesting applications of
unification, including narrowing and symbolic reachability analysis. This chapter
also includes a discussion on endogenous vs. exogenous order-sorted unification al-
gorithms.

Chapter 14 introduces the concept of variants, and then explains its use in the get

variants command and its application in variant-based equational order-sorted uni-
fication.

Chapter 15 describes the implementation of narrowing based on the unification and
variant facilities introduced in the previous Chapters 13 and 14.

Chapter 16 introduces satisfiability modulo theories (SMT) and describes the connec-
tion of Maude to SMT solvers like CVC4 and Yices2.

18 CHAPTER 1. INTRODUCTION

Chapter 17 presents the reflective capabilities of the Maude system. The concept of
reflection is introduced, and the effective way of supporting metalevel computation
is discussed. The predefined module META-LEVEL and its submodules are presented,
with special emphasis on the descent functions provided. The chapter ends with an
introduction to the notion of internal strategies.

Chapter 18 explains the way of using the facilities provided by the modules META-LEVEL,
STD-STREAM, and LEXICAL for the construction of user interfaces and metalanguage
applications.

Chapter 19 introduces meta-interpreters. Each meta-interpreter is an external object
that is an independent Maude interpreter, complete with module and view databases,
and able to send and receive messages. Together with standard streams, meta-
interpreters can be used to develop execution environments.

Chapter 20 discusses debugging and troubleshooting, considering the different debug-
ging facilities provided: tracing, term coloring, the debugger, and the profiler. A
number of traps and known problems are also commented.

Part II. Full Maude.

Chapter 21 explains the nature of Full Maude, and how to use it. This chapter includes
information on how to load Core Maude modules into Full Maude, on the additional
module operations (supported by tuple generation and parameterized views), and
on the facilities available in Full Maude for moving up and down between reflection
levels.

Chapter 22 introduces object-oriented modules, which provide a syntax more conve-
nient than that of system modules for object-oriented applications, with direct sup-
port for the declaration of classes, inheritance, and useful default conventions in the
definition of rules. Such object-oriented modules can also be parameterized. This
chapter includes several extended examples that illustrate the power of combining
the additional features available in Full Maude.

Part III. Reference.

Chapter 23 gives a complete list of the commands available in Maude.

Chapter 24 includes the grammar of Core Maude.

1.7 The Maude book

Most of the material in this manual also appears in the book All About Maude: A High-
Performance Logical Framework, published by Springer as volume 4350 in the series Lecture
Notes in Computer Science [29].

The book contains many additional examples and explanations, as well as information on
applications and tools.

We gratefully acknowledge the permission given by Springer to distribute this manual on
the web.

1.7. THE MAUDE BOOK 19

Acknowledgements

Languages are living organisms. The lifeblood provided by experienced users is key to their
growth and their improvement. We have benefited much from colleagues who have used different
alpha versions of Maude; we cannot mention them all, but Luis Aguirre, Christiano Braga, Feng
Chen, Grit Denker, Santiago Escobar, Azadeh Farzan, Joe Hendrix, Merrill Knapp, Nirman
Kumar, Óscar Mart́ın, Miguel Palomino, Peter Ölveczky, José Quesada, Adrián Riesco, Dilia
Rodriguez, Grigore Roşu, Ralf Sasse, Koushik Sen, Ambarish Sridharanarayanan, Mark-Oliver
Stehr, Prasanna Thati, and Alberto Verdejo deserve special thanks for their creative uses of
Maude and their suggestions for improving the language. Thanks to Christiano Braga, Peter
Mosses, Peter Ölveczky, Miguel Palomino, Sylvan Pinsky, Isabel Pita, Adrián Riesco, Dilia
Rodriguez, Manuel Roldán, Mark-Oliver Stehr, Antonio Vallecillo, and Alberto Verdejo for
their comments on previous versions of this document.

As already mentioned, Maude’s historical precursor is the OBJ3 language [79]. The OBJ3
experience has greatly influenced the Maude design and philosophy, and we are grateful to all
our former OBJ colleagues for this. Joseph Goguen should be mentioned in particular, because
of his enormous influence in all aspects of OBJ; and Tim Winkler for having implemented a
state-of-the-art OBJ3 system with such great skill.

Two other rewriting logic languages, ELAN [12] and CafeOBJ [75], have provided a rich
stimulus to the design of Maude. Although our language design solutions have often been dif-
ferent, we have all been wrestling with a similar problem: how to best obtain efficient language
implementations of rewriting-based languages. We have benefited much from the ELAN and
CafeOBJ experience, and from many discussions with their main designers and implementers:
Claude and Hélène Kirchner, Marian Vittek, Pierre-Etienne Moreau, Kokichi Futatsugi, Râzvan
Diaconescu, Ataru Nakagawa, Toshimi Sawada, and Makoto Ishisone.

Bringing a new language design to maturity requires a long-term research effort and sub-
stantial resources. We are not there yet, but much has been advanced since the early design
phases. Perhaps the longest, most sustained support has come from the US Office for Naval
Research (ONR) through a series of contracts. We are most grateful to Dr. Ralph Wachter at
ONR for his continued encouragement at every step of the way. The US Defense Advance Re-
search Projects Agency (DARPA), the US National Science Foundation (NSF), and the Spanish
Ministry for Education and Science (MEC) have also contributed important resources to the
development of Maude, its foundations, and its applications.

20 CHAPTER 1. INTRODUCTION

Part I

Core Maude

21

Chapter 2

Using Maude

2.1 Getting Maude

The Maude system is available, free of charge, under the terms of the GNU General Public
License as published by the Free Software Foundation, at the Maude home page (a snapshot is
shown in Figure 2.1)

http://maude.cs.illinois.edu

There you can also find documentation about Maude, including a Maude primer, some papers
on Maude and rewriting logic, and several Maude applications, including a set of proving tools
for Maude specifications and Maude case studies.

Maude binaries are provided for selected architectures and operating systems, including
Linux and macOS. Detailed information on this can be found in the Maude web site, where
installation instructions are also available.

2.2 Running Maude

A Maude session can be started by calling the maude.linux64 binary included in the release
package in a Linux shell window (and similarly for other platforms). For example, we can move
into the directory where the package was extracted and then invoke Maude, obtaining a banner
similar to the following, where we can see the version of the system being executed, the date it
was built, copyright information, and the current date.

~/maude-linux$./maude.linux64

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 3.1 built: Oct 12 2020 20:12:31

Copyright 1997-2020 SRI International

Tue Oct 13 12:00:00 2020

Maude>

The Maude system is now ready to accept Maude modules and commands (see Chapter 23
for a complete list of Maude commands). During a Maude session, the user interacts with the
system by entering a request at the Maude prompt. For example, one can quit:

Maude> quit

23

http://maude.cs.illinois.edu

24 CHAPTER 2. USING MAUDE

Figure 2.1: Maude home page at maude.cs.illinois.edu

2.2. RUNNING MAUDE 25

q may be used as an abbreviation of the quit command. But please, do not leave us so
soon! One can also enter modules and use other commands. For example, we can enter the
following module SIMPLE-NAT, which specifies the natural numbers in Peano notation with a
plus operation _+_ on them.1

Maude> fmod SIMPLE-NAT is

sort Nat .

op zero : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq zero + N = N .

eq s N + M = s (N + M) .

endfm

Fortunately, we do not need to write our modules in the prompt. We can input one or several
modules by saving them in a file and then entering the file with the in, load or sload commands
(see Section 23.16 for details on the difference between these commands). Assuming that the
file my-nat.maude contains the module SIMPLE-NAT above, we can do the following to enter it:

Maude> load my-nat.maude

After entering the module SIMPLE-NAT into Maude, we can, for example, reduce the term
s s zero + s s s zero (which is the equivalent in Peano notation of the more usual 2 + 3)
as follows:

Maude> reduce in SIMPLE-NAT : s s zero + s s s zero .

reduce in SIMPLE-NAT : s s zero + s s s zero .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Nat: s s s s s zero

It is not necessary to give the name of the module in which to reduce a term explicitly. All
commands that require a module refer to the current module by default, unless a module is
explicitly given. The current module is usually the last module entered or used, although we
can use the select command to select a module to be the current one (see Section 23.15).

Maude> reduce s s zero + s s s zero .

reduce in SIMPLE-NAT : s s zero + s s s zero .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Nat: s s s s s zero

Any action happening in the Maude system can be interrupted by typing control-C. In
particular, by hitting control-C during a reduction in progress, such reduction is interrupted
and the system gets into debugging mode (see Section 20.1.3).

Although it is not the case in the simple examples above, sometimes we get a very big term
as output from Maude. In some cases, in order to make it easier to read and understand, we
edit the presentation of the outputs given by Maude.

When you execute maude.linux64, the file prelude.maude, which includes several prede-
fined modules (see Chapter 7), is automatically loaded. To find prelude.maude, the Maude
interpreter checks for it in several directories, in the following order:

1. the directories specified in the MAUDE_LIB environment variable,

2. the directory containing the executable, and

1We do not display the ‘>’ symbol that Maude adds at the beginning of each line.

26 CHAPTER 2. USING MAUDE

3. the current directory.

It is a good idea to include the path to prelude.maude in the MAUDE_LIB environment variable
to be sure that it will always be found, because the executable finding code may not find the
directory containing the executable.

Among the predefined modules included in prelude.maude we find a module STRING that
declares sorts and operations for manipulating strings. In particular, STRING introduces the
operation _+_ to concatenate two strings. Then, to concatenate the strings “hello”, “ ”, and
“world”, you can type at the Maude prompt the following red (which is the abbreviated form
of reduce) request:

Maude> red in STRING : "hello" + " " + "world" .

reduce in STRING : "hello" + " " + "world" .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result String: "hello world"

Actually, although STRING is not the current module right after starting the system, it is
imported by the current one, CONVERSION. Thus, we can type the following, just after starting
Maude:

Maude> red "hello" + " " + "world" .

reduce in CONVERSION : "hello" + " " + "world" .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result String: "hello world"

Notice that Maude makes explicit the module in which the term is reduced, even when no
module name is given by the user.

As said above, to load for example a user-defined module HELLO-WORLD for a Maude session,
you can either type at the Maude prompt the whole module or simply type the following
in-troduce request:

Maude> in hello-world

where hello-world is a text file in the current directory containing the module HELLO-WORLD.
For files specified by a bare file name, Maude also checks for files with .maude, .fm, and

.obj extensions. Maude can also be told using the MAUDE_LIB environment variable about
other directories to use to search for files. Thus to find a file specified in the in command,
Maude searches, in order:

1. the current directory,

2. the directories in the MAUDE_LIB environment variable, and

3. the directory containing the executable.

If the desired file is in none of these places you must type its full path name.
As for user-defined modules, user requests such as the above can either be typed at the

Maude prompt or simply in-troduced with a text file containing them. In fact, many users run
Maude inside an Emacs-like editor, since this provides both text editing facilities for creating
Maude modules and saving them in files, and also UNIX shell interaction to start a Maude
session and to in-troduce during the session modules and commands created and saved in files,
as shown in Figure 2.2.

Note that text files entered in Maude can contain not only modules, but also any command.
Actually, a file can contain as many modules and commands as one wishes. When entering it
with an in or load command, Maude will read them one after another as if they were written

2.3. GETTING SUPPORT AND MORE INFORMATION 27

Figure 2.2: Running Maude inside Emacs

at the prompt of the system. Another important issue worth pointing out is that we can write
single line and multiline comments anywhere inside a module or a file. Single line comments
are started by either *** or ---, and ended by the end of line. Multiline comments are started
by ***(and ended by). Parentheses must balance within multiline comments.

2.3 Getting support and more information

We maintain the following mailing lists related to Maude:

• maude-users@maude.cs.illinois.edu. A moderated list for the discussion of topics of
general interest to all Maude users. This list is typically low-traffic, and contains items
such as calls for papers, announcements of new Maude related papers, and notifications
of new releases of Maude. It is important that you subscribe to this list if using Maude,
as this is the mechanism by which we will make important announcements about the
system. To subscribe, or to view the archived messages, please go to

https://lists.cs.illinois.edu/lists/info/maude-users

• maude-help@maude.cs.illinois.edu. This is an alias for submitting questions about
any aspect of the use of Maude. Messages are distributed to a group of experienced users
who have offered to provide help. This list is not open for subscription, but you can send

https://lists.cs.illinois.edu/lists/info/maude-users

28 CHAPTER 2. USING MAUDE

messages to this list at any time. Questions posted here will be automatically archived
at

https://lists.cs.illinois.edu/lists/info/maude-help

• maude-bugs@maude.cs.illinois.edu. A list for reporting any problems you experience
with Maude (see below), and also any suggestions for enhancements and improvements.

2.4 Reporting bugs in Maude

As already mentioned, bug reports should be sent to

maude-bugs@maude.cs.illinois.edu

When submitting a bug report, please include the following information:

1. Example to reproduce the bug. Ideally this should be a single file that reproduces the
bug by loading it. If your example is large and spread out in multiple files, have a file
top.maude that loads files and executes commands as necessary to reproduce the bug.
Send all the files as a tar archive, optionally compressed with gzip.

If Maude’s output is not obviously wrong (for example, an “internal error” message),
include an explanation of why the output is wrong.

If you choose to simplify the example, note that a short runtime to expose the bug is
desirable. A small example text is mostly unimportant unless it is necessary to understand
such example text in order to understand why Maude’s output is incorrect.

2. Version of Maude used. Make sure you provide information of the concrete release of
Maude (and Full Maude if it is the case). If you are not using one of the ready-made
binaries released by the Maude team, also give the versions of the compiler and tools used
to build it and the libraries linked against.

3. Platform. Include the operating system type and version number, as well as the processor
type.

https://lists.cs.illinois.edu/lists/info/maude-help

Chapter 3

Syntax and Basic Parsing

This chapter introduces the basic syntactic ingredients of all Maude specifications: identifiers,
module names, sort names, and operator declarations. Other syntactic parts of Maude specifi-
cations, like equations and rules, will appear in the following chapters.

Some syntax is presented in an informal way by means of general schemes; a formal BNF
grammar of the language can be found in Chapter 24.

The chapter finishes explaining some features that can be used to reduce parsing ambiguities
in the user-definable syntax, including mixfix operator declarations, supported by Maude.

3.1 Identifiers

In Core Maude, identifiers are the basic syntactic elements, used to name modules and sorts,
and to form operator names. For example, NAT, Nat, and hello-world are identifiers. In
general, an identifier in Maude is any finite sequence of ASCII characters such that:

• It does not contain any white space. For example, the sequence ‘abc def’ is not one
identifier, but two.

• The characters ‘{’, ‘}’, ‘(’, ‘)’, ‘[’, ‘]’ and ‘,’ are special, in that they break a sequence of
characters into several identifiers. For example, the sequence ab{c,d}ef counts as seven
identifiers, namely, ab, {, c, ,, d, }, and ef.

• The backquote character ‘‘’ is used as an escape character to indicate that a blank
space or the special characters do not break the sequence. Consequently, backquotes
can only appear immediately before any of the special characters, or between two non-
empty strings of characters—with neither the ending of the first string nor the beginning
of the second string being another backquote—for exactly these purposes. For exam-
ple, 1‘ab‘{c‘,d‘}ef is a single identifier. Maude’s pretty printer will display such an
identifier in the form 1 ab{c,d}ef.

Nonprinting characters in strings use C backslash conventions [87, Section A2.5.2].

29

30 CHAPTER 3. SYNTAX AND BASIC PARSING

3.2 Modules

In Maude the basic units of specification and programming are called modules.1 A module
consists of syntax declarations, providing appropriate language to describe the system at hand,
and of statements, asserting the properties of such a system. The syntax declaration part is
called a signature and consists of declarations for:

• sorts, giving names for the types of data,

• subsorts, organizing the data types in a hierarchy,

• kinds, that are implicit and intuitively correspond to “error supertypes” that, in addition
to normal data, can contain “error expressions,” and

• operators, providing names for the operations that will act upon the data and allowing
us to build expressions (or terms) referring to such data.

We use symbols Σ,Σ′, etc. to denote signatures.
In Core Maude there are two kinds of modules: functional modules and system modules.

Signatures are common for both of them. The difference between functional and system modules
resides in the statements they can have:

• functional modules admit equations, identifying data, and memberships, stating typing
information for some data, while

• system modules also admit rules, describing transitions between states, in addition to
equations and memberships.

We use E,E′, etc. to denote sets of equations and memberships, and R,R′, etc. to denote sets
of rules.

From a programming point of view, a functional module is an equational-style functional
program with user-definable syntax in which a number of sorts, their elements, and functions
on those sorts are defined. From a specification viewpoint, a functional module is an equational
theory (Σ, E) with initial algebra semantics. Functional modules are described in detail in
Chapter 4, here we just discuss some of their top-level syntax. Each functional module has a
name, which is a Maude identifier. Any Maude identifier can be used, but the preferred style for
module names is an all capitalized identifier, and in the case of a compound name the different
parts are linked with hyphens. For example, a module defining numbers and operations on
them can be called NUMBERS. The top-level syntax will then be

fmod NUMBERS is

...

endfm

with ‘. . .’ corresponding to all the declarations of submodule importations, sorts, subsorts,
operators, variables, equations, and so on.

From a programming point of view, a system module is a declarative-style concurrent
program with user-definable syntax. From a specification viewpoint, it is a rewrite theory
(Σ, E, φ,R) (where φ specifies the frozen arguments of operators in Σ; see Section 4.4.9) with
initial model semantics. Again, each system module has a name, which is a Maude identifier.
And as for functional modules, the preferred style is an all capitalized name, with consecutive
parts linked with hyphens in the case of compound names. For example, a module specifying

1As explained in Section 6.3.1, specifications can also be given in theories, with a syntax entirely similar to
that of modules, but theories, unlike modules, need not be executable.

3.3. SORTS AND SUBSORTS 31

the behavior of a vending machine may be called VENDING-MACHINE. It will then be introduced
with the following top-level syntax:

mod VENDING-MACHINE is

...

endm

where again ‘. . .’ corresponds to all the declarations of submodule importations, sorts, subsorts,
operators, variables, equations, rules, and so on. System modules are described in detail in
Chapter 5.

In the rest of the chapter we will describe the ingredients of signatures, that is, the syntac-
tic elements common to both functional and system modules, such as sorts, subsorts, kinds,
operators, variables, and the terms that can be built on a signature, postponing the discussion
about the syntax specific to functional and system modules to Chapters 4 and 5, respectively.

3.3 Sorts and subsorts

The first thing a specification needs to declare are the types (that in the algebraic specification
community are usually called sorts) of the data being defined and the corresponding operations.
Sorts can be partially ordered via a subsort relation.

A sort is declared using the sort keyword followed by an identifier (the sort name), followed
by white space and a period, as follows:

sort 〈Sort〉 .

and multiple sorts may be declared using the sorts keyword, as follows:

sorts 〈Sort-1 〉 ... 〈Sort-k〉 .

The period at the end of the sort declaration, as for the other types of declarations, is
crucial. Note that if either the period is missing or no space is left before and after the period,
there can be parsing problems or unintended behavior. For example, the following declaration
is syntactically correct but causes an unintended interpretation because of a missing ‘.’, since
this way sorts A, B, sort, and C are declared.

sorts A B

sort C .

Note also that the keywords sort and sorts are synonyms. One may use sort for multiple
sort declarations and sorts for single ones, although we do not encourage this style.

For example, we can declare sorts Zero, NzNat, and Nat in the NUMBERS module, either one
at a time

sort Zero .

sort NzNat .

sort Nat .

or all at once

sorts Zero Nat NzNat .

The identifiers <, ->, and ~> cannot be used as sort names. Moreover, identifiers used for
sorts cannot contain any of the characters ‘:’, ‘.’, ‘[’, or ‘]’. The reasons for these restrictions
will become clear below in this section and in Sections 3.4, 3.5, and 17.2.1. The use of ‘{’,
‘}’, and ‘,’ is only allowed in structured sort names (see below). Although any so restricted
identifier is a legal sort name, the preferred style is to capitalize the first letter of the name.

32 CHAPTER 3. SYNTAX AND BASIC PARSING

Furthermore, in the case of a compound name, such as a sort of nonzero naturals, the names
(each with the first letter capitalized) or suitable abbreviations will be juxtaposed without
spaces or hyphens, like, for example, NzNat.

A sort name can also be structured. Structured sort names are used in parameterized
modules; for example, we may use List{X} for a parameterized list sort with parameter X and
List{Nat} for its instantiation to lists of natural numbers (see Section 6.3.3). A structured sort
name contains at least one pair of curly brace symbols ‘{’ and ‘}’, and is constructed according
to the following BNF grammar, without any white space between terminals:

〈Sort〉 ::= 〈sort identifier〉
| 〈Sort〉 { 〈SortList〉 }

〈SortList〉 ::= 〈Sort〉
| 〈SortList〉 , 〈Sort〉

Notice that structured sorts are allowed to contain ‘{’, ‘,’ and ‘}’ but only in accordance
with the above grammar. Thus all the following are structured sort names:

a{X}

a{X, Y}

a{b, c{d}}{e}

a{(}

while the following are not legal sort names:

{X} (lacks sort identifier prefix)
a(X, Y) (‘,’ not inside braces)
a{b, {d}}{e} ({d} lacks sort identifier prefix)
a({) (‘{’ without closing ‘}’)

Structured sort names can be written in an equivalent single-identifier form by using back-
quotes. For example, the sort a{b, c{d}}{e} may be written as a‘{b‘,c‘{d‘}‘}‘{e‘}. Hy-
brid notation such as in a{b‘,c} is not allowed. When backquotes are omitted, the sort name
becomes a sequence of tokens according to Maude’s usual tokenization rules and arbitrary white
space may be inserted between tokens. For example, Foo‘{X‘,Y‘}, Foo{X,Y}, and Foo{X, Y}

are three equivalent forms for the same structured sort name.
Structured sort names must be written in their equivalent single-identifier form inside op-

erator hooks (see Chapter 7) or in metasyntax (see Chapter 17).
Apart from their special syntax and their use as parameterized sorts in parameterized mod-

ules (see Section 6.3.3), structured sort names behave just like sort identifiers.
The subsort relation on sorts parallels the subset relation on the sets of elements in the

intended model of these sorts. Subsort inclusions are declared using the keyword subsort. The
declaration

subsort 〈Sort-1 〉 < 〈Sort-2 〉 .

states that the first sort is a subsort of the second. For example, the declarations

subsort Zero < Nat .

subsort NzNat < Nat .

specify that the sorts Zero (containing only the constant 0) and NzNat (the nonzero natural
numbers) are subsorts of Nat, the natural numbers. More than one subsort relationship can be
declared using the keyword subsorts, as follows:

subsorts 〈Sort-1 〉 ... 〈Sort-j 〉 < ... < 〈Sort-k〉 ... 〈Sort-l〉 .

3.4. OPERATOR DECLARATIONS 33

Then, the above declarations can be given in a single declaration as follows:

subsorts Zero NzNat < Nat .

If we extend NUMBERS with sorts Int and NzInt we can express the additional subsort
relationships compactly by

sorts NzInt Int .

subsorts NzNat < NzInt Nat < Int .

A set of subsort declarations must define a partial order among the set of sorts. For this to
be true, the user is required to avoid cycles in the subsort declarations. For example, if a sort
A is declared as a subsort of B, and B is declared as a subsort of A, we would have a cycle.

Note that the partial order of subsort inclusions partitions the set of sorts into connected
components, that is, into sets of sorts that are directly or indirectly related in the subsort
ordering. For example, all the above sorts Zero, Nat, NzNat, NzInt, and Int belong to the
same connected component in the subsort ordering, whereas a sort Bool would clearly belong
to a different connected component and could have other sorts, for example a supersort Prop

of propositions, related to it in the same component. Intuitively, connected components gather
together related sorts of data such as numerical data, truth-value data, and so on. Graphically,
we can visualize the partial order of subsort inclusions as an acyclic graph (the corresponding
Hasse diagram), and then the connected components are exactly those of the underlying graph,
as in the following example:

Zero NzNat

Nat NzInt

Int

Bool

Prop

�� @@ ��

�� @@

3.4 Operator declarations

In a Maude module, an operator is declared with the keyword op followed by its name, followed
by a colon, followed by the list of sorts for its arguments (called the operator’s arity or domain
sorts), followed by ->, followed by the sort of its result (called the operator’s coarity or range
sort), optionally followed by an attribute declaration (the discussion of operator attributes is
postponed to Section 4.4), followed by white space and a period. Thus the general scheme has
the form

op 〈OpName〉 : 〈Sort-1 〉 ... 〈Sort-k〉 -> 〈Sort〉 [〈OperatorAttributes〉] .

Here are some operator declarations for our NUMBERS module.

op zero : -> Zero .

op s_ : Nat -> NzNat .

op sd : Nat Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

If the argument list is empty, the operator is called a constant. Thus zero is a constant.
The name of the operator is a string of characters that may consist of several identifiers,

due to the presence of blanks or other special characters. Underscores (_) play a special role
in these strings. If no underscore character occurs in the operator string—as in the case of the
operator sd above—then the operator is declared in prefix form. If underscore characters occur

34 CHAPTER 3. SYNTAX AND BASIC PARSING

in the string, then their number must coincide with the number of sorts declared as arguments
of the operator (in particular, constant names cannot include any underscore character). The
operator is then in mixfix form, with the n-th underscore indicating the place where arguments
of the n-th sort must be placed in expressions formed with that operator. In the above example
the operators s_, _+_, and _*_ are in mixfix form.

There may or may not be any other characters before or after any of the underbars. If no
other characters appear, we say that the operator has been declared with empty syntax. For
example, we could declare a sort NatSeq of sequences of natural numbers formed with empty
syntax as follows:

sort NatSeq .

subsort Nat < NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc] .

where assoc is an attribute declaring that sequence concatenation is associative (see Sec-
tion 4.4.1). With this operator declaration we can write number sequences such as

zero (s zero) (s s zero)

Operators having the same arity and coarity can be declared simultaneously by using the
keyword ops and giving the non-empty list of their corresponding names after the ops keyword
and before the :, as is done for the declarations of _+_ and _*_ in the example above.

An operator can also be declared using several identifiers. This can be due to the presence
of special characters, or to blank spaces, or both. Consider for example the operator declaration

op [_] and then [_] : Command Command -> Command .

that may allow a natural language style in the syntax of a programming language. It uses
eight identifiers in the Maude sense, but declares a single binary operator, with the underscores
indicating the place of the arguments in the mixfix notation. Internally, Maude also associates
to this operator a corresponding single-identifier form by using backquotes. We could have
equivalently defined the operator using the single-identifier form, namely,

op ‘[_‘]and‘then‘[_‘] : Command Command -> Command .

Of course, both variants are equivalent and have the same mixfix display, but the version
without backquotes is obviously more convenient.2

The declaration of an operator requires an extra pair of parentheses if we already use
parentheses as part of the syntax of the operator. Suppose we had in a programming language
a binary operator (_ only after _). Then, we have to declare it as follows:

op ((_ only after _)) : Command Command -> Command .

Since an operator may be declared using several identifiers, in an ops declaration involving
several operators each operator declaration can be enclosed in parentheses if necessary, to
indicate where the syntax of each operator begins and ends. We could have declared both
operators together, as follows:

ops ([_] and then [_]) ((_ only after _)) :

Command Command -> Command .

Thus, one or several Maude identifiers can be used in operator declarations. Regarding style,
the preferred one, particularly for single-identifier operators with prefix syntax, is to use lower
case names. However, for a composed name such as a meta parse operator, the subsequent
names will be juxtaposed and will typically begin with a capital letter to enhance readability,
e.g., metaParse.

2In Full Maude, operator names in operator declarations must be given as single identifiers. Multiple-identifier
names are also supported, but their equivalent single-identifier form must be used in their declarations.

3.5. KINDS 35

3.5 Kinds

The equational logic underlying Maude is membership equational logic [106, 17]. In this logic
sorts are grouped into equivalence classes called kinds. For this purpose, two sorts are grouped
together in the same equivalence class if and only if they belong to the same connected com-
ponent. Maude sorts are user-defined, while kinds are implicitly associated with connected
components of sorts and are considered as “error supersorts.” Terms (see Section 3.8) that
have a kind but not a sort are understood as undefined or error terms.

In Maude modules, kinds are not independently and explicitly named. Instead, a kind is
identified with its equivalence class of sorts and can be named by enclosing the name of one or
more of these sorts in square brackets [...]; when using more than one sort, they are separated
by commas.

For example, suppose we add a partial predecessor function to our NUMBERS module,

op p : NzNat -> Nat .

Then Maude will parse the term p(zero) and assign it the kind [Nat], or equivalently
[NatSeq] or also [Nat, NatSeq], since the sorts Nat and NatSeq belong to the same connected
component. Although any sort, or list of sorts in the connected component, can be enclosed
in brackets to denote the corresponding kind, Maude uses a canonical representation for kinds;
specifically, Maude prints the kind using a comma-separated list of the maximal elements of
the connected component.

The Maude system also lifts automatically to kinds all the operators involving sorts of the
corresponding connected components to form error expressions. Such error expressions allow
us to give expressions to be evaluated the benefit of the doubt : if, when they are simplified,
they have a legal sort, then they are okay; otherwise, the fully simplified error expression is
returned, which the user can interpret as an error message. Equational simplification can also
occur at the kind level, so that operators can map error terms to defined terms, which may be
useful for error recovery.

It is also possible to explicitly declare operators at the kind level. This corresponds to
declaring a partial operation, which is defined for those argument values for which Maude can
determine that the resulting term has a sort. Note that the operation is considered to be total
at the kind level. As an example, consider the following fragment of a graph specification:

sorts Node Edge .

ops source target : Edge -> Node .

sort Path .

subsort Edge < Path .

op _;_ : [Path] [Path] -> [Path] .

The sorts Node and Edge, along with the source and target operators mapping edges to
nodes, axiomatize the basic graph concepts. The sort Path is intended to be the paths through
the graph, sequences of edges with the target of one edge being the source of the next edge.
Edges are singleton paths, and _;_ denotes the partial concatenation operation, indicated by
giving kinds rather than sorts in the argument list. Later, in Section 4.3, we will see how to
specify when a sequence of edges has sort Path.

To emphasize the fact that an operator defined at the kind level in general defines only a
partial function at the sort level, Maude also supports a notational variant in which an (always
total) operator at the kind level can equivalently be defined as a partial operator between sorts
in the corresponding kinds, with syntax ‘~>’ instead of ‘->’ to indicate partiality. For example,
the above operator declaration can be equivalently specified by

op _;_ : Path Path ~> Path .

36 CHAPTER 3. SYNTAX AND BASIC PARSING

More generally, the partial operator declaration

op 〈OpName〉 : 〈Sort-1 〉 ... 〈Sort-k〉 ~> 〈Sort〉 .

is equivalent to the total operator declaration at the kind level

op 〈OpName〉 : [〈Sort-1 〉] ... [〈Sort-k〉] -> [〈Sort〉] .

3.6 Operator overloading

Operators in Maude can be overloaded, that is, we can have several operator declarations for
the same operator with different arities and coarities. Consider extending our number module
with a new sort Nat3 (of natural numbers modulo 3), constants 0, 1, and 2 of sort Nat3, and
two further operator declarations for _+_.

op _+_ : NzNat Nat -> NzNat .

sort Nat3 .

ops 0 1 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 .

Now _+_ is overloaded, having three declarations. However, there are two different kinds
of overloading present in the example. The additional declaration of _+_ with first argument
NzNat is an example of subsort overloading. Here the two _+_ operators on Nat and NzNat are
supposed to have the same behavior on their shared argument values, that is, the operator on
the subsort NzNat is the restriction of the operator on the larger sort Nat. The main point
of such declarations is to give more sort information, for example that the result of adding a
nonzero natural number to any natural number is nonzero. Many more examples of this form of
overloading can be found in the predefined data modules for the number hierarchy (Chapter 7)
and in other modules throughout the manual.

In contrast, the sorts Nat and NzNat on the one hand, and the sort Nat3 on the other
belong to two different connected components in the subsort ordering and therefore natural
number addition and addition modulo 3 are semantically unrelated. This form of overloading
is called ad-hoc overloading. Both subsort and ad-hoc overloading of operators are allowed in
Maude. However, to avoid ambiguous expressions we require that if the sorts in the arities of
two operators with the same syntactic form are pairwise in the same connected components,
then the sorts in the coarities must likewise be in the same connected component.

Strictly speaking, this requirement would rule out ad-hoc overloaded constants. For this
reason, we have declared two different constants zero and 0 for the corresponding zero elements.
However, this requirement can be relaxed, and it is often natural to do so. For example, the
constants of a parameterized module (see Chapter 6.3) can appear in many different connected
components for different instances of the module, and it may be cumbersome to rename them
all. To allow this relaxation, constants—and, more generally, terms (see Section 3.8)—can be
qualified by their sort, by enclosing them in parentheses followed by a dot and the sort name.
In this way, we could have instead declared 0 as an ad-hoc overloaded constant for natural
numbers and for natural numbers modulo 3, and could then disambiguate the expression 0 + 0

by writing, for example, 0 + (0).Nat and 0 + (0).Nat3, or (0 + 0).Nat and (0 + 0).Nat3.

3.7 Variables

A variable is constrained to range over a particular sort or kind. Variables can be declared
on-the-fly in Maude with syntax consisting of an identifier (the variable name), a colon, and

3.8. TERMS AND PREREGULARITY 37

another identifier (its sort) or kind expression (its kind). For example, N:Nat declares a variable
named N of sort Nat, and X:[Nat] declares a variable named X of kind [Nat].

The scope of an on-the-fly variable declaration is the declaration’s occurrence. Thus each
such variable must be accompanied by its sort or kind.

A variable can also be declared in a module using the keyword var followed by an identifier
(the variable name), followed by a colon with white space before and after, followed by an
identifier (its sort) or kind expression (its kind), followed by white space and a period.

var N : Nat .

var X : [Nat] .

The scope of such a declaration is the entire module. It has the effect of replacing occurrences
of N and X by the on-the-fly versions N:Nat and X:[Nat].

Multiple variables of the same sort can be declared using the keyword vars.

vars M N : Nat .

vars X Y : [Nat] .

Both upper and lower case names for variables are possible. However, upper case variable
names are more customary in Maude. The syntactic conventions for the acceptable names
of variables in variable declarations are the same as those for constant operators, that is, for
operators with empty arity. In particular, the underscore ‘ ’ cannot be used in the name of a
variable, but the colon ‘:’ can; thus the scanning for ‘:’ in order to extract the appropriate
sort or kind from an on-the-fly variable declaration is done from right to left.

3.8 Terms and preregularity

A term is either a constant, a variable, or the application of an operator to a list of argument
terms. The sort of a constant or variable is its declared sort. In the application of an operator,
the argument list must agree with the declared arity of the operator. That is, it must be of the
same length, and each term must have sort (or at least kind) in the connected component of the
corresponding declared argument sort. Using prefix form—which can always be used for any
operator, regardless of having been declared with either prefix or mixfix syntax—the syntax
of operator application is the operator’s name followed by ‘(’, followed by a list of argument
terms separated by commas, followed by ‘)’. Here are some examples of prefix notation from
our numbers module.

s_(zero)

s_(sd(N:Nat, M:Nat))

p(s_(zero))

+(N:Nat, M:Nat)

The application of an operator declared with mixfix form also has a mixfix syntax: the
operator’s mixfix name with each underscore replaced by the corresponding term from the
argument list. The mixfix form of the above examples is

s zero

s sd(N:Nat, M:Nat)

p(s zero)

N:Nat + M:Nat

The kind of a term is the result kind of its topmost operator. For example, the kind of
p(s zero) is [Nat], since Nat is the result sort of p. If a module’s grammar is unambiguous
(see the discussion on parsing in the following section), then each term has a single kind. But

38 CHAPTER 3. SYNTAX AND BASIC PARSING

we can also associate sorts to terms. In general, even if the grammar is unambiguous, a term
may have several sorts, due to the subsort ordering. Specifically, constants have the sort they
are declared with and any supersort of it. Given a term of the form f(t1, . . . , tn), if ti has
sort si for i = 1, . . . , n and there is an operator declaration f : s1 . . . sn → s, then the term
f(t1, . . . , tn) has sort s and any of its supersorts. For example, in our example NUMBERS module
the term s s 0 has sorts NzNat and Nat.

A very desirable property of a module is that each term has a least sort that can be assigned
to it. Such a least sort gives us the most detailed information on how to classify such a term as a
data element. For example, the least sort of the term s s 0 is NzNat, and this gives us the most
precise classification of such a term in the sort hierarchy. Given an arbitrary signature Σ, we
can have terms that fail to have a least sort. However, if Σ satisfies a simple syntactic property
called preregularity [78], we can guarantee that any Σ-term will have a least sort. We call Σ
preregular if for each n, given an n-argument function symbol f and sorts s1, . . . , sn such that
f(x1 : s1, . . . , xn : sn) is a well-formed Σ-term, then there is a least sort s among all the sorts
s′ appearing in (possibly overloaded) operator declarations of the form f : s′1, . . . , s

′
n −→ s′ in

Σ such that for 1 ≤ i ≤ n we have si ≤ s′i. For example, the signature

sorts A B C D .

subsorts A < B C < D .

op a : -> A .

op f : B -> B .

op f : C -> C .

fails to be preregular, because for the sort A the term f(X:A) is a well-formed term, but there
is no least sort for the result of f with arguments greater or equal to A, since either B or C can
be chosen as result sorts, and they are incomparable in the sort hierarchy. As a consequence,
both f(X:A) and f(a) do not have a least sort: they have sorts B, C, and D, and B and C are
minimal sorts among those sorts.

As already mentioned in Section 3.4 for the assoc attribute and further explained in Section
4.4.1, operators can be declared with equational axioms such as associativity (assoc), commu-
tativity (comm), and identity (id:). This means that, if we denote by A the corresponding
associativity and/or commutativity, and/or identity equations, we are not really interested in
syntactic terms t, but rather in equivalence classes modulo A, that is, in the equivalence class
[t]A of each term t, since all representatives of the class are viewed as equivalent representations.
Preregularity modulo A now means that we can assign a least sort not just to any well-formed
term t, but also to its equivalence class [t]A. As further explained in Section 20.3.5, Maude
assumes that modules are preregular modulo whatever axioms such as assoc, comm, and id:

have been declared for operators, checks syntactic conditions ensuring preregularity modulo A,
and generates warnings when a module fails to satisfy such preregularity conditions.

A ground term is a term containing no variables: only constants and operators. Intuitively,
ground terms denote either data in case no equations apply to the term (for example, s zero

is data) or functional expressions indicating how an equationally defined function is applied
to data (for example, (s zero) + (s zero)). Ground terms modulo equations constitute the
initial algebra associated with a specification, as discussed later in Section 4.3.

3.9 Parsing

As seen in previous sections, the Maude language supports user-definable syntax including
mixfix operator declarations. Parsing is done in stages. First Maude’s surface syntax is parsed
using a bison/flex-based parser. Operator declarations are extracted and are used to construct

3.9. PARSING 39

a grammar for language constructs that can contain terms. Finally those constructs are parsed
using a version of Leo’s algorithm for context-free grammars [91], which has been extended to
handle Maude-specific features including the precedence-gather mechanism and bubbles.

With mixfix syntax, the occurrence of ambiguities in the parsing of terms is very common.
Of course, we can always provide unambiguous grammars, which are frequently surprisingly
large, or use parentheses for breaking the possible ambiguities. But usually we would like to
have a more powerful alternative. Maude reduces such ambiguities by using a mechanism based
on precedence values and gathering patterns.

Let us assume the following declarations for some arithmetic expressions:

sort Nat .

ops 1 2 3 : -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

An expression like 1 + 2 * 3 is ambiguous, since both (1 + 2) * 3 and 1 + (2 * 3) are
valid parses. This kind of ambiguity is usually solved by assigning a precedence to each of the
operators. In Maude, the precedence of an operator is given by a natural number,3 where a
lower value indicates a tighter binding.

Operator precedence then defines how an expression should be parsed when several operators
are present. We can assign a precedence to an operator with a precedence (abbreviated prec)
attribute, which takes the precedence value as an argument. For example, one would expect
multiplication to be evaluated before addition. Thus, we can give precedences, e.g., 33 and 31
to the operators _+_ and _*_, respectively, as follows:

op _+_ : Nat Nat -> Nat [prec 33] .

op _*_ : Nat Nat -> Nat [prec 31] .

The term 1 + 2 * 3 is now unambiguous: its only possible parse is 1 + (2 * 3).
Precedence can be overridden using parentheses; we can always write (1 + 2) * 3 in case

this is the term we are interested in. For those operators for which the user does not specify
a precedence value, a default one is given (see Section 3.9.1 for a discussion on the default
precedence values). For example, both operators _+_ and _*_ above get 41 as their default
precedence, and hence the ambiguity.

The precedence mechanism is not enough, however. For example, the expression 1 + 2 + 3

is still ambiguous, because both parses (1 + 2) + 3 and 1 + (2 + 3) are possible. Usually,
programming languages define a way of associating operators to solve this kind of problems,
so that the associativity of the operators determines which is evaluated first. For example,
addition usually is left-associative, and therefore we expect to parse it as (1 + 2) + 3. In
Maude, we can specify not only the associativity of operators, but general gathering patterns
for each operator.

The gathering pattern of an operator restricts the precedences of terms that are allowed as
arguments. We give a (non-empty) sequence of as many E, e, or & values as the number of
arguments in the operator, that is, one of these values for each argument position:

• E indicates that the argument must have a precedence value lower or equal than the
precedence value of the operator,

• e indicates that the argument must have a precedence value strictly lower than the prece-
dence value of the operator, and

• & indicates that the operator allows any precedence value for the corresponding argument.

3The maximum allowed precedence value is 231 − 1.

40 CHAPTER 3. SYNTAX AND BASIC PARSING

In fact, the precedence values work because of their combination with the gathering patterns.
For example, the precedence values given to _+_ and _*_ work as expected because their default
gathering pattern is (E E) (see Section 3.9.2), which forces them to be applied only to terms
of smaller or equal precedence value. Thus, 1 + (2 * 3) is a valid parse for 1 + 2 * 3. On
the other hand, since the precedence of a term is given by the precedence of its top operator,
(1 + 2) * 3 is not a valid parse for 1 + 2 * 3, because the term 1 + 2 has precedence value
33, which is greater than the precedence of _*_.

Moreover, by default, all constants have precedence 0 (see Section 3.9.1), and therefore they
are also valid arguments for both operators.

We can specify _+_ and _*_ as left-associative by giving to them gathering pattern (E e).

op _+_ : Nat Nat -> Nat [prec 33 gather (E e)] .

op _*_ : Nat Nat -> Nat [prec 31 gather (E e)] .

In this way, we force the second argument of these operators to be of a strictly lower precedence.
Then, a term with _+_ as top operator (or any other operator with the same precedence)
like 2 + 3 is nonvalid as second argument for _+_. But it would be valid as first argument,
since terms with equal precedence are allowed. Now the only possible parse for the expression
1 + 2 + 3 is (1 + 2) + 3.

Note that parentheses could be described as an operator (_) with precedence 0 and gathering
pattern (&). Thus, any term can appear inside parentheses, and any subterm of a term can be
enclosed in parentheses.

3.9.1 Default precedence values

Maude associates default precedence values to those operators for which the user does not
specify this information as part of the operator declaration. The default precedence values are
entirely similar to those used by OBJ3 [79]. The rules for the assignment of default precedence
values are:

• Operators with standard form (constants and prefix operators) always have precedence
0, regardless of user settings. The user cannot change the precedence value or gathering
pattern for operators in standard form.

• Mixfix operators which begin and end with something different from an underbar have
precedence 0. Operators as, for example, (_), <_:_|_>, and if_then_else_fi follow
this rule.

• Mixfix operators which begin or end with an underbar have precedence 15 for a unary
operator and 41 for everything else. Note that this ‘or’ is exclusive. Operators like, e.g.,
not_, _!, or to_:_ fall into this category.

• Mixfix operators which begin and end with an underbar have precedence 41. This rule
applies, e.g., to the operators __, _+_, _*_, and _?_:_.

3.9.2 Default gathering patterns

As for precedence values, Maude assigns default gathering patterns to all those operators for
which the user does not specify this information as part of the operator declaration. The
default gathering patterns are also entirely similar to those used by OBJ3 [79]. The rules for
the assignment of the default gathering patterns are:

3.9. PARSING 41

• All arguments of prefix operators have a gathering value &, regardless of the user specifi-
cation.

• If the underbar corresponding to an argument is not adjacent to another underbar, and it
is neither the leftmost nor the rightmost token in the operator, then the default gathering
value for such an argument is &. In other words, if an underbar appears between tokens dif-
ferent from the underbar, then its corresponding argument will have this default gathering
pattern. For example, the default gathering pattern for the operator if_then_else_fi

is (& & &), the default gathering pattern for the operator [_and then_] is (& &), and
the default gathering pattern for the operator (_) is (&).

• If the underbar corresponding to an argument is adjacent to another underbar, or if it
is the leftmost or the rightmost token in the operator, then the default gathering value
for such an argument is E. Thus, e.g., the default gathering pattern for the operator
not_ is (E), the default gathering pattern for the operator _?_:_ is (E & E), the default
gathering pattern for the operator _+_ is (E E), and the default gathering pattern for the
operator __ is (E E).

Those binary operators which start with an underscore, end with an underscore, and have
a precedence greater than 0 are handled as special cases:

– The operator will have gathering pattern (e E) if it has the assoc attribute (see
Section 4.4.1). For example, the following operators fall into this category.

op _+_ : Nat Nat -> Nat [assoc] .

op _*_ : Nat Nat -> Nat [assoc] .

op __ : NatList NatList -> NatList [assoc] .

– If the operator does not have the assoc attribute, but its first argument, its last
argument, and its coarity are in the same connected component of sorts, then:

1. if the subsort relations allow it to right-associate but not left-associate, then the
first argument’s gathering pattern will change to e, and

2. if the subsort relations allow it to left-associate but not right-associate, then the
last argument’s gathering pattern will change to e.

Assuming Int < IntList, then the operators

op _<:_ : Int IntList -> IntList .

op _:>_ : IntList Int -> IntList .

have, by default, gathering patterns (e E) and (E e), respectively. According to the
general rule, since their argument bars are the leftmost and the rightmost tokens, the
gathering pattern should be (E E) for both of them. However, both operators fall
into the second special case, since they are binary operators which start and end with
underscores, have a precedence greater than 0 (by default 41), and are not declared
associative. Given the subsort relation, the operator _<:_ may right-associate, but
not left-associate, that is, 1 <: 2 <: 3 should be parsed as 1 <: (2 <: 3), but
(1 <: 2) <: 3 should not be a valid parse. Therefore, _<:_ gets default gathering
pattern (e E). And similarly for _:>_, although in this case it can left-associate,
and therefore it gets default gathering pattern (E e).

42 CHAPTER 3. SYNTAX AND BASIC PARSING

3.9.3 The extended signature of a module

In addition to the signature defined by the user, parsing of terms takes place in an ex-
tended grammar in which information for handling parentheses, sort and equality predicates,
if_then_else_fi, and qualification operators are included. These structures belong to the
so-called extended signature of a module. The main structures added in the extended signature
of a module are:

• Sort disambiguation. For each sort S in the signature of a module, Maude adds to the
signature the operator

op (_).S : S -> S .

This helps in the disambiguation of ad-hoc overloaded constants and terms. As an exam-
ple, remember from Section 3.6 that if we declare 0 as an ad-hoc overloaded constant for
natural numbers and for natural numbers modulo 3, then we can disambiguate the expres-
sion 0 + 0 by writing, for example, 0 + (0).Nat and 0 + (0).Nat3, or (0 + 0).Nat

and (0 + 0).Nat3. As another example, in the module META-MODULE (see Section 17.4),
the term none is ambiguous, since the operator none is used as the empty set of operator
declarations, equations, rules, etc. We can disambiguate it by writing (none).OpDeclSet.
Of course, these disambiguation operators can be used not only for constants, but for any
term. For example, we can write (2 + 3).Nat as a valid term in the predefined module
NAT.

• Parentheses. The extended signature of a module contains the operator

op (_) : S -> S .

for each sort S in its signature. These operators allow the use of parentheses without hav-
ing to declare a parentheses operator for each sort. For example, (2 + 3), (2 + 3) + 5,
(2 + (3) + 5), (((2 + 3)) + 5), are all valid terms in NAT, thanks to these declara-
tions.

• Equivalent single-identifier form for all operators. Each declared operator, including those
in mixfix form, may also be used in their equivalent single-identifier prefix form. For
example, in the NAT module, the term _+_(2, 3) is equivalent to 2 + 3, and the terms
if true then 2 + 3 else - 3 fi and if_then_else_fi(true, _+_(2, 3), -_(3))

are equivalent; any combination is possible so if_then_else_fi(true, 2 + 3, - 3) is
also valid.

• Flattened associative argument lists. Operators with the attribute assoc may be used in
Maude in a nonparenthesized flattened form (see Section 4.8). This is possible thanks to
the precedence-gathering values in mixfix notation, but it is also possible in prefix syntax.
For example, gcd(2, 3, 4) is a valid term in NAT, where gcd is the greater common divi-
sor operator, which is declared as a binary associative operator. Of course, this term can
always be written in the standard format as gcd(2, gcd(3, 4)) or gcd(gcd(2, 3), 4).
Furthermore, we can combine this possibility with the single-identifier form to write things
like _+_(2, 3, 4) instead of _+_(_+_(2, 3), 4) or _+_(2, _+_(3, 4)), but of course,
since _+_ is declared with the assoc attribute in the predefined module NAT, we can just
write 2 + 3 + 4.

• Polymorphic operators and the BOOL module. All the information contained in the prede-
fined modules TRUTH-VALUE, TRUTH, BOOL-OPS, and BOOL is included in the extended signa-
ture of each module (unless this inclusion is explicitly disabled). In particular, appropriate

3.9. PARSING 43

instances of the polymorphic operators contained in TRUTH (that is, if_then_else_fi,
==, and _=/=_) are generated for each sort in the module; in addition, for each sort S,
a sort predicate _:: S is also added. All these modules and operators are fully explained
in Section 7.1.

3.9.4 Parsing examples

Maude provides the parse command for parsing terms. The command does not do anything
other than parsing the given term in the extended signature of the module. This is exactly what
is done when a term appears in a command, before executing such a command. For example,
when we try to reduce a term (2 + 3) * 5, the system first parses it and then reduces it. If
the term is ambiguous, or there is no parse for it, an error message is given and no further
action takes place.

Maude> reduce in NAT : 2 + true .

Warning: <standard input>, line 1:

didn’t expect token true: 2 + true <---*HERE*

Warning: <standard input>, line 1: no parse for term.

For testing the parsing of terms we can use the parse command.

Maude> parse in NAT : 2 + true .

Warning: <standard input>, line 1:

didn’t expect token true: 2 + true <---*HERE*

Warning: <standard input>, line 1: no parse for term.

As other commands, parsing can take place either in the module explicitly mentioned in the
command or in the current module.

We illustrate the use of the parse command for the examples introduced in the previous
sections. Let us first consider a module PARSING-EX1 with constants 1, 2, and 3, and binary
operators _+_ and _*_.

fmod PARSING-EX1 is

sort Nat .

ops 1 2 3 : -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

endfm

Since _+_ and _*_ are declared without precedence values, and therefore both get the default
value 41, we obtain the following result.

Maude> parse 1 + 2 * 3 .

Warning: <standard input>, line 13: ambiguous term, two parses are:

1 + (2 * 3) -versus- (1 + 2) * 3

Arbitrarily taking the first as correct. Nat: 1 + (2 * 3)

As a first solution, we may consider using parentheses.

Maude> parse in PARSING-EX1 : 1 + (2 * 3) .

Nat: 1 + (2 * 3)

Maude> parse in PARSING-EX1 : (1 + 2) * 3 .

Nat: (1 + 2) * 3

Let us now consider the module PARSING-EX2, where _+_ and _*_ are declared with prece-
dences 33 and 31, respectively.

44 CHAPTER 3. SYNTAX AND BASIC PARSING

fmod PARSING-EX2 is

sort Nat .

ops 1 2 3 : -> Nat .

op _+_ : Nat Nat -> Nat [prec 33] .

op _*_ : Nat Nat -> Nat [prec 31] .

endfm

Now, parentheses are not necessary for parsing the term 1 + 2 * 3.

Maude> parse in PARSING-EX2 : 1 + 2 * 3 .

Nat: 1 + 2 * 3

Of course, we may still use parentheses.

Maude> parse in PARSING-EX2 : (1 + 2) * 3 .

Nat: (1 + 2) * 3

Since the default gathering patterns for binary operators like _+_ and _*_ is (E E), a term
like 1 + 2 + 3 is ambiguous.

Maude> parse in PARSING-EX2 : 1 + 2 + 3 .

Warning: <standard input>, line 30: ambiguous term, two parses are:

1 + (2 + 3) -versus- (1 + 2) + 3

Arbitrarily taking the first as correct. Nat: 1 + (2 + 3)

As above, we may use parentheses to parse such terms.

Maude> parse in PARSING-EX2 : (1 + 2) + 3 .

Nat: (1 + 2) + 3

Maude> parse in PARSING-EX2 : 1 + (2 + 3) .

Nat: 1 + (2 + 3)

Let us now consider the module PARSING-EX3, where _+_ and _*_ are declared to be left-
associative, that is, with gathering patterns (E e).

fmod PARSING-EX3 is

sort Nat .

ops 1 2 3 : -> Nat .

op _+_ : Nat Nat -> Nat [prec 33 gather (E e)] .

op _*_ : Nat Nat -> Nat [prec 31 gather (E e)] .

endfm

Now, the terms above have unambiguous parses.

Maude> parse in PARSING-EX3 : 1 + 2 * 3 .

Nat: 1 + 2 * 3

Maude> parse in PARSING-EX3 : 1 + 2 + 3 .

Nat: 1 + 2 + 3

Let us now consider the module PARSING-EX4, where _+_ and _*_ are declared to be asso-
ciative. Note that in this case, by default, they are assigned gathering patterns (E e).

fmod PARSING-EX4 is

sort Nat .

ops 1 2 3 : -> Nat .

op _+_ : Nat Nat -> Nat [prec 33 assoc] .

op _*_ : Nat Nat -> Nat [prec 31 assoc] .

endfm

3.9. PARSING 45

Maude> parse in PARSING-EX4 : 1 + 2 * 3 .

Nat: 1 + 2 * 3

Maude> parse in PARSING-EX4 : 1 + 2 + 3 .

Nat: 1 + 2 + 3

We illustrate the use of the extended signature in which all terms are parsed with the
following examples.

Maude> parse in PARSING-EX1 : (2 + 3).Nat .

Nat: 2 + 3

Maude> parse in PARSING-EX1 : (2).Nat + 3 .

Nat: 2 + 3

Maude> parse in PARSING-EX1 : (2).Nat + (3).Nat .

Nat: 2 + 3

Maude> parse in PARSING-EX1 : ((1) + ((2) + (3))) .

Nat: 1 + (2 + 3)

Maude> parse in PARSING-EX1 : _+_(1, _+_(2, 3)) .

Nat: 1 + (2 + 3)

Maude> parse in PARSING-EX4 : _+_(1, 2, 3) .

Nat: 1 + 2 + 3

Maude> parse in PARSING-EX4 : if 1 == 2 then 1 + 2 else _+_(1, 2) fi .

Nat: if 1 == 2 then 1 + 2 else 1 + 2 fi

Maude> parse in PARSING-EX4 :

if _==_(1, 2)

then if_then_else_fi(1 + 2 :: Nat, 1 * 1, 2 * 1)

else _+_(1, 2)

fi .

Nat: if 1 == 2

then if (1 + 2) :: Nat

then 1 * 1

else 2 * 1

fi

else 1 + 2

fi

46 CHAPTER 3. SYNTAX AND BASIC PARSING

Chapter 4

Functional Modules

Functional modules define data types and operations on them by means of equational theories.
The data types consist of elements that can be named by ground terms. Two ground terms
denote the same element if and only if they belong to the same equivalence class as determined
by the equations. That is, the mathematical semantics of a functional module is its initial
algebra. Maude’s functional modules are assumed to have the nice property that equations,
considered as simplification rules by using them only in the left to right direction, are Church-
Rosser and terminating (see Section 4.7). This means that repeated application of the equations
as simplification rules eventually reaches a term to which no further equations apply, and the
result, called the canonical form, is the same regardless of the order of application of the
equations. Thus each equivalence class has a natural representative, its canonical form, that
can be computed by equational simplification. As explained in Section 1.2, this ensures that
the initial algebra and the canonical term algebra of the functional module are isomorphic, and
therefore that the module’s mathematical and operational semantics coincide.

The equational logic on which Maude functional modules are based is an extension of
order-sorted equational logic [78] called membership equational logic [106, 17]. Thus, func-
tional modules support multiple sorts, subsort relations, operator overloading, and assertions
of membership in a sort.

As was mentioned in Section 3.2, a functional module is declared in Maude using the key-
words

fmod 〈ModuleName〉 is 〈DeclarationsAndStatements〉 endfm

For example,

fmod NUMBERS is

...

endfm

declares a module named NUMBERS. The dots stand for the actual declarations and statements
that may appear in the functional module. Declarations include the importation of other
functional modules (see Chapter 6), and sort, subsort, and operator declarations. Statements
include equational and membership axioms. Declarations were discussed in Chapter 3. What
remains to be explained are equational and membership statements.

47

48 CHAPTER 4. FUNCTIONAL MODULES

4.1 Unconditional equations

Unconditional equations are declared using the keyword eq, followed by a term (its lefthand
side), the equality sign =, then a term (its righthand side), optionally followed by a list of
statement attributes (see Section 4.5 later in this chapter) enclosed in square brackets, and
ending with white space and a period. Thus the general scheme is the following:

eq 〈Term-1 〉 = 〈Term-2 〉 [〈StatementAttributes〉] .

The terms t and t’ in an equation t = t’ must both have the same kind. In order for the
equation to be executable, any variable appearing in t’ must also appear in t. Equations not
satisfying this requirement can also be declared (for example, to document a lemma holding
true in the module) but in such a case they should always be specified with the nonexec

attribute (see Section 4.5.3). We can add equations axiomatizing the addition operation in our
NUMBERS module as follows, where we distinguish two cases for the second argument, according
to whether it is zero or not:

vars N M : Nat .

eq N + zero = N .

eq N + s M = s (N + M) .

The following equations define the symmetric difference operation sd on natural numbers,
which returns the result of subtracting the smaller from the larger of its two arguments.

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M) .

In general, in a functional module one can specify equations (and also conditional equations,
as explained in Section 4.3) in three different ways:

1. in the style given above, in which case they are assumed to be executable as simplification
rules from left to right;

2. in the same style as above, but with the nonexec attribute (see Section 4.5.3), in which
case Maude does not use them for simplification (except at the metalevel with a user-given
strategy, see Section 17.7); and

3. as equational attributes of specific operators (see Section 4.4.1).

For example, a binary operator f can be declared assoc and comm, telling Maude that it
satisfies the associativity and commutativity axioms. Such equational attributes should not be
written explicitly as equations in the specification. There are two reasons for this. Firstly, this is
redundant, since they have already been declared as equational attributes. Secondly, although
declaring such equations either only explicitly as equations, or twice—one time as equational
attributes and another as explicit equations—does not affect the mathematical semantics of the
specification, that is, the initial algebra that the specification denotes (see Section 4.3), it does
however drastically alter the specification’s operational semantics. For example, if the comm

attribute for f were to be stated as an equation f(X, Y) = f(Y, X), then using the equation
as a simplification rule applied to the term, say, f(a, b), would lead to the nonterminating
chain of equational simplifications

f(a, b) = f(b, a) = f(a, b) = f(b, a) = ...

4.2. UNCONDITIONAL MEMBERSHIPS 49

This is quite bad, since we want the equations specified by method (1) to be used as
simplification rules and assume them to be terminating and Church-Rosser, so that they always
simplify a term to a unique result that cannot be further simplified. Instead, if comm is declared
as an equational attribute, the above kind of looping does not happen: Maude then simplifies
terms modulo the declared equational attributes, so that the terms f(a, b) and f(b, a) would
indeed be treated as identical. For more on equational attributes see Section 4.4.1.

4.2 Unconditional memberships

Unconditional membership axioms specify terms as having a given sort. They are declared with
the keyword mb followed by a term, followed by ‘:’, followed by a sort (that must always be
in the same kind as that of the term), followed by a period. As equations, memberships can
optionally have statement attributes (see Section 4.5).

mb 〈Term〉 : 〈Sort〉 [〈StatementAttributes〉] .

To illustrate this, consider the module 3*NAT with the basic Peano number declarations as
in the NUMBERS module and a new sort 3*Nat.

The fact that 3*Nat consists of multiples of 3 is expressed using the subsort declaration
Zero < 3*Nat < Nat and the membership statement mb (s s s M3) : 3*Nat for M3 a vari-
able of sort 3*Nat.

fmod 3*NAT is

sort Zero Nat .

subsort Zero < Nat .

op zero : -> Zero .

op s_ : Nat -> Nat .

sort 3*Nat .

subsorts Zero < 3*Nat < Nat .

var M3 : 3*Nat .

mb (s s s M3) : 3*Nat .

endfm

Memberships axioms can interact in undesirable ways with operators that are declared with
the assoc or iter attributes (see later Sections 4.4.1 and 4.4.2, respectively). This is explained
and illustrated with examples in Sections 20.3.8 and 20.3.9.

4.3 Conditional equations and memberships

Equational conditions in conditional equations and memberships are made up of individual
equations t = t′ and memberships t : s. A condition can be either a single equation, a single
membership, or a conjunction of equations and memberships using the binary conjunction
connective /\ which is assumed to be associative. Thus the general form of conditional equations
and memberships is the following:

ceq 〈Term-1 〉 = 〈Term-2 〉
if 〈EqCondition-1 〉 /\ ... /\ 〈EqCondition-k〉
[〈StatementAttributes〉] .

cmb 〈Term〉 : 〈Sort〉
if 〈EqCondition-1 〉 /\ ... /\ 〈EqCondition-k〉
[〈StatementAttributes〉] .

50 CHAPTER 4. FUNCTIONAL MODULES

Furthermore, the concrete syntax of equations in conditions has three variants, namely:

• ordinary equations t = t’,

• matching equations t := t’, and

• abbreviated Boolean equations of the form t, with t a term in the kind [Bool], abbrevi-
ating the equation t = true.

Any term t in the kind [Bool] can be used as an abbreviated Boolean1 equation. The
Boolean terms appearing most often in abbreviated Boolean equations are terms using the
built-in equality _==_ and inequality _=/=_ predicates, and the built-in membership predicates
:: S with S a sort, including Boolean combinations of such terms with not, _and_, _or_ and
other Boolean connectives (see Section 7.1 for a detailed description of all these operators). For
example, the following Boolean terms in the NUMBERS module (assuming that a “greater than”
operator _>_ has also been defined in NUMBERS),

N == zero

M =/= s zero

not (K :: NzNat)

(N > zero or M =/= s zero)

can appear as abbreviated Boolean equations in a condition, abbreviating, respectively, the
equations:

(N == zero) = true

(M =/= s zero) = true

not (K :: NzNat) = true

(N > zero or M =/= s zero) = true

To illustrate the use of conditional equations and memberships, let us reconsider the path
example from Section 3.5. The following conditional statements express the key membership
defining path concatenation and the associativity of this operator:

var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

The conditional membership axiom (introduced by the keyword cmb) states that an edge
concatenated with a path is also a path when the target node of the edge coincides with the
source node of the path. This has the effect of defining path concatenation as a partial operation
on paths, although it is total on the kind [Path] of “confused paths.”

Assuming variables P, E, and S declared as above, source and target operations over paths
are defined by means of conditional equations with matching equations in conditions as follows:2

ceq source(P) = source(E) if E ; S := P .

ceq target(P) = target(S) if E ; S := P .

Matching equations3 are mathematically interpreted as ordinary equations; however, opera-
tionally they are treated in a special way and they must satisfy special requirements. Note that

1By default, any Maude module imports the predefined BOOL module (see Section 7.1).
2Note that the source and target operations can equivalently be declared as

eq source(E ; S) = source(E) .

eq target(E ; S) = target(S) .
3Similar constructs are used in languages like ASF+SDF [42] and ELAN [12].

4.3. CONDITIONAL EQUATIONS AND MEMBERSHIPS 51

the variables E and S in the above matching equations do not appear in the lefthand sides of the
corresponding conditional equations. In the execution of these equations, these new variables
become instantiated by matching the term E ; S against the canonical form of the subject term
bound to the variable P (see Section 4.7). In order for this match to decide the equality with
the ground term bound to P, the term E ; S must be a pattern. Given a functional module M ,
we call a term t an M -pattern if for any well-formed substitution σ such that for each variable
x in its domain the term σ(x) is in canonical form with respect to the equations in M , then
σ(t) is also in canonical form. A sufficient condition for t to be an M -pattern is the absence of
unifiers between its nonvariable subterms and lefthand sides of equations in M .

Ordinary equations t = t′ in conditions have the usual operational interpretation, that is, for
the given substitution σ, σ(t) and σ(t′) are both reduced to canonical form and are compared
for equality, modulo the equational attributes specified in the module’s operator declarations
such as associativity, commutativity, and identity. Finally, abbreviated Boolean equations are
just a special case of ordinary equations once they are expanded out.

The satisfaction of the conditions is attempted sequentially from left to right. Since in
Maude matching takes place modulo equational attributes, in general many different matches
may have to be tried until a match of all the variables satisfying the condition is found.

The above equations for source and target illustrate the use of matching equations to
bind variables locally, in much the same way that let is used in some functional programming
languages. In this example, since the matching is purely syntactic, the matching substitution is
unique and gives a simple way to name parts of a structure or to name a complicated expression
which appears multiple times in the main equation.

For M -patterns where some operators are matched modulo some equational attributes,
matching substitutions need not be unique. This provides another way of using matching
equations, namely to perform a search through a structure without any need to explicitly
define a function that does this. For example, for sequences of natural numbers we can define
a predicate _occurs-inner_ that determines if a number occurs in a sequence other than at
one of the ends. If one only cares about positive results,4 the following will work.

op _occurs-inner_ : [Nat] [NatSeq] -> [Bool] .

ceq N:Nat occurs-inner NS:NatSeq = true

if (NS0:NatSeq N:Nat NS1:NatSeq) := NS:NatSeq .

Note that this equation could also be written as

eq N:Nat occurs-inner NS0:NatSeq N:Nat NS1:NatSeq = true .

In both cases we check whether the sequence contains the natural number N:Nat, but making
sure that the sequence contains other elements both before and after N:Nat.5 With the above
definition added to the numbers module, the term

zero occurs-inner (zero zero zero zero zero)

reduces to true, while the term

4Note that, since when the predicate is not true it remains unevaluated, we have defined it at the kind level,
that is, as a partial Boolean function; however, using the owise attribute (see Section 4.5.4) it is very easy to
add an extra equation making _occurs-inner_ a total Boolean function.

5Note that here we assume the declaration of the NatSeq concatenation operator __ as given in page 34,
where it is declared to be associative. If we consider the declaration of this operator given in page 54, which is
also declared to have nil as identity element, then we should write this equation as

op _occurs-inner_: [Nat] [NatSeq] -> [Bool] .

ceq N:Nat occurs-inner NS:NatSeq = true

if (I:Nat NS0:NatSeq N:Nat NS1:NatSeq M:Nat) := NS:NatSeq .

since the variables NS0:NatSeq and NS1:NatSeq might be instantiated to nil.

52 CHAPTER 4. FUNCTIONAL MODULES

zero occurs-inner (zero zero)

does not reduce further.

Matching equations in conditions give great expressive power, but some care is needed in
using them to define operations. Consider adding the following to the numbers module, in an
attempt to define a test for the presence of s s zero in a sequence of natural numbers.

op hasTwo : [NatSeq] -> [Bool] .

ceq hasTwo(NS:NatSeq) = N:Nat == s s zero

if NS0:NatSeq N:Nat NS1:NatSeq := NS:NatSeq .

With this addition to the numbers module, hasTwo(zero zero) does not get reduced, since
the condition requires at least three numbers in the sequence. The term hasTwo(zero (s s

zero) zero) reduces to true. The term hasTwo(zero (s zero) (s s zero) zero) also gets
reduced, although it may return true or false; probably not what was intended. The problem
is that there are several matches, each giving a different answer, so the conditional equation
does not define a function. In fact, this conditional equation causes the Church-Rosser property
to fail, and semantically identifies true and false, thus leading to an inconsistent theory. In
contrast, as will be seen in Chapter 5, a rule with such a matching condition is not a problem,
and does have the effect of searching a sequence of natural numbers for s s zero.

In summary, all the sort, subsort, and operator declarations and all the statements in a
functional module (plus the functional modules imported if any) define an equational theory
in membership equational logic [106, 17]. Such a theory can be described in mathematical
notation as a pair (Σ, E ∪ A), where Σ is the signature, that is, the specification of the sorts,
subsorts, kinds, and operators in the module, E is the collection of statements (equations and
memberships, possibly conditional) and A is the set of equational attributes, such as assoc and
comm, declared for some operators (that is, extra equations that are treated in a special way by
the Maude interpreter to simplify modulo such attributes, see Section 4.4.1).

The family of ground terms definable in the syntax of Σ defines a model called a Σ-algebra
and denoted TΣ. In TΣ, terms syntactically different denote different elements, so that TΣ will
not satisfy the equations in E ∪A, unless they are trivial equations such as f(X) = f(X). The
question is, what is the optimal model of the theory (Σ, E ∪A)? Goguen and Burstall’s answer
is: a model satisfying the axioms E ∪A and such that it has no junk (that is, all elements can
be denoted by ground Σ-terms), and no confusion (that is, only elements that are forced to
be equal by the axioms E ∪ A are identified). Such a model, called the initial algebra of the
equational theory (Σ, E ∪ A), exists [106], is denoted TΣ/E∪A, and provides the mathematical
semantics of the Maude functional module specifying (Σ, E ∪A).

Mathematically, TΣ/E∪A can be constructed as the quotient of TΣ in which the equivalence
classes are those terms that are provably equal using the axioms E∪A. Operationally, assuming
that the axioms E are Church-Rosser and terminating modulo A (see Section 4.7), there is a
much more intuitive equivalent description of TΣ/E∪A, namely as the family of canonical forms
for the ground Σ-terms modulo A, that is, those terms that cannot be further simplified by the
equations in E modulo A. That is, as explained in Section 1.2, we have then an isomorphism

TΣ/E∪A ∼= CanΣ/E∪A

between the initial algebra TΣ/E∪A and the canonical term algebra CanΣ/E∪A.

The Maude interpreter computes such canonical forms, which can be viewed as the values de-
noted by the corresponding functional expressions, with the reduce command (see Section 23.2
for details and Section 4.9 for examples).

4.4. OPERATOR ATTRIBUTES 53

4.4 Operator attributes

Operator declarations may include attributes that provide additional information about the
operator: semantic, syntactic, pragmatic, etc. All such attributes are declared within a single
pair of enclosing square brackets, ‘[’ and ‘]’, after the sort of the result and before the ending
period. We discuss each of the categories of operator attributes below.

4.4.1 Equational attributes

Equational attributes are a means of declaring certain kinds of equational axioms in a way that
allows Maude to use these equations efficiently in a built-in way. Currently Maude supports
the following equational attributes:

• assoc (associativity),

• comm (commutativity),

• idem (idempotency),

• id: 〈Term 〉 (identity, with the corresponding term for the identity element),

• left id: 〈Term 〉 (left identity, with the corresponding term for the left identity element),
and

• right id: 〈Term 〉 (right identity, with the corresponding term for the right identity
element).

An operator can be declared with several of these attributes, which may appear in any order
in the attribute declaration. However, these attributes are only allowed for binary operators
satisfying the following requirements:

• For left id:, it is required that the right domain sort and the range sort belong to the
same kind.

• For right id:, it is required that the left domain sort and range sort belong to the same
kind.

• For assoc, comm, id:, and idem, both domain sorts and the range sort must belong to
the same kind.

These requirements are checked at parse time, and if the check fails a warning is output and
the operator loses its attributes.

Furthermore, we have the following additional requirements:

• The attribute idem cannot be used in any combination of attributes that includes assoc,
because the necessary matching and normalization algorithms have not been implemented
yet. This requirement is quietly enforced by ignoring the attribute idem where necessary.

• Only one identity attribute (left id:, right id:, or id:) is allowed. This is enforced
by a warning and by ignoring all but the first such attribute.

• Combining the attribute comm with either left id: or right id: silently turns the
identity attribute into an id:.

54 CHAPTER 4. FUNCTIONAL MODULES

• All subsort-overloaded instances of an operator must have the same attributes. This is
further explained in Section 4.4.6.

Semantically, declaring a set of equational attributes for an operator is equivalent to declar-
ing the corresponding equations for the operator. Operationally, using equational attributes to
declare such equations avoids termination problems and leads to much more efficient evaluation
of terms containing such an operator. In fact, the effect of declaring equational attributes is to
compute with equivalence classes modulo such equations. This, besides being very expressive,
avoids what otherwise would be insoluble termination problems. For example, if a commutativ-
ity equation like x + y = y + x is declared as an ordinary equation, then it will easily produce
looping, nonterminating simplifications. If it is instead declared with an equational attribute
comm, this looping behavior does not happen.

In our numbers example we can add a constant nil for the empty sequence and refine the
declaration of sequence concatenation so that concatenation is associative with identity nil.

op nil : -> NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc id: nil] .

As another example, we can form lists of Booleans as a supersort BList of Bool in an
extension of the BOOL module (see Section 7.1) with a “cons” operator _._ having nil as a
right identity:

sort BList .

subsort Bool < BList .

op nil : -> BList .

op _._ : Bool BList -> BList [right id: nil] .

Note that, when equational attributes are declared, equational simplification using the other
equations in the module does not take place at the purely syntactic level of replacing syntactic
equals by equals, but is understood modulo the equational attributes. Therefore, the proper
understanding of the notions of Church-Rosser and terminating equations, and of canonical
forms, is now modulo the equational attributes that have been declared. We discuss matching
and equational simplification modulo axioms in Section 4.8.

For example, by declaring the addition operation on natural numbers modulo 3 as commu-
tative,

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

it is enough to have the following equations to define its behavior on all possible combinations
of arguments:

vars N3 : Nat3 .

eq N3 + 0 = N3 .

eq 1 + 1 = 2 .

eq 1 + 2 = 0 .

eq 2 + 2 = 1 .

The equations

eq 0 + N3 = N3 .

eq 2 + 1 = 0 .

are not needed, because they are subsumed by the first and third equations above, due to
commutativity of _+_.

Notice that membership axioms and matching modulo associativity can interact in undesir-
able ways, as explained in Section 20.3.8.

4.4. OPERATOR ATTRIBUTES 55

4.4.2 The iter attribute

Maude provides a built-in mechanism called the iter (short for iterated operator) theory whose
goal is to permit the efficient input, output, and manipulation of very large stacks of a unary
operator.

Unary operators may be declared to belong to the iter theory by including iter in their
attributes. After declaring

sort Foo .

op f : Foo -> Foo [iter] .

the term f(f(f(X:Foo))) can be input as f^3(X:Foo) and will be output in that form. A term
such as f^1234567890123456789(X:Foo) is too large to be input, output or manipulated in
regular notation, but can be input and output in this compact notation and certain (built-in)
manipulations may thus be made efficient.

The precise form of the compact iter theory notation is the prefix name of the operator
followed by ^[1-9][0-9]* (in Lex regular expression notation) with no intervening white space.
Note that f^0123(X:Foo) is not acceptable. Of course, regular notation (and mixfix notation
if appropriate) can still be used.

Membership axioms may also interact in undesirable ways with operators declared with the
iter attribute; see Section 20.3.9 for details.

4.4.3 Constructors

Assuming that the equations in a functional module are (ground) Church-Rosser and termi-
nating, then every ground term in the module (that is, every term without variables) will be
simplified to a canonical form, perhaps modulo some declared equational attributes. Construc-
tors are the operators appearing in such canonical forms. The operators that “disappear” after
equational simplification are instead called defined functions. For example, typical construc-
tors in a sort Nat are zero and s_, whereas in the sort Bool, true and false are the only
constructors.

It is quite useful for different purposes, including both debugging (see Chapter 20) and
theorem proving, to specify when a given operator is a constructor. This can be done with
the ctor attribute. For example, we can refine our operator declarations in Section 3.4 with
constructor information as follows:

op zero : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op nil : -> NatSeq [ctor].

op __ : NatSeq NatSeq -> NatSeq [ctor assoc id: nil] .

Three slightly subtle points should be mentioned, namely the relationships of constructors to
operator overloading, to kinds, and to equations. The first key observation is that constructor
declarations are local to given sorts for the arguments and for the result. Nothing prevents an
operator from being a constructor at some level in the subsort ordering but being a defined
function at another. For example, we could have declared a successor function for integers,

op s_ : Int -> Int .

which is not a constructor. Indeed, we can define the sort Int with a subsort NzNeg of nonzero
negative numbers built up with a unary minus constructor -_, and we can then specify both
unary minus -_ and successor s_ as defined functions on the integers by giving the equations:

sorts NzNeg Int .

subsorts Nat NzNeg < Int .

56 CHAPTER 4. FUNCTIONAL MODULES

op -_ : NzNat -> NzNeg [ctor] .

op -_ : Int -> Int .

op s_ : Int -> Int .

var N : Nat .

eq - zero = zero .

eq - (- (s N)) = s N .

eq s (- (s N)) = - N .

A related observation is that a defined function, which totally disappears at some level in
the subsort ordering, might not go away for terms at the kind level. For example, even though
addition may be a defined function, we may encounter an arithmetic error expression in a kind
of numbers such as

(s s zero) + p zero

because the predecessor function p has been declared on nonzero natural numbers.

op p : NzNat -> Nat .

The last point is that constructors may obey certain equations; that is, they do not have to
be free constructors. The equations that they may obey (even as constructors, not just in other
overloaded variants such as the integer successor function above) may be either equational
attributes (such as the assoc attribute in the above concatenation operator for strings of
natural numbers), or ordinary equations, or both. For example, we can add a sort NatSet of
finite sets of natural numbers to our NUMBERS module by declaring a set union operation _;_

using equational attributes to declare that it is associative and commutative with identity the
empty set, and using an ordinary equation to express idempotency.6

sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet [ctor] .

op _;_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty] .

eq N ; N = N .

Given an equational specification in which several operators have been declared as construc-
tors by means of the ctor attribute and such that the equations are terminating, the sufficient
completeness problem consists in verifying that the canonical forms of all well-typed ground
terms are constructor terms. Intuitively, this means that all defined operations (i.e., those that
are not declared as constructors) have been fully defined. Maude’s Sufficient Completeness
Checker (SCC) can be used to ensure that constructor declarations are really correct, so that
all functions are fully defined relative to those constructors. We can take the NUMBERS module,
incrementally introduced in Chapter 3 and the previous sections of this chapter, to illustrate
how the SCC can be used to help the specifier in this regard.

fmod NUMBERS is

sort Zero .

sorts Nat NzNat .

subsort Zero NzNat < Nat .

op zero : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op sd : Nat Nat -> Nat .

6Remember that the idem attribute cannot be specified together with an assoc attribute; therefore idempo-
tency must in this case be specified explicitly by an equation.

4.4. OPERATOR ATTRIBUTES 57

ops _+_ _*_ : Nat Nat -> Nat .

op _+_ : NzNat Nat -> NzNat .

op p : NzNat -> Nat .

vars I N M : Nat .

eq N + zero = N .

eq N + s M = s (N + M) .

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M) .

sort Nat3 .

ops 0 1 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

vars N3 : Nat3 .

eq N3 + 0 = N3 .

eq 1 + 1 = 2 .

eq 1 + 2 = 0 .

eq 2 + 2 = 1 .

sort NatSeq .

subsort Nat < NatSeq .

op nil : -> NatSeq [ctor].

op __ : NatSeq NatSeq -> NatSeq [ctor assoc id: nil] .

sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet [ctor].

op _;_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty] .

eq N ; N = N .

endfm

For expository reasons, since the ctor declaration had not yet been explained, some oper-
ators and constants were declared without the ctor attribute when they were introduced in
Section 3.6. The SCC reports the first term it finds not reducible to a constructor. In this case,
the first such report we get is the following:

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which

will be ignored when checking.

Failure: The term 0 was found to be a counterexample. Since the

analysis is incomplete, it may not be a real counterexample.

We fix this error by adding the ctor attribute to the declaration of the constants 0, 1, and 2

of sort Nat3:

ops 0 1 2 : -> Nat3 [ctor].

After this declaration is corrected, a more serious bug is found by the SCC, namely,

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which

will be ignored when checking.

58 CHAPTER 4. FUNCTIONAL MODULES

Failure: The term zero * zero was found to be a counterexample.

Since the analysis is incomplete, it may not be a real

counterexample.

This message shows that the definition of multiplication is incomplete, because we have declared
the operator without the ctor attribute but we have forgotten the equations defining such
operation on natural numbers. For example, we can add the following equations to make up
for this omission:

eq N * zero = zero .

eq N * s M = (N * M) + N .

A further iteration of the SCC on the amended specification shows that the equations for
the predecessor operation p are missing as well. Since p is only defined on nonzero natural
numbers, only one equation needs to be added:

eq p(s N) = N .

The corrected NUMBERS module after this analysis (together with some additional declara-
tions introduced in the following sections) is presented in Section 4.9. Here is the tool output
on the corrected module:

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which

will be ignored when checking.

Success: NUMBERS is sufficiently complete under the assumption

that it is weakly-normalizing, confluent, and sort-decreasing.

4.4.4 Polymorphic operators

A number of Maude’s built-in operators are polymorphic in one or more arguments, in the
sense that the operator has meaning when these arguments are of any known sort. Examples
include Boolean operators such as the conditional, if_then_else_fi, which is polymorphic in
its second and third arguments, and the equality test _==_ which is polymorphic in both argu-
ments (see Section 7.1). The user can also define polymorphic operators using the polymorphic
attribute (abbreviated poly). This attribute takes a set of natural numbers enclosed in paren-
theses that indicates which arguments are polymorphic, with 0 indicating the range. For
polymorphic operators that are not constants, at least one argument should be polymorphic
to avoid ambiguities. Since there are no polymorphic equations, polymorphic operators are
limited to constructors and built-ins. Polymorphic operators are always instantiated with the
polymorphic arguments going to the kind level, which further limits their generality. The sort
name in a polymorphic position of an operator declaration is purely a place holder—any legal
type name could be used. The recommended convention is to use Universal.

One reasonable use for polymorphic operators beyond the existing built-ins is to define
heterogeneous lists, as follows, where CONVERSION denotes a predefined module described in
Section 7.9 having types for different numbers as well as strings; this module is imported by
means of a protecting declaration, which will be explained in Section 6.1.1.

fmod HET-LIST is

protecting CONVERSION .

sort List .

op nil : -> List .

4.4. OPERATOR ATTRIBUTES 59

op __ : Universal List -> List [ctor poly (1)] .

endfm

As an example, we can form the following heterogeneous lists:

Maude> red 4 "foo" 4.5 1/2 nil .

result List: 4 "foo" 4.5 1/2 nil

Maude> red (4 "foo" nil) 4.5 1/2 nil .

result List: (4 "foo" nil) 4.5 1/2 nil

4.4.5 Format

The format attribute is intended to control the white space between tokens as well as color and
style when printing terms for programming-language-like specifications. Consider the following
mixfix syntax operator:

op (op_:_->_[_].) : Qid TypeList Type AttrSet -> OpDecl .

There are eleven places where white space can be inserted:

op _ : _ -> _ [_] .

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

A format attribute must have an instruction word for each of these places. For example,
the formatting specification for the above operator could be chosen to be:

[format (d d d d d d s d d s d)]

Instruction words are formed from the following alphabet:

d default spacing
(cannot be part of a larger word: must occur on its own)

+ increment global indent counter
- decrement global indent counter
s space
t tab
i number of spaces determined by indent counter
n newline

Note that, in general, each place may have an entire word combining several of the above
symbols. We can illustrate how this feature is used in several operators in (submodules of) the
META-LEVEL module in the file prelude.maude (see Chapter 17).

• Each assignment will be printed in a new line, indented one tab.

op _<-_ : Variable Term -> Assignment

[ctor prec 63 format (nt d d d)] .

• Each importation after the first one will be printed in a new line, with the current inden-
tation.

op __ : ImportList ImportList -> ImportList

[ctor assoc id: nil format (d ni d)] .

• Each kind of declaration in a module will start in a new line, with the current indentation,
which is increased by two at the beginning and decreased by two at the end of the module.

60 CHAPTER 4. FUNCTIONAL MODULES

op fmod_is_sorts_.____endfm : Qid ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule

[ctor gather (& & & & & & &)

format (d d d n++i ni d d ni ni ni ni n--i d)] .

Whether the format attribute is actually used or not when printing is controlled by the
command:

set print format on/off .

The following additional alphabet can be used to change the text color and style. These
colors, perhaps combined with spacing directives, can greatly ease readability, particularly in
complex terms for which they can serve as markers. They rely on ANSI escape sequences which
are supported by most terminal emulators, most notably the Linux console, Xterm, and Mac
Terminal windows, but not Emacs shell buffers, unless you use ansi-color.el.7

r red
g green
y yellow
b blue
m magenta
c cyan
u underline
! bold
o revert to original color and style

By default ANSI escape sequences are suppressed if the environment variable TERM is set
equal to dumb (Emacs does this) or standard output is not a terminal; they are allowed oth-
erwise. This behavior can be overridden by the command line options -ansi-color and
-no-ansi-color.

You are allowed to give a format attribute even if there is no mixfix syntax. In this case
the format attribute must have two instruction words, indicating the desired format before and
after the operator’s name. For example,

fmod COLOR-TEST is

sorts Color ColorList .

subsort Color < ColorList .

op red : -> Color [format (r! o)] .

op green : -> Color [format (g! o)] .

op blue : -> Color [format (b! o)] .

op yellow : -> Color [format (yu o)] .

op cyan : -> Color [format (cu o)] .

op magenta : -> Color [format (mu o)] .

op __ : ColorList ColorList -> ColorList [assoc] .

endfm

To see the colors in this module, load the COLOR-TEST module into Maude and execute the
command:8

Maude> reduce red green blue yellow cyan magenta .

reduce in COLOR-TEST : red green blue yellow cyan magenta .

7There is a copy of this Emacs Lisp file with the Maude distribution just in case your Emacs distribution
lacks it.

8Try it in your terminal. The colors are not shown here for obvious reasons.

4.4. OPERATOR ATTRIBUTES 61

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result ColorList: red green blue yellow cyan magenta

Let us consider the following module FORMAT-DEMO, where a small programming language
is defined.

fmod FORMAT-DEMO is

sorts Variable Expression BoolExp Statement .

subsort Variable < Expression .

ops a b c d : -> Variable .

op 1 : -> Expression .

op _+_ : Expression Expression -> Expression [assoc comm] .

op _;_ : Statement Statement -> Statement [assoc prec 50] .

op _<=_ : Expression Expression -> BoolExp .

op while_do_od : BoolExp Statement -> Statement

[format (nir! o r! o++ --nir! o)] .

op let_:=_ : Variable Expression -> Statement

[format (nir! o d d d)] .

endfm

Note the use of the format attribute for operators while_do_od and let_:=_. Since both
represent statements, which should start in a new line, but at the current indentation level,
both include ni in the instruction words for their first positions; this position also has characters
r! in both cases, so that they start in boldface red font. Since there is a o for the next position,
reverting to original color and style, only the first word (while and let) is shown in red. In
the case of while_do_od, the condition of the loop starts at the second position. The do word
is shown in boldface red, and then the indentation counter is incremented, so that the body
of the while_do_od statement is indented. For the position marking the beginning of od, the
counter is decremented, so that it appears at the level of while in a new line (n), in boldface
red font (r!). The last position reverts the original color and style, although notice that the
indentation counter remains the same, so that successive statements will be given the same
level of indentation. In the case of let_:=_, the three last positions contain only d (default
spacing), since it is to be presented as a single-line statement in which let is shown in boldface
red.

We can illustrate the difference between using the format attribute and not using it with
the following commands (as before, you should execute the example in your terminal to see the
colors).

Maude> set print format off .

Maude> parse

while a <= d do

let a := a + b ;

while b <= d do

let b := b + c ;

let c := c + 1

od

od

.

Statement: while a <= d do let a := a + b ; while b <= d do let b :=

b + c ; let c := c + 1 od od

Maude> set print format on .

62 CHAPTER 4. FUNCTIONAL MODULES

Maude> parse

while a <= d do

let a := a + b ;

while b <= d do

let b := b + c ;

let c := c + 1

od

od

.

Statement:

while a <= d do

let a := a + b ;

while b <= d do

let b := b + c ;

let c := c + 1

od

od

For more examples of format attributes, you can see the operator declarations in the module
LTL (in the file model-checker.maude) discussed in Chapter 12, or in the modules META-TERM
and META-MODULE (in the file prelude.maude), described in Chapter 17.

4.4.6 Ditto

An operator can have several subsort-overloaded instances. Maude requires that all these
instances should have the same attributes, except for the case of the ctor attribute, that may
be present in some instances but absent in others (see Section 4.4.3), and/or the metadata

attribute (see Section 4.5.2). It is for example forbidden to have a subsort-overloaded instance
in which an operator is declared assoc only, and another such instance in which it is declared
assoc and comm.

The ditto attribute can be given to an operator for which another subsort-overloaded
instance has already appeared, either in the same module or in a submodule. The ditto attribute
is just a shorthand stating that this operator, being subsort overloaded, should have the same
attributes as those appearing explicitly in a previous subsort-overloaded version, except for the
ctor and metadata attributes, which are outside the scope of ditto. In this way we can avoid
writing out a possibly long attribute list again and again.

It is not allowed to combine ditto with other attributes, except for ctor and metadata.
That is, an operator given the ditto attribute either has no other explicitly given attributes,
or can only have in addition either the ctor attribute if it is a constructor, or a metadata

attribute, or both the ctor and metadata attributes. Furthermore, it is forbidden to use ditto
on the first declared instance of an operator, since this is nonsensical.

In our numbers module we can add equational attributes to the declarations of _+_ and
*, and then use ditto to declare the same attributes in other subsort-overloaded versions.

ops _+_ _*_ : Nat Nat -> Nat [assoc comm].

op _+_ : NzNat Nat -> NzNat [ditto] .

op _*_ : NzNat NzNat -> NzNat [ditto] .

For an example making extensive use of the ditto attribute see the LTL-SIMPLIFIER module
(in the file model-checker.maude), discussed in Chapter 12.

4.4. OPERATOR ATTRIBUTES 63

4.4.7 Operator evaluation strategies

If a collection of equations is Church-Rosser and terminating, given an expression, no matter
how the equations are used from left to right as simplification rules, we will always reach the
same final result. However, even though the final result may be the same, some orders of
evaluation can be considerably more efficient than others. More generally, we may be able to
achieve the termination property provided we follow a certain order of evaluation, but may lose
termination when any evaluation order is allowed. It may therefore be useful to have some way
of controlling the way in which equations are applied by means of strategies.

In general, given an expression f(t1, . . . , tn) we can try to evaluate it to its reduced form in
different ways, such as:

• first obtaining the reduced form of all the ti and then applying equations for f at the top
of the term; this is called a bottom-up, or eager strategy;

• evaluating only some of the arguments, and then trying to evaluate at the top with
equations for f ; for example, an if_then_else_fi operator will typically be evaluated
by evaluating first the first argument, and then the if_then_else_fi operator at the
top;

• trying to evaluate the top of the term first, and then, if this fails, either not evaluating
the subterms at all, or trying to evaluate only some of them, that is, some kind of lazy
evaluation strategy.

Typically, a functional language is either eager, or lazy with some strictness analysis added
for efficiency, and the user has to live with whatever the language provides. Maude adopts
OBJ3’s [79] flexible method of user-specified evaluation strategies on an operator-by-operator
basis, adding some improvements to the OBJ3 approach to ensure a correct implementation [58].

For an n-ary operator f an evaluation strategy is specified as a list of numbers from 0 to n
ending with 0. The nonzero numbers denote argument positions, and a 0 indicates evaluation
at the top of the given function symbol. The strategy then specifies what argument positions
must be simplified (in the order indicated by the list) before attempting simplification at the top
with the equations for the top function symbol. In functional programming terminology, the
argument positions to be evaluated are usually called strict argument positions, so we can view
an evaluation strategy as a flexible, user-definable way of specifying strictness requirements
on argument positions. In the simplest case, a strategy consists of a list of nonzero numbers
followed by a 0, so that some arguments are treated strictly and then the function symbol’s
equations are applied. For example, in Maude, if no strategy is specified, all argument positions
are assumed strict, so that for f with n argument positions its default strategy is (1 2 ... n 0);
this is the “eager evaluation” case. The opposite extreme is a form of lazy evaluation such as
the lazy append operator in the SIEVE example below. This operator has strategy (0), thus
only equations at the top are tried during evaluation.

The syntax to declare an n-ary operator with strategy (i1 . . . ik 0), where ij ∈ {0, . . . , n}
for j = 1, . . . , k, is

op 〈OpName〉 : 〈Sort-1 〉 ... 〈Sort-n〉 -> 〈Sort〉 [strat (i1 ... ik 0)] .

As a simple example consider the operators _and-then_ and _or-else_ in the module
EXT-BOOL, that can be found in the file prelude.maude (see Section 7.1).

fmod EXT-BOOL is

protecting BOOL .

op _and-then_ : Bool Bool -> Bool

64 CHAPTER 4. FUNCTIONAL MODULES

[strat (1 0) gather (e E) prec 55] .

op _or-else_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 59] .

var B : [Bool] .

eq true and-then B = B .

eq false and-then B = false .

eq true or-else B = true .

eq false or-else B = B .

endfm

These operators are computationally more efficient versions of Boolean conjunction and
disjunction that avoid evaluating the second of the two Boolean subterms in their arguments
when the result of evaluating the first subterm provides enough information to compute the
conjunction or the disjunction. For example, letting B:[Bool] stand for an arbitrary Boolean
expression

Maude> red false and-then B:[Bool] .

result Bool: false

while if B:[Bool] does not evaluate to true or false, then false and B:[Bool] does not
evaluate to false, and if evaluation of B:[Bool] does not terminate then neither will evaluation
of false and B:[Bool].

If some of the argument positions are never mentioned in some of the operator strategies,
the notion of canonical form becomes now relative to the given strategies and may not coincide
with the standard notion. Let us consider as a simple example the following two functional
modules, which we have displayed side-by-side to emphasize their only difference, namely, the
evaluation strategy associated to the operator g.

fmod STRAT-EX1 is fmod STRAT-EX2 is

sort S . sort S .

ops a b : -> S . ops a b : -> S .

op g : S -> S . op g : S -> S [strat(0)] .

eq a = b . eq a = b .

endfm endfm

The canonical form of the term g(a) in STRAT-EX1 is g(b), but in STRAT-EX2 it is g(a)

itself, because the equation cannot be applied inside the term due to the lazy strategy strat(0)

of the operator g.
This may be just what we want, since we may be able to achieve termination to a canonical

form relative to some strategies in cases when the equations may be nonterminating in the
standard sense. More generally, operator strategies may allow us to compute with infinite data
structures which are evaluated on demand, such as the following formulation of the sieve of
Eratosthenes, which finds all prime numbers using lazy lists.

The infinite list of primes is obtained from the infinite list of all natural numbers greater
than 1 by filtering out all the multiples of numbers previously taken. Thus, first we take 2
and delete all even numbers greater than 2; then we take 3 and delete all the multiples of 3
greater than 3; and so on. The operation nats-from_ generates the infinite list of natural
numbers starting in the given argument; the operation filter_with_ is used to delete all the
multiples of the number given as second argument in the list provided as first argument; and
the operation sieve_ is used to iterate this process with successive numbers.

Of course, since we are working with infinite lists, we cannot obtain as a result an infinite
list. Such an infinite structure is only shown partially by means of the operation show_upto_,
which shows only a finite prefix of the whole infinite list. Moreover, the generation and filtering
processes have to be done in a lazy way. This is accomplished by giving to the list constructor

4.4. OPERATOR ATTRIBUTES 65

. a lazy strategy strat(0) that avoids evaluating inside the term, and using an operation
force with an eager strategy strat(1 2 0) to “force” the evaluation of elements inside the
list. Specifically, in order to apply the first equation, we must evaluate the arguments L and S

before reconstructing the list L . S in the righthand side.
NAT denotes the predefined module of natural numbers and arithmetic operations on them

(see Section 7.2), which is imported by means of a protecting declaration, explained in Sec-
tion 6.1.1. Note the use of the symmetric difference operator sd (see Section 7.2) to decrement
I in the third equation, and the successor operator s_ to increment I in the sixth equation.

fmod SIEVE is

protecting NAT .

sort NatList .

subsort Nat < NatList .

op nil : -> NatList .

op _._ : NatList NatList -> NatList [assoc id: nil strat (0)] .

op force : NatList NatList -> NatList [strat (1 2 0)] .

op show_upto_ : NatList Nat -> NatList .

op filter_with_ : NatList Nat -> NatList .

op nats-from_ : Nat -> NatList .

op sieve_ : NatList -> NatList .

op primes : -> NatList .

vars P I E : Nat .

vars S L : NatList .

eq force(L, S) = L . S .

eq show nil upto I = nil .

eq show E . S upto I

= if I == 0

then nil

else force(E, show S upto sd(I, 1))

fi .

eq filter nil with P = nil .

eq filter I . S with P

= if (I rem P) == 0

then filter S with P

else I . filter S with P

fi .

eq nats-from I = I . nats-from (s I) .

eq sieve nil = nil .

eq sieve (I . S) = I . sieve (filter S with I) .

eq primes = sieve nats-from 2 .

endfm

We can then evaluate expressions in this module with the reduce command (see Sections 4.9
and 23.2). For example, to compute the list of the first ten prime numbers we evaluate the
expression:

Maude> reduce show primes upto 10 .

result NatList: 2 . 3 . 5 . 7 . 11 . 13 . 17 . 19 . 23 . 29

In the case of associative or commutative binary operators, evaluation strategies might
reduce some arguments that the user does not expect to be reduced. The reason is that in such
cases terms represent equivalence classes and it might be quite hard to say what is the first or
the second argument. The adopted solution is that mentioning either argument implies both.

66 CHAPTER 4. FUNCTIONAL MODULES

The paper [58] documents the operational semantics and the implementation techniques for
Maude’s operator evaluation strategies in much more detail. The mathematical semantics of
a Maude functional module having operator evaluation strategies is documented in [81] and is
further discussed in Section 4.7.

Of course, operator evaluation strategies, while quite useful, are by design restricted in their
scope of applicability to functional modules.9 As we shall see in Chapter 5, system modules,
specifying rewrite theories that are not functional, need not be Church-Rosser or terminating,
and require much more general notions of strategy. Such general strategies are provided by
Maude using reflection by means of internal strategy languages, in which strategies are defined
by rewrite rules at the metalevel (see Section 17.7). However, as discussed in Section 4.4.9,
specifying frozen arguments in operators restricts the rewrites allowed with rules in a system
module (as opposed to equations) in a way quite similar to how operator evaluation strategies
restrict the application of equations in a functional module.

4.4.8 Memo

If an operator is given the memo attribute, this instructs Maude to memoize the results of
equational simplification (that is, the canonical forms) for those subterms having that operator
at the top. This means that when the canonical form of a subterm having that operator at
the top is obtained, an entry associating to that subterm its canonical form is stored in the
memoization table for this operator. Whenever the Maude interpreter encounters a subterm
whose top operator has the memo attribute, it looks to see if its canonical form is already
stored. If so, that result is used; otherwise, equational simplification proceeds according to
the operator’s strategy. Giving to some operators the memo attribute allows trading off space
for time in equational simplifications: more space is needed, but if subcomputations involving
memoized operators have to be repeated many times, then a computation may be substantially
sped up, provided that the machine’s main memory limits are not exceeded.

An operator’s memo attribute and its user’s specified or default evaluation strategy (see
Section 4.4.7) may interact with each other, impacting the size of the memoization table. The
issue is how many entries for different subterms, all having the same canonical form, may be
possibly stored in the memoization table. If the operator has the default, bottom-up strategy,
the answer is: only one such entry is possible. For other strategies, different terms having the
same canonical form may be stored, making the memoization table bigger. For example, using
the default strategy (1 2 0) for a memoized operator f, only subterms of the form f(v, v’)

with v and v’ fully reduced to canonical form (up to the strategies given for all operators) will
be mapped to their corresponding canonical forms. This is because, with the default strategy,
equational simplification at the top of f can only happen after all its arguments are in canonical
form. For other operator strategies this uniqueness may be lost, even when evaluating just one
subterm involving f. For example, if f’s strategy is (0 1 2 0), then both the starting term
f(t, t’) and the term f(v, v’) (where v and v’ are, respectively, the canonical forms of
t and t’) will be mapped to the final result, since the strategy specifies rewriting at the top
twice. That is, each time the operator’s strategy calls for rewriting at the top, Maude will
add the current version of the term to the set of terms that will be mapped to the final result.
Furthermore, other terms of the form f(u, u’), with u and u’ having also v and v’ as their
canonical forms may appear in other subcomputations, and will then also be stored in the
memoization table.

In general, whenever an application will perform an operation many times, it may be useful

9More precisely, the scope of applicability of operator evaluation strategies is restricted to functional modules
and to the equational part of system modules.

4.4. OPERATOR ATTRIBUTES 67

to give that operator the memo attribute. This may be due to the high frequency with which the
operator is called by other operators in a given application, or to the highly recursive nature
of the equations defining that operator. For example, the recursive definition of the Fibonacci
function is given as follows, where NAT denotes the predefined module of natural numbers and
arithmetic operations on them (as described in Section 7.2), which is imported by means of a
protecting declaration (see Section 6.1.1).

fmod FIBONACCI is

protecting NAT .

op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Due to the highly recursive nature of this definition of fibo, the evaluation of an expression
like fibo(50) will compute many calls to the same instances of the function again and again,
and will expand the original term into a whole binary tree of additions before collapsing it to a
number. The exponential number of repeated function calls makes the evaluation of fibo with
the above equations very inefficient, requiring over 61 billion rewrite steps for fibo(50):

Maude> red fibo(50) .

reduce in FIBONACCI : fibo(50) .

rewrites: 61095033220 in 132081000ms cpu (145961720ms real)

(462557 rews/sec)

result NzNat: 12586269025

If we instead give the Fibonacci function the memo attribute,

op fibo : Nat -> Nat [memo] .

the change in performance is quite dramatic:

Maude> red fibo(50) .

reduce in FIBONACCI : fibo(50) .

rewrites: 148 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: 12586269025

Maude> red fibo(100) .

reduce in FIBONACCI : fibo(100) .

rewrites: 151 in 0ms cpu (1ms real) (~ rews/sec)

result NzNat: 354224848179261915075

Maude> red fibo(1000) .

reduce in FIBONACCI : fibo(1000) .

rewrites: 2701 in 0ms cpu (11ms real) (~ rews/sec)

result NzNat: 434665576869374564356885276750406258025646605173717804

024817290895365554179490518904038798400792551692959225930803226347

752096896232398733224711616429964409065331879382989696499285160037

04476137795166849228875

In some cases we may introduce a constant operator as an abbreviation for a possibly
complex expression that may require a substantial number of equational simplification steps to
be reduced to canonical form; furthermore, the operator may be used repeatedly in different

68 CHAPTER 4. FUNCTIONAL MODULES

subcomputations. In such cases one can declare a constant operator, give it the memo attribute,
and give an equation defining it to be equal to the expression of interest. For example, suppose
we have defined a search space with initial state myState and a function findAnswer to search
the space for a state satisfying some property. Then we can name the search result and use it
again without redoing an expensive computation as follows:

op myAns : -> Answer [memo] .

eq myAns = findAnswer(myState) .

Maude will then remember the result of rewriting the constant in the memoization table for that
operator and will not repeat the work until the memoization tables are cleared. Memoization
tables for the current module can be cleared explicitly by the command

do clear memo .

Automatic clearing before each top level rewriting command can be turned on and off with

set clear memo on .

set clear memo off .

By default, set clear memo is off.

4.4.9 Frozen arguments

The frozen attribute is only meaningful for system modules (see Chapter 5) that may have
both rules and equations. It has no direct effect for functional modules having only equations
and memberships: it can only have an indirect effect if the functional module is later imported
by a system module. For this reason, examples of the use of frozen operators are postponed to
Chapter 5.

Given a system module M, by declaring a given operator, say f, as frozen, rewriting with
rules is always forbidden in all proper subterms of a term having f as its top operator. However,
it may still be possible to rewrite that term at the top, provided rules having f as the top symbol
of their lefthand side exist in M. To specify that all the arguments of an operator are frozen,
one includes the attribute frozen in the operator’s list of attributes; for example,

op f : S1 ... Sn -> S [frozen] .

The freezing idea can be generalized, so that only specific argument positions of the operator
f are frozen. For example, in a system module specifying the semantics of a programming
language with rewrite rules, we may want to specify a sequential composition operator _;_ as
frozen in its second argument, but not in the first argument, so as to prevent any execution of
the second program fragment of the composition from happening before the first fragment has
been fully evaluated. We can specify this by stating

op _;_ : Program Program -> Program [frozen (2)] .

More generally, if the list of argument positions in an operator f is 1 . . . n, then we can
freeze any sublist of argument positions, say i1 . . . im, by declaring,

op f : S1 ... Sn -> S [frozen (i1 ... im)] .

Of course, if the actual list of specified positions is 1 . . . n itself, then this is equivalent to
the first mode of declaring the frozen attribute for f without listing any positions.

As for operator evaluation strategies (see Section 4.4.7), in the case of associative or com-
mutative binary operators mentioning either argument in the list of frozen positions implies
both.

4.5. STATEMENT ATTRIBUTES 69

4.4.10 Special

Many operators in predefined modules (see Chapters 7 and 17) have the special attribute
in their declarations. This means that they are to be treated as built-in operators, so that,
instead of having the standard treatment of any user-defined operator, they are associated
with appropriate C++ code by “hooks” which are specified following the special attribute
identifier.

For example, the file prelude.maude contains a predefined module NAT for natural numbers
and usual operations on them (see Section 7.2). Among others, the declarations in the NAT

module for the operations of addition and of quotient of integer division, and for a less than
predicate are the following:

op _+_ : NzNat Nat -> NzNat

[assoc comm prec 33

special (id-hook ACU_NumberOpSymbol (+)

op-hook succSymbol (s_ : Nat ~> NzNat))] .

op _+_ : Nat Nat -> Nat [ditto] .

op _quo_ : Nat NzNat -> Nat

[prec 31 gather (E e)

special (id-hook NumberOpSymbol (quo)

op-hook succSymbol (s_ : Nat ~> NzNat))] .

op _<_ : Nat Nat -> Bool

[prec 37

special (id-hook NumberOpSymbol (<)

op-hook succSymbol (s_ : Nat ~> NzNat)

term-hook trueTerm (true)

term-hook falseTerm (false))] .

Notice that the special attribute exists in order to bind Maude syntax to built-in C++
functionality. It is absolutely not for users to mess with and it is absolutely not backwards
compatible; this is why Maude will sometimes crash or become unstable if the prelude from a
different version is loaded. For the same reason, other operator attributes that appear together
with special in an operator declaration cannot be modified either.

4.5 Statement attributes

In a functional module, statements are equations and membership axioms, conditional or not.
Any such statement may have associated attributes. Currently five attributes are available:
label, metadata, nonexec, owise, and print. The attributes label, metadata, nonexec, and
print can also be used on rules in system modules. Moreover, the attribute metadata can also
be associated to operator declarations.

4.5.1 Labels

The label attribute must be followed by an identifier. Statement labels can be used for tracing
and debugging and at the metalevel to name particular axioms. In our numbers example we
could label the axiom for idempotency for natural number sets

eq N ; N = N [label natset-idem] .

Syntactic sugar for labels generalizing the Maude 1 style for rule labels is also supported.
Then the above label could have also been written

70 CHAPTER 4. FUNCTIONAL MODULES

eq [natset-idem] : N ; N = N .

4.5.2 Metadata

The metadata attribute must be followed by a string (that is, by a data element in the STRING

module, see Section 7.8). The metadata attribute is intended to hold data about the statement
in whatever syntax the user cares to create/parse. It is like a comment that is carried around
with the statement. Usual string escape conventions apply. For example, we could add the
distributive law

eq (N + M) * I = (N * I) + (M * I) [metadata "distributive law"] .

with the comment documenting that this is the distributive law.
The metadata attribute can also be associated to operator declarations. Note that, like

ctor, metadata is attached to a specific operator declaration and not to the (possibly over-
loaded) operator itself. Thus:

• two subsorted overloaded declarations may have different metadata attributes,

• a metadata attribute is not copied by the ditto attribute (see Section 4.4.6), and

• a declaration may have a metadata attribute as well as a ditto attribute.

Under these conditions, the following ad-hoc example is therefore legal:

fmod METADATA-EX is

sorts Foo Bar .

subsort Foo < Bar .

op f : Foo -> Foo [memo metadata "f on Foos"] .

op f : Bar -> Bar [ditto metadata "f on Bars"] .

endfm

4.5.3 Nonexec

The nonexec attribute allows the user to include statements in a module that are ignored by
the Maude rewrite engine. For example we could make the distributive law nonexecutable as
follows.

eq (N + M) * I = (N * I) + (M * I)

[nonexec metadata "distributive law"] .

Similarly, a rule can be declared with the nonexec attribute in a system module.
Although nonexecutable from the point of view of Core Maude, such statements are part

of the semantics of the module and can for example be used at the metalevel for controlled
execution or theorem proving purposes.

4.5.4 Otherwise

Sometimes, in the definition of an operation by equations, there are certain cases that can be
easily defined by equations, and then some remaining case or cases that it is more difficult
or cumbersome to define. One would in such situations like to say, otherwise, that is, in all
remaining cases not covered by the above equations, do so and so.10

Consider, for example, the problem of membership of a natural number in a finite set of
numbers.

10Indeed, several languages have conventions of this kind, including ASF+SDF [42].

4.5. STATEMENT ATTRIBUTES 71

op _in_ : Nat NatSet -> Bool .

The easy part is to define when a number belongs to a set:

var N : Nat .

var NS : NatSet .

eq N in N ; NS = true .

It is somewhat more involved to define when it does not belong. A simple way is to use the
otherwise (abbreviated owise) attribute and give the additional equation:

eq N in NS = false [owise] .

The intuitive operational meaning is clear: if the first equation does not match, then the
number in fact is not in the set, and the predicate should be false. But what is the mathematical
meaning? That is, how can we interpret the meaning of the second equation so that it becomes
a useful shorthand for an ordinary equation? After all, the second equation, as given, is even
more general than the first and in direct contradiction with it. We of course should reject any
constructs that violate the logical semantics of the language.

Fortunately, there is nothing to worry about, since the owise attribute is indeed a shorthand
for a corresponding conditional equation. We first explain the idea in the context of this example
and then discuss the general construction. The idea is that, whether an equation, or a set of
equations, defining the meaning of an operation f match a given term, is itself a property defined
by a predicate, say enabledf , which is effectively definable by equations. In our example we
can introduce a predicate enabled-in, telling us when the first equation applies, by just giving
its lefthand side arguments as the predicate’s arguments:

op enabled-in : [Nat] [NatSet] -> [Bool] .

eq enabled-in(N, N ; NS) = true .

Note that we do not have to define when the enabled-in predicate is false. That is,
this predicate is really defined on the kind [Bool]. Our second owise equation is simply a
convenient shorthand for the conditional equation

ceq N in NS = false if enabled-in(N, NS) =/= true .

This is just a special case of a completely general theory transformation that translates
a specification containing equations with the owise attribute into a semantically equivalent
specification with no such attributes at all. A somewhat subtle aspect of this transformation11

is the interaction between owise equations and the operator evaluation strategies discussed
in Section 4.4.7. Suppose that an owise equation was used in defining the semantics of an
operator f . If f was (implicitly or explicitly) declared with a strategy, say,

f : s1 . . . sn → s [strat (i1 . . . ik0)] .

then, the enabledf predicate should be defined with the same strategy,

enabledf : [s1] . . . [sn]→ [Bool] [strat (i1 . . . ik0)] .

This will make sure that the reduction of f ’s arguments prior to applying equations for f—
including the equations that will be introduced in our transformation to replace the owise

equations—takes place in exactly the same way for f and for enabledf , so that failure of
matching the normal equations is correctly captured by the failure of the enabledf predicate.
Furthermore, as we shall see, after the failure of matching the non-owise equations, the match-
ing substitution obtained when we apply the desugared version of an owise equation will then

11We thank Joseph Hendrix for pointing out this subtlety.

72 CHAPTER 4. FUNCTIONAL MODULES

properly take into account the evaluation of those arguments of f specified by f ’s evaluation
strategy.

In general, if we are defining the equational semantics of an operation f : s1 . . . sn → s and
we have given a partial definition of that operation by (possibly conditional) equations

f(u1
1, . . . , u

1
n) = t1 if C1

. . .

f(um1 , . . . , u
m
n) = tm if Cm

then we can give one or more owise equations defining the function in the remaining cases by
means of equations of the form

f(v1
1 , . . . , v

1
n) = t′1 if C ′1 [owise]

. . .

f(vk1 , . . . , v
k
n) = t′k if C ′k [owise]

We can view such owise equations as shorthand notation for corresponding ordinary conditional
equations of the form

f(y1, . . . , yn) = t′1 if enabledf (y1, . . . , yn) 6= true

∧ enabledf (v1
1 , . . . , v

1
n) := enabledf (y1, . . . , yn)

∧ C ′1
. . .

f(y1, . . . , yn) = t′k if enabledf (y1, . . . , yn) 6= true

∧ enabledf (vk1 , . . . , v
k
n) := enabledf (y1, . . . , yn)

∧ C ′k

where the variables y1, . . . , yn are fresh new variables not appearing in any of the above owise

equations, and with yi of kind [si], 1 ≤ i ≤ n. All this assumes that in the transformed
specification we have declared the predicate enabledf : [s1] . . . [sn] → [Bool], with the same
evaluation strategy as f . Note the somewhat subtle use of the matching equations (see Sec-
tion 4.3) enabledf (vj1, . . . , v

j
n) := enabledf (y1, . . . , yn), 1 ≤ j ≤ k, in the conditions. Since

f and enabledf have the same strategy, after the arguments of the matching instance of the
expression enabledf (y1, . . . , yn) become evaluated according to the strategy, we are then able to

match enabledf (vj1, . . . , v
j
n) to that result, obtaining the desired substitution for the variables

of the lefthand side of the jth owise equation. That is, we obtain the same substitution as the
one we would have obtained matching f(vj1, . . . , v

j
n) to the same subject term after its subterms

under f had been evaluated according to f ’s strategy.
Of course, the semantics of the enabledf predicate is defined in the expected way by the

equations

enabledf (u1
1, . . . , u

1
n) = true if C1 .

. . .

enabledf (um1 , . . . , u
m
n) = true if Cm .

The possibility of using multiple owise equations allows us to simplify definitions of func-
tions defined by cases on data with nested structure. Here is a simple, if silly, example in which
the sort R has elements a(n) and b(n), for natural numbers n, and the sort S has elements

4.5. STATEMENT ATTRIBUTES 73

g(r) and h(r), with r of sort R. The operation f treats constructors g and h differently, distin-
guishing only whether the subterm of sort R is constructed by a or not. Again, the predefined
module NAT of natural numbers (Section 7.2) is imported by means of a protecting declaration
(Section 6.1.1).

fmod OWISE-TEST1 is

protecting NAT .

sorts R S .

op f : S Nat -> Nat .

ops g h : R -> S .

ops a b : Nat -> R .

var r : R .

vars m n : Nat .

eq f(g(a(m)), n) = n .

eq f(h(a(m)), n) = n + 1 .

eq f(g(r), n) = 0 [owise] .

eq f(h(r), n) = 1 [owise] .

endfm

The four cases are illustrated by the following reductions.

Maude> red f(g(a(0)), 3) .

result NzNat: 3

Maude> red f(g(b(0)), 3) .

result Zero: 0

Maude> red f(h(b(0)), 3) .

result NzNat: 1

Maude> red f(h(a(0)), 3) .

result NzNat: 4

The subtle interaction between owise equations and operator evaluation strategies can be
illustrated by the following example:

fmod OWISE-TEST2 is

sort Foo .

ops a b c d : -> Foo .

op f : Foo -> Foo [strat (0 1 0)] .

op g : Foo -> Foo [strat (0)] .

var X : Foo .

eq b = c .

eq f(a) = d .

eq f(X) = g(X) [owise] .

endfm

Now consider the term f(b). Intuitively, one could expect that, given that the first equation
for f cannot be applied to this term, the owise equation is applied obtaining the term g(b),
and this is then expected to be the final result of the reduction, because the strategy (0) for g
forbids evaluating its argument. However, as we can see in the following reduction, this is not
the case.

74 CHAPTER 4. FUNCTIONAL MODULES

Maude> red f(b) .

result Foo: g(c)

The result is g(c), because the owise equation is not considered until after evaluating the
final 0 in the strategy for f, and by then f(b) is simplified to f(c) as instructed by the 1 in
such strategy; then, the owise equation applied to f(c) produces g(c).

It can be interesting to consider the semantically equivalent transformed specification:

fmod OWISE-TEST2-TRANSFORMED is

sort Foo .

ops a b c d : -> Foo .

op f : Foo -> Foo [strat (0 1 0)] .

op enabled-f : Foo -> Bool [strat (0 1 0)] .

op g : Foo -> Foo [strat (0)] .

vars X Y : Foo .

eq b = c .

eq f(a) = d .

eq enabled-f(a) = true .

ceq f(Y) = g(X)

if enabled-f(Y) =/= true /\ enabled-f(X) := enabled-f(Y) .

endfm

Maude> red f(b) .

result Foo: g(c)

where, as pointed out in our comments on the general transformation, the fact that enabled-f
has the same strategy as f and the use of the matching equation

enabled-f(X) := enabled-f(Y)

are crucial for obtaining a semantically equivalent specification.

4.5.5 Print

The print attribute allows the user to specify information to be printed when a statement
(equation, membership axiom, or rule) is executed. A print attribute declaration looks like

eq f(X) = b [print "X = " X] .

The keyword print is followed by a possibly empty list of items where each item is either
a string constant or a variable. Mentioned variables must actually occur in the statement. If
a non-occurring variable appears as a print item, it will be pruned and Maude will issue a
warning.

Here is an example that uses the print attribute to track calls to a recursive function that
reverses a list.

fmod PRINT-ATTRIBUTE-EX is

sorts Foo FooList .

ops a b : -> Foo [ctor] .

subsort Foo < FooList .

op nil : -> FooList [ctor] .

op __ : FooList FooList -> FooList [ctor assoc id: nil] .

op reverse : FooList -> FooList .

eq reverse(nil) = nil .

4.6. ADMISSIBLE FUNCTIONAL MODULES 75

eq reverse(foo:Foo fl:FooList) = reverse(fl:FooList) foo:Foo

[print "first = " foo:Foo ", rest = " fl:FooList] .

endfm

Maude will only use the print attribute in print attribute mode, which is off by default.
Thus to run the above example (after loading it into Maude) it is necessary to execute the
following command (see Section 23.9).

Maude> set print attribute on .

Then reducing the expression reverse(a b a b) results in the following output:

Maude> red in PRINT-ATTRIBUTE-EX : reverse(a b a b) .

reduce in PRINT-ATTRIBUTE-EX : reverse(a b a b) .

first = a, rest = b a b

first = b, rest = a b

first = a, rest = b

first = b, rest = nil

rewrites: 5 in 0ms cpu (0ms real) (18587 rewrites/second)

result FooList: b a b a

The print attribute is an alternative to tracing (see Section 20.1.1) to find out which
statements Maude is executing. It allows the user control of what information is printed. It is
also a nice way to show what is going on in demos.

4.6 Admissible functional modules

The nonexec attribute allows us to include arbitrary equations or memberships, conditional or
not, in a functional module and likewise in a functional theory (see Section 6.3.1). Any such
statement is then disregarded for purposes of execution by the Maude engine: it can only be
used in a controlled way at the metalevel. But what about all the other statements? That is,
what requirements should be imposed on executable equations and memberships so that they
can be given an operational interpretation and can be executed by the Maude engine?

The intuitive idea is that we want to use such equations as simplification rules from left
to right to reach a single final result or canonical form. For this purpose, the executable
equations and memberships (that is, all statements not having the nonexec attribute) should
be Church-Rosser and terminating (modulo the equational attributes declared in the module)
in the sense explained in Section 4.7 below. This guarantees that, given a term t, all chains of
equational simplification using those equations and memberships end in a unique canonical form
(again, modulo the equational attributes). Furthermore, under the preregularity assumption
(see Section 3.8), such a canonical form has the smallest sort possible in the subsort ordering.

The traditional requirement in this context is that, given a conditional equation12 t =
t′ if C1 ∧ . . . ∧Cn, the set of variables appearing in t contains those appearing in both t′ and
in the conditions Ci. In Maude, this requirement is relaxed to support matching equations in
conditions (see Section 4.3) which can introduce new variables not present in t. Specifically, all
executable conditional equations in a Maude functional module M have to satisfy the following
admissibility requirements, ensuring that all the extra variables will become instantiated by
matching:

12For the purposes of this discussion we can regard unconditional equations as the special case of conditional
equations with empty condition, or with the condition true = true.

76 CHAPTER 4. FUNCTIONAL MODULES

1.

vars(t′) ⊆ vars(t) ∪
n⋃
j=1

vars(Cj).

2. If Ci is an equation ui = u′i or a membership ui : s, then

vars(Ci) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj).

3. If Ci is a matching equation ui := u′i, then ui is an M-pattern and

vars(u′i) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj).

In a similar way, all executable conditional memberships t : s if C1 ∧ . . .∧Cn must satisfy
conditions 2–3 above.

In summary, therefore, we expect all executable equations and memberships in a functional
module (and also in a system module) to be Church-Rosser and terminating (see Section 4.7
below, and [17, Section 10.1]) and to satisfy the above admissibility requirements.

4.7 Matching and equational simplification

Although this section and the next are quite technical, and it may be possible to skip them in
a first reading, they introduce the concepts of matching and equational simplification that are
essential to understand how Maude works. Therefore, we advise the reader to come back to
them as needed to gain a better understanding of those concepts.

Recall from Section 4.3 that a functional module defines an equational theory (Σ, E ∪ A)
in membership equational logic, with A the equations specified as equational attributes in
operators (see Section 4.4.1), and E the (possibly conditional) equations and memberships
specified as statements.

Ground terms in the signature Σ form a Σ-algebra denoted TΣ. Similarly, equivalence classes
of terms modulo E ∪A define the Σ-algebra denoted TΣ/E∪A, which is the initial model for the
theory (Σ, E ∪A) specified by the module [106].

Given a set X of variables, we can add them to the signature Σ as new constants, and get
in this way a term algebra TΣ(X) where now the terms may have variables in X.

Given a set X of variables, each having a given kind, a (ground) substitution is a kind-
preserving function σ : X −→ TΣ. Such substitutions may be used to represent assignments of
terms in TΣ to the variables in X, and also assignments of elements in TΣ/E∪A to such variables
by σ picking up a representative of the corresponding E ∪A-equivalence class. For example, a
very natural choice is to assign to each x in X a term σ(x) which is in canonical form according
to E ∪ A. Furthermore, under the preregularity, Church-Rosser, and termination assumptions
(more on this below) this canonical form will have a least sort. Therefore, we may allow each
variable x in X to have either a kind or a sort assigned to it, and can call the substitution σ well-
sorted relative to E∪A if the least sort of σ(x) is smaller or equal to that of x. By substituting
terms for variables (as indicated by σ) in the usual way, a substitution σ : X −→ TΣ is extended
to a homomorphic function on terms σ : TΣ(X) −→ TΣ that we denote with the same name.

4.7. MATCHING AND EQUATIONAL SIMPLIFICATION 77

t

∗
E ����

��
��
��

∗
E
��?

??
??

??
?

t1

∗
E
��

t2

∗
E ��
t′

Figure 4.1: Confluence diagram

Given a term t ∈ TΣ(X), corresponding to the lefthand side of an oriented equation, and a
subject ground term u ∈ TΣ, we say that t matches13 u if there is a substitution σ such that
σ(t) ≡ u, that is, σ(t) and u are syntactically equal terms.

For an oriented Σ-equation l = r to be used in equational simplification, it is required that
all variables in the righthand side r also appear among the variables of the lefthand side l.
In the case of a conditional equation l = r if cond, this requirement is relaxed, so that more
variables can appear in the condition cond, provided that they are introduced by matching
equations according to the admissibility requirements in Section 4.6; then the variables in the
righthand side r must be among those in the lefthand side l or in the condition cond. Under
this assumption, given a theory (Σ, E) a term t rewrites to a term t′ using such an equation if
there is a subterm t|p of t at a given position14 p of t such that l matches t|p via a well-sorted
substitution15 σ and t′ is obtained from t by replacing the subterm t|p ≡ σ(l) with the term
σ(r). In addition, if the equation has a condition cond, the substitution σ must make the
condition provably true according to the equations and memberships in E, which are assumed
to be Church-Rosser and terminating and are used also from left to right to try to simplify the
condition. Note that, in general, the variables instantiated by σ must contain both those in the
lefthand side, and those in the condition (which are incrementally matched using the matching
equations).

We denote this step of equational simplification by t →E t′, where the possible equations
for rewriting are chosen in the set E. The reflexive and transitive closure of the relation →E is
denoted →∗E .

In many texts, equational simplification is also called (equational) rewriting but, since in
Maude we have two very different types of rewriting, rewriting with equations in functional
modules, and rewriting with rules in system modules, each with a completely different seman-
tics, to avoid confusion we favor the terminology of equational simplification for the process of
rewriting with equations.

A set of equations E is confluent when any two rewritings of a term can always be unified
by further rewriting: if t →∗E t1 and t →∗E t2, then there exists a term t′ such that t1 →∗E t′

and t2 →∗E t′. This is summarized in Figure 4.1.

A set of equations E is terminating when there is no infinite sequence of rewriting steps

t0 →E t1 →E t2 →E . . .

13Some authors would instead say that u matches t.
14We can represent a term t as a tree, and use strings of numbers to identify positions p in the tree, thus

identifying subterms t|p. For example, for t = f(g(a), h(b)), we have t|nil = t, t|1 = g(a), t|11 = a, t|2 = h(b),
and t|21 = b.

15Note that if a variable x has a sort s instead of a kind, well sortedness of σ means that σ(x) must provably
have sort s (or lower) according to the equations E.

78 CHAPTER 4. FUNCTIONAL MODULES

If E is both confluent and terminating, a term t can be reduced to a unique canonical form
t ↓E , that is, to a unique term that can no longer be rewritten. Therefore, in order to check
semantic equality of two terms t = t′ (that is, that they belong to the same equivalence class),
it is enough to check that their respective canonical forms are equal, t ↓E = t′ ↓E , but, since
canonical forms cannot be rewritten anymore, the last equality is just syntactic coincidence:
t↓E ≡ t′ ↓E .

In membership equational theories a third important property is sort decreasingness. In-
tuitively, this means that, assuming E is confluent and terminating, the canonical form t ↓E
of a term t by the equations E should have the least sort possible among the sorts of all the
terms equivalent to it by the equations E; and it should be possible to compute this least
sort from the canonical form itself, using only the operator declarations and the memberships.
By a Church-Rosser and terminating theory (Σ, E) we precisely mean one that is confluent,
terminating, and sort-decreasing. For a more detailed treatment of these properties, we refer
the reader to the paper [17].

Since Maude functional modules have an initial algebra semantics, we are primarily in-
terested in ground terms. Therefore, we can relax the above Church-Rosser and termination
requirements by requiring that they just hold for ground terms, without losing the desired coin-
cidence between the mathematical and operational semantics. In this way, we obtain notions of
ground Church-Rosser, terminating, confluent, etc. specifications. In practice, some perfectly
reasonable Maude functional modules are ground confluent, but fail to be confluent. This how-
ever is not a problem, since ground confluence (together with ground termination) is just what
is needed to ensure uniqueness of canonical forms. Indeed, under the ground Church-Rosser
and termination assumptions, it is easy to prove that we have the desired isomorphism

TΣ/E
∼= CanΣ/E

ensuring the coincidence between the mathematical semantics of (Σ, E) provided by the initial
algebra TΣ/E , and its operational semantics by equational simplification provided by the algebra
CanΣ/E of canonical forms.

Equational specifications (Σ, E) in Maude functional modules (and in the equational part of
system modules), are assumed to be ground Church-Rosser and terminating up to the context-
sensitive strategy specified by the evaluation strategies declared for the operators in Σ (see
Section 4.4.7). More precisely, we can view the information about operator evaluation strate-
gies as a function µ that assigns to each operator f ∈ Σ with n argument sorts a string of
numbers indicating the argument positions to be evaluated and ended with a 0 (that is, the in-
formation given in the operator’s strat attribute, or, if no such information is given, the string
1 . . . n 0). This then defines a more restricted rewrite relation →µ

E where we can only rewrite
in subterms in positions that can be evaluated according to µ. If the relation →µ

E is (ground)
confluent, we call the specification (ground) µ-confluent ; similarly, if→µ

E is (ground) terminat-
ing, we call it (ground) µ-terminating. We define the concepts of (ground) µ-sort-decreasing
and (ground) µ-Church-Rosser in the same way. When we talk about the specification be-
ing “ground Church-Rosser and terminating up to the context-sensitive strategy specified by
the evaluation strategies,” we exactly mean that it is ground µ-Church-Rosser and ground
µ-terminating. Of course, when no such strategies are declared, this specializes to the usual
notions of ground Church-Rosser and ground terminating. Under the ground µ-Church-Rosser
and ground µ-terminating assumptions, the µ-canonical forms define a canonical term algebra
CanµΣ/E (see [81]), which provides a perfect mathematical model for the module’s operational

semantics, since its elements are the values that the user gets when evaluating expressions in
such a module. The question then arises: how is this model related to the module’s mathe-
matical semantics? In general, the quotient map t 7→ [t]E sending each µ-canonical form to its

4.8. MORE ON MATCHING AND SIMPLIFICATION MODULO 79

E-equivalence class is a surjective homomorphism

q : CanµΣ/E −→ TΣ/E ,

but not necessarily an isomorphism. If q fails to be an isomorphism, this means that µ-rewriting
is a sound deductive method for proving E-equalities, but it is incomplete. Therefore we call the
specification µ-semantically complete iff q is an isomorphism. µ-semantic completeness there-
fore expresses the complete agreement between the mathematical and operational semantics of
the module. Specifications where evaluation strategies are used mainly for efficiency and/or
termination purposes, that is, those where the execution becomes more efficient by avoiding
wasteful computation in unnecessary parts of the term and/or that would not terminate with-
out the strategy restrictions are typically µ-semantically complete. Instead, specifications such
as the sieve of Eratosthenes in Section 4.4.7, where the main intent is to compute with infinite
data structures in a lazy way, are typically µ-semantically incomplete. Not all is lost in this
second case: we still have a good mathematical model associated to our specification, namely,
CanµΣ/E , but this is a more concrete model than TΣ/E , that is, one in which fewer elements are

identified.
What are the appropriate notions when we have a theory of the form (Σ, E ∪ A)? Then

matching must be defined modulo the equational axioms A, and all the above concepts, in-
cluding those for µ-rewriting, must be generalized to equational simplification, confluence, and
termination modulo A. We discuss this in more detail in Section 4.8 below. See also [81] for a
detailed treatment of µ-rewriting and µ-semantic completeness modulo axioms A.

As already mentioned, the operational semantics of functional modules is equational sim-
plification, that is, equational rewriting of terms until a canonical form is obtained in the sense
explained above. Notice that the system does not check the ground confluence and termination
properties: they are left to the user’s responsibility. However, in some cases it is possible to check
these properties with Maude’s Church-Rosser checker and termination tools [30, 54, 47, 46].
Similar checkings are also possible for functional modules with evaluation strategies; for exam-
ple, the Maude’s MTT termination tool can check µ-termination (also called context-sensitive
termination [94]). Moreover, although the relations between the standard Church-Rosser prop-
erty and the µ-Church-Rosser property are somewhat subtle [93, 95], the work in [81] shows how
one can use standard tools in conjunction with Maude’s Sufficient Completeness Checker [83]
to check both the µ-Church-Rosser property and µ-semantic completeness. See Section 11.4
for some examples of the use of these formal tools.

4.8 More on matching and simplification modulo

In the Maude implementation, rewriting modulo A is accomplished by using a matching modulo
A algorithm. More precisely, given an equational theory A, a term t (corresponding to the
lefthand side of an equation) and a subject term u, we say that t matches u modulo A (or
that t A-matches u) if there is a substitution σ such that σ(t) =A u, that is, σ(t) and u are
equal modulo the equational theory A (compare with the syntactic definition of matching in
Section 4.7 above).

Given an equational theory A = ∪iAfi corresponding to all the attributes declared in
different binary operators, Maude synthesizes a combined matching algorithm for the theory
A, and does both equational simplification (with equations) and rewriting (with rules in system
modules, see Chapter 5) modulo the axioms A.

Note, however, that for operators f whose equational axioms A include the associativity
axiom, to achieve the effect of simplification modulo A using an A-matching algorithm, we

80 CHAPTER 4. FUNCTIONAL MODULES

have to attempt matching a lefthand side of the form f(t1, t2) not only on a subject term u,
but also on all its f -subterms, that is, on those “fragments” of the top structure of the term
that could be matched by f(t1, t2). For example, assuming a binary associative operator f

and constants a, b, c, and d of the appropriate sort, the term t = f(a,b) does not match the
term u = f(a, f(b, f(c, d))), that is, there is no substitution making both terms equal
modulo associativity; however, because of associativity of f, u is equivalent to f(f(a, b),

f(c, d)) and then t trivially matches the first subterm. This becomes easier to see using
mixfix notation; if f =_._, then t = a . b and u = a . b . c . d, and we clearly see that t
matches a fragment of u. For the case where the only axiom is associativity, the _._-subterms
of a . b . c . d are

a . b

a . b . c

b . c

b . c . d

c . d

If the operation _._ had been declared both associative and commutative, then we should add
to those the additional subterms

a . c

a . d

b . d

a . b . d

a . c . d

If the term f(t1, t2) matches either u or an f -subterm of u modulo A, then we say that
f(t1, t2) matches u with extension modulo A (or that f(t1, t2) A-matches u with extension).
For example, the lefthand side of the equation a . b = e matches a . b . c . d with exten-
sion modulo associativity, and the lefthand side of a . d = g matches a . b . c . d with
extension modulo associativity and commutativity.

For f a binary operator with equational attributes Af including the associativity axiom, we
now define how a subject term u is Af -rewritten with extension using an equation f(t1, t2) = v.
First of all, f(t1, t2) must Af -match with extension a maximal f -subterm w of u (that is, an
f -subterm of u that is not itself an f -subterm of a bigger f -subterm). This means that there
is an f -subterm w0 of w and a substitution σ such that σ(f(t1, t2)) =Af

w0. Then, the
corresponding Af -rewriting with extension step rewrites u to the term obtained by replacing
the subterm w0 by σ(v).

Note that a term f(t1, t2) Af -matches with extension a maximal f -subterm if and only if it
Af -matches without extension some f -subterm. This is of course the important practical ad-
vantage of A-matching and A-rewriting with extension, namely, that only maximal f -subterms
of a term have to be inspected to get the effect of rewriting equivalence classes modulo A. For
more technical details on rewriting modulo a set of axioms, see, e.g., [40].

Matching with extension for an associative operator essentially corresponds to matching
without extension for a collection of associated equations. For example, we could have “gener-
alized” the equation a . b = e with _._ associative to the equations

eq a . b = e .

eq X . a . b = X . e .

eq a . b . Y = e . Y .

eq X . a . b . Y = X . e . Y .

so that we could have achieved the same effect by rewriting only at the top of maximal f -
subterms (without extension). Similarly, for _._ associative and commutative, we could have
generalized the same equation a . b = e to the equations

4.8. MORE ON MATCHING AND SIMPLIFICATION MODULO 81

eq a . b = e .

eq a . b . Y = e . Y .

In Maude this generalization does not have to be performed explicitly as a transformation of
the specification. It is instead achieved implicitly in a built-in way by performing A-matching
with extension. If the equational axioms declared for a binary operator f include the asso-
ciativity axiom, then a subject term u with f as its top operator is internally represented
(but this representation can also be externally used, see Section 3.9.3) as the flattened term
f(u1, . . . , un), with the u1, . . . , un having top operators different from f . Furthermore, if a
(two-sided) identity element e has been declared for f , then ui 6= e, 1 ≤ i ≤ n. That is, we
assume in this case that all identities have been simplified away.

Relative to this internal representation, it is then easy to define the notion of an f -subterm.
If the axioms of f include associativity but not commutativity, then the f -subterms of the term
f(u1, . . . , un) are all terms of the form f(uk, . . . , uk+h) with 1 ≤ k ≤ n−1 and 1 ≤ h ≤ n−k.

Similarly, if the axioms of f include associativity and commutativity, then the f -subterms
of f(u1, . . . , un) are all terms of the form f(uk1 , . . . , ukh) with 1 ≤ ki1 < · · · < kih ≤ n, and
2 ≤ h ≤ n.

The concepts of positions in a term and depth of a term, that are important in many situa-
tions, refer to this flattened form. The compact notation for terms constructed with operators
having the iter attribute (Section 4.4.2) is also considered a form of flattened notation, so
that, for the purpose of calculating term depth, if the top level is at level 0, then the occurrence
of X:Foo in f^3(X:Foo) is at level 1, not level 3.

Adding axioms for an identity element e to a possibly associative and/or commutative
operation f leads to some subtle cases, where the proper application of the general notions
may not always coincide with the user’s expectations. To begin with, unexpected cases of
nontermination may be introduced by an unwary user. For example, the equation

eq a . X = b . a .

will cause nontermination when _._ is declared associative with identity 1, since we have, for
example,

d . a → d . b . a

→ d . b . b . a
...

→ d . b . b . · · · . b . a
...

by instantiating each time the variable X to the identity element 1.
A second source of unexpected behavior is the fact that a lefthand side involving an as-

sociative operator may, in the presence of an additional identity attribute, match a term not
involving at all that operator. Thus, for the above equation, we have also the nonterminating
chain of rewriting steps

a → b . a

→ b . b . a
...

→ b . b . · · · . b . a
...

82 CHAPTER 4. FUNCTIONAL MODULES

In a similar way, in the presence of an identity element, the user’s expectations about when
a lefthand side will match with extension a subject term may not fully agree with the proper
technical definition. Consider, for example, a binary operation _._ that is associative and
commutative, and that has an identity element 1, and let

eq a . X = c .

be an equation. Then,

1. The lefthand side a . X matches the subject term a modulo the axioms by instantiating
X to 1, giving rise to the simplification

a → c.

2. The same lefthand side matches the subject term a . b . c with extension in three
different ways, namely, with substitutions X 7→ b . c, X 7→ b, and X 7→ c, giving rise to
the three simplifications

a . b . c → c

a . b . c → c . c

a . b . c → b . c

3. For the same subject term a . b . c, the substitution X 7→ 1 is not a match with
extension of the above lefthand side, because the term a . 1 is not a _._-subterm of
the term a . b . c. However, because of item 1 above, we know that the equation will
match that way not at the top, but “one level down,” leading to the simplification

a . b . c → c . b . c

It is also important to realize that there is no match with extension between the lefthand
side of the equation a = b and the subject term a . b . c (because the lefthand side a is not
a _._-term), although again the equation will match that way not at the top, but “one level
down,” leading to the simplification

a . b . c → b . b . c

Of course, lefthand sides may contain several operators, each matched modulo a different
theory. Maude will then match each fragment of a lefthand side according to its given theory.

Consider, for example, the following specification where _._ is associative and _+_ is asso-
ciative and commutative:

fmod XMATCH-TEST is

sort Elt .

ops a b c d e : -> Elt .

op _._ : Elt Elt -> Elt [assoc] .

op _+_ : Elt Elt -> Elt [assoc comm] .

vars X Y Z : Elt .

eq X . (Y + Z) = (X . Y) + (X . Z) [metadata "distributivity"] .

endfm

The lefthand side of the distributivity equation will produce 12 matches with extension for
the subject term

a . b . (c + d + e)

4.8. MORE ON MATCHING AND SIMPLIFICATION MODULO 83

Enumerating these by hand would be tedious and error prone, however Maude provides the
xmatch command (see also Section 23.3) for just this purpose:

xmatch X . (Y + Z) <=? a . b . (c + d + e) .

The output given by Maude consists of the substitution for each match with extension
together with the portion of the subject actually matched:

Maude> xmatch X . (Y + Z) <=? a . b . (c + d + e) .

xmatch in XMATCH-TEST : X . Z + Y <=? a . b . c + d + e .

Decision time: 0ms cpu (0ms real)

Solution 1

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> c

Z:Elt --> d + e

Solution 2

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> c

Z:Elt --> d + e

Solution 3

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> d

Z:Elt --> c + e

Solution 4

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> d

Z:Elt --> c + e

Solution 5

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> e

Z:Elt --> c + d

Solution 6

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> e

Z:Elt --> c + d

Solution 7

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> c + d

Z:Elt --> e

Solution 8

84 CHAPTER 4. FUNCTIONAL MODULES

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> c + d

Z:Elt --> e

Solution 9

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> c + e

Z:Elt --> d

Solution 10

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> c + e

Z:Elt --> d

Solution 11

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> d + e

Z:Elt --> c

Solution 12

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> d + e

Z:Elt --> c

Note that extension is only used for matching the top operation, _._ in this example, but
not _+_. This is the reason why the subterm Y + Z of the lefthand side should match the entire
maximal _+_-subterm of the subject term, and not just some _+_-subterm.

For operators with the iter attribute, the situation with matching is analogous to the assoc
theory, so that proper subterms of say f^3(X:Foo), such as f^2(X:Foo) and f(X:Foo), can
also be matched by means of extension.

4.9 The reduce, match, trace, and show commands

Here we assemble the whole module for the NUMBERS running example to illustrate some of the
basic commands for interacting with Maude. See Chapter 23 for full details about these and
other Maude commands.

Notice that, since the result of the _in_ predicate is a Boolean value, we import the pre-
defined module BOOL (see Section 7.1) by means of a protecting declaration (described in
Section 6.1.1).

fmod NUMBERS is

protecting BOOL .

sort Zero .

sorts Nat NzNat .

subsort Zero NzNat < Nat .

op zero : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

4.9. THE REDUCE, MATCH, TRACE, AND SHOW COMMANDS 85

op sd : Nat Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat [assoc comm] .

op _+_ : NzNat Nat -> NzNat [ditto] .

op _*_ : NzNat NzNat -> NzNat [ditto] .

op p : NzNat -> Nat .

vars I N M : Nat .

eq N + zero = N .

eq N + s M = s (N + M) .

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M) .

eq N * zero = zero .

eq N * s M = (N * M) + N .

eq p(s N) = N [label partial-predecessor] .

eq (N + M) * I = (N * I) + (M * I)

[nonexec metadata "distributive law"] .

sort Nat3 .

ops 0 1 2 : -> Nat3 [ctor] .

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

vars N3 : Nat3 .

eq N3 + 0 = N3 .

eq 1 + 1 = 2 .

eq 1 + 2 = 0 .

eq 2 + 2 = 1 .

sort NatSeq .

subsort Nat < NatSeq .

op nil : -> NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc id: nil] .

sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet .

op _;_ : NatSet NatSet -> NatSet [assoc comm id: empty] .

eq N ; N = N [label natset-idem] .

op _in_ : Nat NatSet -> Bool .

var NS : NatSet .

eq N in N ; NS = true .

eq N in NS = false [owise] .

endfm

First, we evaluate some expressions using the reduce command. Maude repeats the com-
mand filling in any omitted optional information. Then statistics about the execution are
printed.16 Finally, the result is printed, prefaced by its least sort.

The first two examples evaluate the sum of three ones in Nat and in Nat3.

Maude> red s zero + s zero + s zero .

16The cpu and real time information is not printed if the user has made use of the set show timing off

command (see Section 23.11).

86 CHAPTER 4. FUNCTIONAL MODULES

reduce in NUMBERS : s zero + s zero + s zero .

rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: s s s zero

Maude> red 1 + (1 + 1) .

reduce in NUMBERS : 1 + (1 + 1) .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Nat3: 0

The next example illustrates the effect of the idempotency equation for sets of natural
numbers.

Maude> red zero ; s zero ; zero ; s zero .

reduce in NUMBERS : zero ; s zero ; zero ; s zero .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result NatSet: zero ; s zero

Finally we convince ourselves that the owise attribute works.

Maude> red zero in s zero ; zero ; s s zero .

reduce in NUMBERS : zero in s zero ; zero ; s s zero .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Bool: true

Maude> red zero in s zero ; s s zero .

reduce in NUMBERS : zero in s zero ; s s zero .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Bool: false

The commands xmatch and match operate in the same way, unless the subject term has
an operator that needs extension on top, in which case it can match proper subterms in the
same theory layer, as required for rewriting modulo that theory. The xmatch command was
illustrated in Section 4.8. Here we compare match and xmatch on a pattern that splits a
sequence of natural numbers into two parts. To be safe, we ask for at most five matches, but
in fact there are only four.

Maude> match [5] NS0:NatSeq NS1:NatSeq <=? zero zero zero .

match [5] in NUMBERS : NS0:NatSeq NS1:NatSeq <=? zero zero zero .

Decision time: 0ms cpu (0ms real)

Solution 1

NS0:NatSeq --> nil

NS1:NatSeq --> zero zero zero

Solution 2

NS0:NatSeq --> zero

NS1:NatSeq --> zero zero

Solution 3

NS0:NatSeq --> zero zero

NS1:NatSeq --> zero

Solution 4

NS0:NatSeq --> zero zero zero

NS1:NatSeq --> nil

4.9. THE REDUCE, MATCH, TRACE, AND SHOW COMMANDS 87

Using the xmatch command for the same pattern and term, we see that in addition to the
whole term matches, Maude also reports matches within the subterm zero zero. In fact, there
are two occurrences of this subterm. We only show five of the matches.

Maude> xmatch [5] NS0:NatSeq NS1:NatSeq <=? zero zero zero .

xmatch [5] in NUMBERS : NS0:NatSeq NS1:NatSeq <=? zero zero zero .

Decision time: 0ms cpu (7ms real)

Solution 1

Matched portion = zero zero

NS0:NatSeq --> nil

NS1:NatSeq --> zero zero

Solution 2

Matched portion = zero zero

NS0:NatSeq --> zero

NS1:NatSeq --> zero

Solution 3

Matched portion = zero zero

NS0:NatSeq --> zero zero

NS1:NatSeq --> nil

Solution 4

Matched portion = (whole)

NS0:NatSeq --> nil

NS1:NatSeq --> zero zero zero

Solution 5

Matched portion = (whole)

NS0:NatSeq --> zero

NS1:NatSeq --> zero zero

Let us consider now a small example using the trace command. We turn on selective
tracing and choose to trace only uses of the equation labeled partial-predecessor.

Maude> set trace on .

Maude> set trace select on .

Maude> trace select partial-predecessor .

Maude> red s s p(s zero) + s p(s zero) .

reduce in NUMBERS : s s p(s zero) + s p(s zero) .

*********** equation

eq p(s N) = N [label partial-predecessor] .

N --> zero

p(s zero)

--->

zero

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: s s s zero

Note that Maude only reports one use of this equation, despite the fact that there are two
occurrences in the term. This is because, when performing equational simplification, occur-
rences of the same subterm are internally shared17 and hence there is only one occurrence of

17However, this sharing—i.e., treating the term as a dag instead of as a tree—is not done in a maximal way, so

88 CHAPTER 4. FUNCTIONAL MODULES

the subterm p(s zero) in the internal representation.
We can ask Maude to show the module FIBONACCI (assuming it has been loaded).

Maude> show module FIBONACCI .

fmod FIBONACCI is

protecting NAT .

op fibo : Nat -> Nat [memo] .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

The show sorts command shows all the sorts declared and for each sort its sub- and super-
sorts.

Maude> show sorts NUMBERS .

sort Bool .

sort Zero . subsorts Zero < Nat NatSet NatSeq .

sort Nat . subsorts NzNat Zero < Nat < NatSet NatSeq .

sort NzNat . subsorts NzNat < Nat NatSet NatSeq .

sort Nat3 .

sort NatSeq . subsorts NzNat Zero Nat < NatSeq .

sort NatSet . subsorts NzNat Zero Nat < NatSet .

The show components command shows the connected components (kinds) in the sort partial
order.

Maude> show components NUMBERS .

[Bool]:

1 Bool

[NatSeq, NatSet]:

1 NatSeq

2 NatSet

3 Nat

4 Zero

5 NzNat

[Nat3] (error free):

1 Nat3

Note that the name of the kind corresponding to the connected component containing the
natural numbers contains the names of two sorts. These are the maximal sorts in the component.
The (error free) comment about the sort Nat3 means that all terms of kind [Nat3] are in
fact of sort Nat3.

that all subterms that can be shared are; instead, term sharing is itself introduced incrementally by equational
simplification, since Maude analyzes righthand sides of equations to identify its shared subterms. As explained
by Eker in [58], in the presence of operator evaluation strategies (Section 4.4.7) term sharing has to be done
carefully. Furthermore, when rewriting is performed with a rule in a system module (see Chapter 5), rather
than with an equation, Maude will incrementally unshare those parts of the subject term needed to ensure that
all possible rewrite with rules are considered. This is because rules in system modules need not be confluent.
As a consequence, two identical subterms could be rewritten in totally different ways; but this of course would
be prevented if they were to be shared.

Chapter 5

System Modules

A Maude system module specifies a rewrite theory. A rewrite theory has sorts, kinds, and
operators (perhaps with frozen arguments), and can have three types of statements: equations,
memberships, and rules, all of which can be conditional. Therefore, any rewrite theory has
an underlying equational theory, containing the equations and memberships, plus the rules.
What is the intuitive meaning of such rules? Computationally, they specify local concurrent
transitions that can take place in a system if the pattern in the rule’s lefthand side matches a
fragment of the system state and the rule’s condition is satisfied. In that case, the transition
specified by the rule can take place, and the matched fragment of the state is transformed into
the corresponding instance of the righthand side. Logically, that is, when we use rewriting logic
as a logical framework to represent other logics as explained in Section 1.4, a rule specifies a
logical inference rule, and rewriting steps therefore represent inference steps.

As was mentioned in Section 3.2, a system module is declared in Maude using the keywords

mod 〈ModuleName〉 is 〈DeclarationsAndStatements〉 endm

As for functional modules the first bit of information in the specification is the module’s name,
which must be an identifier. For example,

mod VENDING-MACHINE is

...

endm

where the dots stand for all the declarations and statements in the module, which can be:

1. module importations,

2. sort and subsort declarations,

3. operator declarations,

4. variable declarations,

5. equation and membership statements, and

6. rule statements.

Since declarations (1)–(4) and equational statements (5) are exactly as for functional mod-
ules, all we have left to explain is how rules (conditional or not) are declared. As for equation
and membership statements, rules can be declared with any of the attributes label, metadata,
nonexec, and print (see Section 4.5). However, the owise attribute can only be used with
equations.

89

90 CHAPTER 5. SYSTEM MODULES

5.1 Unconditional rules

Mathematically, an unconditional rewrite rule has the form l : t → t′, where t, t′ are terms of
the same kind, which may contain variables, and l is the label of the rule. Intuitively, a rule
describes a local concurrent transition in a system: anywhere in the distributed state where a
substitution instance σ(t) of the lefthand side t is found, a local transition of that state fragment
to the new local state σ(t′) can take place. And if many instances of the same or of several
rules can be matched in different nonoverlapping parts of the distributed state, then all of them
can fire concurrently.

An unconditional rule is introduced in Maude with the following syntax:

rl [〈Label〉] : 〈Term-1 〉 => 〈Term-2 〉 [〈StatementAttributes〉] .

As explained in Section 4.5.1, a label can alternatively be declared as a statement attribute;
also, Maude allows declaration of unlabeled rules. In these two cases, the part “[〈Label 〉] :”
is omitted.

As a first example of a system module we consider the following specification of a vending
machine which dispenses apples and cakes. The module VENDING-MACHINE-SIGNATURE is the
underlying functional module. This module is imported by the system module VENDING-MACHINE,
which then adds the rules for operating the machine. Although not necessary, in addition to
making the underlying functional module explicit, such splitting of modules can be useful in or-
ganizing a large specification, where a functional part may be shared by several system modules;
see Chapter 6 for a discussion on module importation.

The constants $ and q represent coins of one dollar and one quarter, respectively, while the
constants a and c represent apples and cakes, respectively.

fmod VENDING-MACHINE-SIGNATURE is

sorts Coin Item Marking .

subsorts Coin Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: null] .

op null : -> Marking .

op $: -> Coin [format (r! o)] .

op q : -> Coin [format (r! o)] .

op a : -> Item [format (b! o)] .

op c : -> Item [format (b! o)] .

endfm

The format declaration for each constant (see Section 4.4.5) is used to print the constants
using different colors, so that coins can easily be separated from items in a given marking.

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $.

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change] : q q q q => $.

endm

This module specifies a concurrent machine to buy cakes and apples with dollars and quar-
ters. A cake costs a dollar, and an apple three quarters. We can insert dollars and quarters
in the machine, although due to an unfortunate design, the machine only accepts buying cakes
and apples with dollars. When the user buys an apple the machine takes a dollar and returns a
quarter. To alleviate in part this problem, the machine can change four quarters into a dollar.

5.2. CONDITIONAL RULES 91

The machine is concurrent, because we can push several buttons at once (that is, we can
apply several rules at once), provided enough resources exist in the corresponding slots, called
places. For example, if we have one dollar in the $ place and four quarters in the q place,
we can simultaneously push the buy-a and change buttons, and the machine returns, also
simultaneously, one dollar in $, one apple in a, and one quarter in q.

Note that, since the Maude interpreter is sequential, the above concurrent transitions in the
VENDING-MACHINE module are simulated by corresponding interleavings of sequential rewriting
steps. In a socket-based concurrent implementation, it is possible to execute concurrently many
rewriting steps for a wide range of system modules.1

We might have tried a simpler alternative, namely, using the rule null => q instead of
the add-q rule. However, this would not work. Instead, we have to write M => M q with M

a variable of sort Marking. The reason is that the constant null is not a __-subterm of any
marking except itself, and therefore it would be impossible to apply the rule null => q with
extension (see Section 4.8).

5.2 Conditional rules

Conditional rewrite rules can have very general conditions involving equations, memberships,
and other rewrites; that is, in their mathematical notation they can be of the form

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

with no restriction on which new variables may appear in the righthand side or the condition.
There is no need for the condition listing first equations, then memberships, and then rewrites:
this is just a notational abbreviation, since they can be listed in any order. However, in Maude,
conditions are evaluated from left to right, and therefore the order in which they appear,
although mathematically inessential, is very important operationally (see Section 5.3).

In their Maude representation, conditional rules are declared with syntax

crl [〈Label〉] : 〈Term-1 〉 => 〈Term-2 〉
if 〈Condition-1 〉 /\ ... /\ 〈Condition-k〉
[〈StatementAttributes〉] .

where the rule’s label can instead be declared as a statement attribute, or can be omitted
altogether. In either of these two alternatives, the square brackets enclosing the label and the
colon are then omitted.

As in conditional equations, the condition can consist of a single statement or can be a
conjunction formed with the associative connective /\. But now conditions are more general,
since in addition to equations and memberships they can also contain rewrite expressions, for
which the concrete syntax t => t’ is used. Furthermore, equations, memberships, and rewrites
can be intermixed in any order. As for functional modules, some of the equations in conditions
can be either matching equations or abbreviated Boolean equations.

We can illustrate the usefulness of rewrite expressions in rule conditions by presenting a
small fragment of a Maude operational semantics for Milner’s CCS language given in [136]:

sorts Label Act Process ActProcess .

subsorts Qid < Label < Act .

subsort Process < ActProcess .

1See [29, Chapter 16] for an interesting example of this kind: a concurrent implementation of a mobile
language entirely programmed in Maude using sockets as external objects in the way explained in Section 9.3.

92 CHAPTER 5. SYSTEM MODULES

op ~_ : Label -> Label .

op tau : -> Act .

op {_}_ : Act ActProcess -> ActProcess [frozen] .

op _|_ : Process Process -> Process [frozen assoc comm] .

vars P P’ Q Q’ : Process .

var L : Label .

crl [par] : P | Q => {tau} (P’ | Q’)

if P => {L} P’ /\ Q => {~ L} Q’ .

The conditional rule par expresses the synchronized transition of two processes composed
in parallel. The condition of the rule states that the synchronized transition can take place
if one process can perform an action named L and the other can perform the complementary
action named ~ L. In this representation of CCS, the action performed is remembered by the
resulting expression, which is a term of sort ActProcess.

Note the use of the frozen attribute in some of the operators (see Section 4.4.9).

5.3 Admissible system modules

The same way that equations or memberships expressed in their fullest possible generality
cannot be executed by the Maude engine except in a controlled way at the metalevel, conditional
rewrite rules in their fullest generality cannot be executed either, except with a strategy at the
metalevel. Nonexecutable rules should be identified by giving them the nonexec attribute.

As for functional modules, the question now becomes: what are the executability require-
ments on the executable statements (i.e., those without the nonexec attribute) of a system
module? It turns out that a quite general class of system modules, called admissible mod-
ules, are executable by Maude’s default interpreter using the rewrite, frewrite, and search

commands, that will be introduced and illustrated in Section 5.4 and are further explained in
Sections 23.2 and 23.4.

The admissibility requirements for the module’s equations and memberships are exactly as
for functional modules; they were explained in Section 4.6 and are further discussed below.
Two more requirements are needed:

• each executable conditional rule should be admissible, and

• the rules should be coherent relative to the equations, as has already been mentioned in
the introduction.

We explain each of these requirements below.
Given a system module M , a conditional2 rule of the form

l : t→ t′ if C1 ∧ . . . ∧ Cn

such that it does not have the nonexec attribute is called admissible if it satisfies the exact
analogues of the admissibility requirements 1–3 in Section 4.6 for conditional equations, plus
the additional requirement

2For the purposes of this discussion, we view unconditional rules as a special case of conditional rules. The
general admissibility requirement specializes then to a very easy requirement for an unconditional rule t → t′,
namely, that each variable of t′ must appear in t.

5.3. ADMISSIBLE SYSTEM MODULES 93

4. If Ci is a rewrite ui → u′i, then

vars(ui) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj),

and furthermore u′i is an E(M)-pattern (for the notion of pattern see Section 4.3) for
E(M) the equational theory underlying the module M .

Operationally, we try to satisfy such a rewrite condition by reducing the substitution in-
stance σ(ui) to its canonical form vi with respect to the equations, and then trying to find a
rewrite proof vi → wi (perhaps after many steps of rewriting) with wi in canonical form with
respect to the equations and such that wi is a substitution instance of u′i. Search for such a wi
is performed by the Maude engine using a breadth-first strategy.

As for functional modules, when executing an admissible conditional rule in a system mod-
ule, the satisfaction of all its conditions is attempted sequentially from left to right; but notice
that now, besides the fact that many matches for the equational conditions may be possible
due to the presence of equational attributes, we also have to deal with the fact that solving
rewrite conditions requires search, including searching for new solutions when previous ones fail
to satisfy subsequent conditions.

We now explain the coherence requirement. A rewrite theory has both rules and equations,
so that rewriting is performed modulo such equations. However, this does not mean that the
Maude implementation must have a matching algorithm for each equational theory that a user
might specify, which is impossible, since matching modulo an arbitrary equational theory is
undecidable.

The equations and memberships specified in a system module M are divided into a set A
of axioms corresponding to equational attributes such as associativity, commutativity, idempo-
tency, and (left-, right- or two-sided) identity declared for different operators in the module (see
Section 4.4.1), for which matching algorithms exist in the Maude implementation, and a set E
of equations and memberships specified in the ordinary way. As already mentioned, for M to
be executable, the set of executable statements in E must be Church-Rosser and terminating
modulo A, or at least ground Church-Rosser and terminating modulo A; that is, we require
that the equational part must be equivalent to an executable functional module.

Moreover, we require that the rules R in the module are coherent [138] with respect to the
equations E modulo A, or at least ground coherent. Coherence means that, given a term t, for
each one-step rewrite of it with some rule in R modulo the axioms A to some term t′, which we
denote t −→1

R/A t
′, if u is the canonical term we obtain by rewriting t with the equations and

memberships in E to canonical form modulo A, denoted t −→!
E/A u, then there is a one-step

rewrite of u with some rule in R modulo A, u −→1
R/A u′, such that t′ =E∪A u′, which by the

Church-Rosser and termination properties of E modulo A is equivalent to t′ and u′ having the
same canonical form modulo A by E. This requirement is described graphically in Figure 5.1.

Ground coherence is a weaker requirement: we require the exact same diagram to exist only
for ground terms, and E only needs to be ground Church-Rosser and terminating modulo A.

As explained in [138] (for the free case and for coherence modulo associativity and com-
mutativity), for unconditional rules R, coherence can be checked by checking “critical pairs”
between rules R and equations E, and showing that the corresponding instance of the coherence
diagram can be filled in for all such pairs. That is, we have to look for appropriate overlaps
between lefthand sides of rules and equations using an A-unification algorithm, generate the
corresponding critical pairs, and check their coherence. In the case of ground coherence, it is
not necessary that the critical pairs can be filled in: it is enough to show that each ground

94 CHAPTER 5. SYSTEM MODULES

t
1

R/A
//

!E/A ��

t′

!
E/A

""
w

u 1

R/A

// u′

!
E/A

<<

Figure 5.1: Coherence diagram

instance of such pairs can be filled in. See Section 7.8 of [29] for an example of a system
module that is not coherent, a discussion of the critical pairs involved, and a method to make
the specification coherent. See also Section 13.4 of [29] for an example of how coherence can be
checked by critical pair analysis. Similarly, for ground coherence and how to check it, see the
example in Section 11.4.

Why is coherence so important? What does it mean intuitively? Rewriting modulo an
equational theory E ∪ A, which is what a rewrite theory R = (Σ, E ∪ A, φ,R) really does, is
in general undecidable. The undecidability has to do with the fact that we may need to search
an entire E ∪A-equivalence class before we can know if a class representative can be rewritten
with R, that is, if the E ∪A-equivalence class can be rewritten. Coherence makes the problem
decidable: all we need to do is to reduce the term to its canonical form by E modulo A, and
then rewrite with R such a canonical form. In a sense, coherence reduces rewriting with R
modulo E ∪A to rewriting with E and R modulo A, which is decidable, because we assume we
have an A-matching algorithm.

Could we miss any rewrites that way? Coherence guarantees to us that we could not, since
any rewrite of a term t with R must also be possible with t’s canonical form. Maude implicitly
assumes this coherence property. For example, the rewrite command will at each step first
reduce the term to canonical form with E modulo A, and then perform a rewrite step with
R in a rule-fair manner. The frewrite command uses a somewhat different rewrite strategy
to ensure both local fairness and rule fairness, but assumes the same coherence (or ground
coherence) property (see Section 23.2 and examples in Section 5.4 below).

A last point about the execution of system modules regards frozen argument positions in
operators (see Section 4.4.9). This poses a general constraint on any rewriting strategy what-
soever, including those directly supported by Maude for the rewrite and frewrite commands
(see Section 5.4). The general constraint is that rewriting will never happen below one of the
frozen argument positions in an operator. That is, even though many rewritings may be possi-
ble and there can be a large amount of nondeterminism (so that different rewriting strategies
may lead to quite different results) rewriting under frozen arguments is always forbidden. In
fact, this does not only belong to the module’s operational semantics, but also to the latest
initial model semantics for rewrite theories developed in [19]; we give a brief informal summary
of this semantics below.

Mathematically, a system module, when “flattened” with its imported submodules, exactly
specifies a (generalized) rewrite theory in the sense of [19], that is, a four-tuple

R = (Σ, E ∪A, φ,R),

where (Σ, E ∪ A) is the membership equational theory specified by the signature, equational
attributes, and equation and membership statements in the module (just as in the case of

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 95

functional modules); φ is a function, assigning to each operator in Σ the set of natural numbers
corresponding to its frozen arguments (the empty set when no argument is frozen); and R is the
collection of (possibly conditional) rewrite rules specified in the module and its submodules.

Intuitively, such a rewrite theory specifies a concurrent system. The equational theory
(Σ, E ∪ A) specifies the “statics” of the system, that is, the algebraic structure of the set3 of
states, which is specified by the initial algebra TΣ/E∪A. The rules R and the freezing information
φ specify the concurrent system’s “dynamics,” that is, the possible concurrent transitions that
the system can perform. In rewriting logic, such, possibly complex, concurrent transitions
exactly correspond to rewrite proofs; but since several rewrite proofs can indeed correspond to
the same concurrent computation (describing, for example, different semantically equivalent
interleavings), rewriting logic has an equational theory of proof equivalence [102, 19].

The initial model TR of the rewrite theory R associates to each kind k a labeled transition
system (in fact, a category) whose set of states is TΣ/E∪A,k, and whose labeled transitions
have the form [α] : [t] → [t′], with [t], [t′] ∈ TΣ/E∪A,k, and with [α] an equivalence class of
rewrite proofs modulo the equational theory of proof equivalence. Indeed what the different [α]
represent are the different “truly concurrent” computations of the system specified by R.

5.4 The rewrite, frewrite, and search commands

Now we illustrate the use of the Maude commands available for system modules. Recall the
vending machine example:

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $.

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change]: q q q q => $.

endm

In addition to the show commands discussed in Section 4.9, there is an additional show rls

command for system modules to show the rules of a module. For example, showing the sorts
and the rules of the VENDING-MACHINE module we get:

Maude> show sorts VENDING-MACHINE .

sort Bool .

sort Coin . subsort Coin < Marking .

sort Item . subsort Item < Marking .

sort Marking . subsorts Item Coin < Marking .

Maude> show rls VENDING-MACHINE .

rl M => q M [label add-q] .

rl M => $ M [label add-$] .

rl $ => c [label buy-c] .

rl $ => q a [label buy-a] .

rl q q q q => $ [label change] .

3More precisely, each kind k in Σ corresponds to a different choice for a set of states, namely the set TΣ/E∪A,k.

96 CHAPTER 5. SYSTEM MODULES

5.4.1 The rewrite command

We can use the rewrite command (abbreviated rew) to explore the behavior of different initial
markings. The bracketed number between the command and the term to be rewritten provides
an upper bound for the number of rule applications that are allowed.

Maude> rew [1] in VENDING-MACHINE : $ $ q q .

rewrite [1] in VENDING-MACHINE : $ $ q q .

rewrites: 1 in 0ms cpu (9ms real) (~ rews/sec)

result Marking: $ $ q q q

Maude> rew [2] $ $ q q .

rewrite [2] in VENDING-MACHINE : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ q q q

Maude> rew [3] $ $ q q .

rewrite [3] in VENDING-MACHINE : $ $ q q .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ q q q q

Maude> rew [4] $ $ q q .

rewrite [4] in VENDING-MACHINE : $ $ q q .

rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ $ q q q q

Maude> rew [5] $ $ q q .

rewrite [5] in VENDING-MACHINE : $ $ q q .

rewrites: 5 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ $ $

Maude> rew [6] $ $ q q .

rewrite [6] in VENDING-MACHINE : $ $ q q .

rewrites: 6 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ $ $ q

Maude> rew [200] $ $ q q .

rewrite [200] in VENDING-MACHINE : $ $ q q .

rewrites: 200 in 10ms cpu (10ms real) (20000 rews/sec)

result Marking: $
$ $
$ $
$ q q q

Executing one rewrite starting with two dollars and two quarters, Maude chooses to apply
the add-q rule. If we allow two rewrites Maude applies add-q and then add-$. The third rule
to be applied is add-q again; then, add-$. It goes on applying add-q and add-$ until the rule
change can be applied. The top-down rule-fair rewrite strategy keeps trying to apply rules
on the top operator (__ in this case) in a fair way. The rules applicable at the top are add-q,
add-$, and change, which are tried in this order. Since the top operator is always the same
one, no other rules are used. We can modify the rules buy-c and buy-a so that the lefthand
side has an explicit top level __ as follows:

mod VENDING-MACHINE-TOP is

including VENDING-MACHINE-SIGNATURE .

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 97

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $.

rl [buy-c] : $ M => c M .

rl [buy-a] : $ M => a q M .

rl [change]: q q q q => $.

endm

Now starting with two dollars and two quarters, and executing increasing numbers of rewrites
we see that Maude applies the rules add-$, add-q, buy-c, buy-a, and change.

Maude> rew [2] in VENDING-MACHINE-TOP : $ $ q q .

Advisory: "v.maude", line 18 (mod VENDING-MACHINE-TOP): collapse at

top of $ M may cause it to match more than you expect.

Advisory: "v.maude", line 19 (mod VENDING-MACHINE-TOP): collapse at

top of $ M may cause it to match more than you expect.

rewrite [2] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ q q q

Maude> rew [3] $ $ q q .

rewrite [3] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ q q q c

Maude> rew [4] $ $ q q .

rewrite [4] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ q q q q a c

Maude> rew [5] $ $ q q .

rewrite [5] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 5 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ a c

The advisory is about the modified rules for buying. Maude is letting us know that the pattern
$ M will match a term not containing the top-level operator __, when M is instantiated to null.
This is exactly what we want in this case, but it may not always be what the user intended, so
Maude gives you a heads up; see Section 20.3.6 for more details.

Notice that rewriting in VENDING-MACHINE is not terminating. If we remove the rules for
adding coins we obtain a terminating system and can explore vending behavior using unbounded
rewriting. Let us consider the following module SIMPLE-VENDING-MACHINE.

mod SIMPLE-VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change]: q q q q => $.

endm

For example, starting with two dollars and rewriting as much as possible we can get an
apple, a cake and a quarter in change.

Maude> rew in SIMPLE-VENDING-MACHINE : $ $.

rewrite in SIMPLE-VENDING-MACHINE : $ $.

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

98 CHAPTER 5. SYSTEM MODULES

result Marking: q a c

Starting with two dollars and three quarters and using only three rewrite rule applications
we get an apple and a cake with a dollar left over.

Maude> rew [3] $ $ q q q .

rewrite [3] in SIMPLE-VENDING-MACHINE : $ $ q q q .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ a c

The command continue 〈Bound 〉 (abbreviated cont) tells Maude to continue rewriting
using at most 〈Bound 〉 additional rule applications. For example, we can continue the last
rewrite command (that performed three rewrites) for one more step to get an apple and two
cakes:

Maude> cont 1 .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: a c c

5.4.2 The frewrite command

Let us see now what happens when we use another strategy for rewriting in the original
VENDING-MACHINE module. The frewrite command (abbreviated frew) rewrites a term using
a depth-first position-fair strategy that makes it possible for some rules to be applied that could
be “starved” using the leftmost, outermost rule fair strategy of the rewrite command. The
strategies for the rewrite and frewrite commands are described in detail in Section 23.2.

Maude> frew [2] in VENDING-MACHINE : $ $ q q .

frewrite [2] in VENDING-MACHINE : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result (sort not calculated): ($ q) ($ $) q q

Maude> frew [12] $ $ q q .

frewrite [12] in VENDING-MACHINE : $ $ q q .

rewrites: 12 in 0ms cpu (0ms real) (~ rews/sec)

result (sort not calculated):

c (q a) ($ q) ($ $) (q q) ($ q) (q q) q q

With two rewrites, one quarter and one dollar are added. With sufficiently many rewrites
(twelve will do), a cake and an apple can be obtained.

In contrast to rewrite, that reduces the whole term using equations after each rule rewrite,
frewrite only reduces the subterm rewritten (to preserve positions not yet visited). Thus,
when rewriting stops, the term may not be fully reduced and hence Maude will not know the
exact least sort of the term yet. This is the reason for the (sort not calculated) comment
in place of a sort in the result line. In the case of a term with an associative and commutative
top operator, the term may not be in its fully flattened form with canonical order of subterms.
This accounts for the parentheses in the result term and the fact that the coins and items are
not listed in order as they are in the result of a rewrite.

The top-down rule-fair strategy of the rewrite command can result in nontermination
even though there is a terminating sequence of rewrites. As an example consider the following
module:

mod BB-TEST is

sort Expression .

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 99

ops a b bingo : -> Expression .

op f : Expression Expression -> Expression .

rl a => b .

rl b => a .

rl f(b, b) => bingo .

endm

Giving the rewrite command with input term f(a, a) will result in the following looping
computation:

f(a, a) => f(b, a) => f(a, a) => f(b, a) => f(a, a) => ...

This is because using the top-down rule-fair strategy of the rewrite command, the third rule
always fails to match and never gets a chance to be applied. As already mentioned above, the
frewrite command uses on the other hand a position-fair bottom-up strategy that makes it
possible for other rules to be applied. As a consequence, some rewriting computations that
could be nonterminating using the rewrite command become terminating with frewrite. For
example, using the frewrite command in place of rewrite in the above example we get

Maude> frew in BB-TEST : f(a, a) .

frewrite in BB-TEST : f(a, a) .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Expression: bingo

5.4.3 The search command

The rewrite and frewrite commands each explore just one possible behavior (sequence of
rewrites) of a system described by a set of rewrite rules and an initial state. The search

command allows one to explore (following a breadth-first strategy) the reachable state space in
different ways. Its syntax conforms to the following general scheme

search [n, m] in 〈ModId〉 : 〈Term-1 〉 〈SearchArrow〉 〈Term-2 〉
such that 〈Condition〉 .

where

• n is an optional argument providing a bound on the number of desired solutions;

• m is another optional argument stating the maximum depth of the search;

• the module 〈ModId 〉 where the search takes place can be omitted;

• 〈Term-1 〉 is the starting term;

• 〈Term-2 〉 is the pattern that has to be reached;

• 〈SearchArrow 〉 is an arrow indicating the form of the rewriting proof from 〈Term-1 〉 until
〈Term-2 〉:

– =>1 means a rewriting proof consisting of exactly one step,

– =>+ means a rewriting proof consisting of one or more steps,

– =>* means a proof consisting of none, one, or more steps, and

– =>! indicates that only canonical final states are allowed, that is, states that cannot
be further rewritten; and

100 CHAPTER 5. SYSTEM MODULES

The one step arrow =>1 is an abbreviation of the one-or-more steps arrow =>+ with the
depth bound m set to 1.

• 〈Condition 〉 states an optional property that has to be satisfied by the reached state;
the syntactic form of the condition is the same as the one of conditions for conditional
rules (see Section 5.2).

For example, for our finite vending machine, SIMPLE-VENDING-MACHINE, we can use the
search command to answer the question: if I have a dollar and three quarters, can I get a cake
and an apple? This is done by searching for states that match a corresponding pattern. In this
example, we use the =>! symbol, meaning that we are searching for terminal states, that is, for
states that cannot be further rewritten. Moreover, no bound in the number of solutions or in
the depth of the search is needed.

Maude> search in SIMPLE-VENDING-MACHINE :

$ q q q =>! a c M:Marking .

search in SIMPLE-VENDING-MACHINE : $ q q q =>! a c M:Marking .

Solution 1 (state 4)

states: 6 rewrites: 5 in 0ms cpu (0ms real) (~ rews/sec)

M:Marking --> null

No more solutions.

states: 6 rewrites: 5 in 0ms cpu (1ms real) (~ rews/sec)

The answer is yes, and the desired state is numbered 4. To see the sequence of rewrites that
allowed us to reach this state we can type

Maude> show path 4 .

state 0, Marking: $ q q q

===[rl $ => q a [label buy-a] .]===>

state 2, Marking: q q q q a

===[rl q q q q => $ [label change] .]===>

state 3, Marking: $ a

===[rl $ => c [label buy-c] .]===>

state 4, Marking: a c

One can get just the sequence of labels of applied rules with a similar command:

Maude> show path labels 4 .

buy-a

change

buy-c

It is also possible to print out the current search graph generated by a search command
using the command show search graph. After the above search we get

Maude> show search graph .

state 0, Marking: $ q q q

arc 0 ===> state 1 (rl $ => c [label buy-c] .)

arc 1 ===> state 2 (rl $ => q a [label buy-a] .)

state 1, Marking: q q q c

state 2, Marking: q q q q a

arc 0 ===> state 3 (rl q q q q => $ [label change] .)

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 101

state 0: $ q q q

state 1: q q q c

buy-c

state 2: q q q q a

state 3: $ a

state 4: a c

buy-c

state 5: q a a

buy-a

change

buy-a

Figure 5.2: Graphical representation of search graph in example

state 3, Marking: $ a

arc 0 ===> state 4 (rl $ => c [label buy-c] .)

arc 1 ===> state 5 (rl $ => q a [label buy-a] .)

state 4, Marking: a c

state 5, Marking: q a a

This search graph is represented graphically in Figure 5.2.
From the same initial state, $ q q q, we can see if it is possible to reach a final state with

an apple and more things, learning that there are exactly two possibilities:

Maude> search $ q q q =>! a M:Marking such that M:Marking =/= null .

search in SIMPLE-VENDING-MACHINE : $ q q q =>! a M:Marking

such that M:Marking =/= null = true .

Solution 1 (state 4)

states: 6 rewrites: 6 in 0ms cpu (0ms real) (~ rews/sec)

M:Marking --> c

Solution 2 (state 5)

states: 6 rewrites: 7 in 0ms cpu (0ms real) (~ rews/sec)

M:Marking --> q a

No more solutions.

states: 6 rewrites: 7 in 0ms cpu (0ms real) (~ rews/sec)

In the following example with a different initial state, namely, $ q q q q, we are looking
for intermediate states from which it is possible to get later either two apples (and two quarters
left) or two cakes, getting exactly one solution.

Maude> search $ q q q q =>+ M:Marking

such that M:Marking => a a q q /\ M:Marking => c c .

search in SIMPLE-VENDING-MACHINE : $ q q q q =>+ M:Marking

such that M:Marking => q q a a /\ M:Marking => c c .

102 CHAPTER 5. SYSTEM MODULES

Solution 1 (state 1)

states: 2 rewrites: 10 in 0ms cpu (0ms real) (96153 rewrites/second)

M:Marking --> $ $

No more solutions.

states: 9 rewrites: 38 in 0ms cpu (0ms real) (95477 rewrites/second)

Sometimes it is necessary to impose a limit on the number of solutions searched for, since
in general the number of such solutions could be infinite. In the previous examples there were
only one or two solutions, so imposing a bound would not make any difference. But, returning
to the coin generating (and thus nonterminating) vending machine module VENDING-MACHINE,
the search space becomes now infinite, so it is important to be able to limit either the number
of solutions sought or the depth of the search, or both.

We can look for different ways to use a dollar and three quarters to buy an apple and two
cakes. First we ask for one solution, and then use the bounded continue command to see
another solution. Note that here we use the search mode =>+, which means searching for states
reachable by at least one rewrite. Searching for terminal states in the VENDING-MACHINE module
is futile!

Maude> search [1] in VENDING-MACHINE : $ q q q =>+ a c c M:Marking .

search in VENDING-MACHINE : $ q q q =>+ a c c M .

Solution 1 (state 108)

states: 109 rewrites: 1857 in 0ms cpu (41ms real)(~rews/sec)

M --> q q q q

Maude> cont 1 .

Solution 2 (state 113)

states: 114 rewrites: 185 in 0ms cpu (4ms real) (~ rews/sec)

M --> null

We can also use the maximum depth optional argument, but if we put a too small depth,
we do not get any solution:

Maude> search [, 4] $ q q q =>+ a c c M:Marking .

search [, 4] in VENDING-MACHINE : $ q q q =>+ a c c M .

No solution.

states: 66 rewrites: 875 in 10ms cpu (3ms real) (87500 rews/sec)

By increasing the depth to 10 we will get 98 solutions. If we are interested in only a few of
those, we can set both bounds, like in the following example:

Maude> search [4, 10] $ q q q =>+ a c c M:Marking .

search [4, 10] in VENDING-MACHINE : $ q q q =>+ a c c M .

Solution 1 (state 108)

states: 109 rewrites: 1857 in 0ms cpu (7ms real) (~ rews/sec)

M --> q q q q

Solution 2 (state 113)

states: 114 rewrites: 2042 in 0ms cpu (7ms real) (~ rews/sec)

M --> null

Solution 3 (state 160)

states: 161 rewrites: 3328 in 0ms cpu (11ms real) (~ rews/sec)

5.4. THE REWRITE, FREWRITE, AND SEARCH COMMANDS 103

M --> q q q q q

Solution 4 (state 164)

states: 165 rewrites: 3524 in 0ms cpu (12ms real) (~ rews/sec)

M --> q

If we insist now in the marking M being different from null, then one of the previous solutions
is discarded, but we still get four solutions:

Maude> search [4, 10] $ q q q =>+ a c c M:Marking

such that M:Marking =/= null .

search [4, 10] in VENDING-MACHINE : $ q q q =>+ a c c M

such that M =/= null = true .

Solution 1 (state 108)

states: 109 rewrites: 1858 in 0ms cpu (5ms real) (~ rews/sec)

M --> q q q q

Solution 2 (state 160)

states: 161 rewrites: 3331 in 10ms cpu (13ms real) (333100 rews/sec)

M --> q q q q q

Solution 3 (state 164)

states: 165 rewrites: 3528 in 10ms cpu (14ms real) (352800 rews/sec)

M --> q

Solution 4 (state 175)

states: 176 rewrites: 3904 in 10ms cpu (15ms real) (390400 rews/sec)

M --> $ q q q q

In Chapter 11 we will see how the search command can be used to model check invariant
properties of a concurrent system specified in Maude as a system module.

In case you forget to set a bound on the search command or on its continuation, you can
also interrupt a search in progress by typing control-C. In this case one of two things will
happen, depending on what Maude is doing at the instant you hit control-C. If Maude is not
doing a rewrite, the command will exit. If Maude is doing a rewrite, you will end up in the
debugger. In this latter case it is probably best to type abort, since the debugger has no special
support for search at the moment. See Sections 20.1.3 and 23.14 for more information on the
debugger.

The full syntax and different options for the search command and for all the other com-
mands illustrated in this section are explained in detail in Chapter 23.

104 CHAPTER 5. SYSTEM MODULES

Chapter 6

Module Operations

Specifications and code should be structured in modules of relatively small size to facilitate
understandability of large systems, increase reusability of components, and localize the effects
of system changes. In Maude, these goals are achieved by means of a module algebra that
supports parameterized programming techniques in the OBJ3 style [79] as well as the definition
of module hierarchies, i.e., acyclic graphs of module importations; that is, each functional or
system module can import other Maude modules as submodules. Since the submodule relation
is transitive, we can in this way develop module hierarchies. Mathematically, we can think
of such hierarchies as partial orders of theory inclusions, that is, the theory of the importing
module contains the theories of its submodules as subtheories.

As in Clear [21], OBJ [79], and other specification languages in that tradition, the abstract
syntax for writing specifications in Maude can be seen as given by module expressions, where
the notion of module expression is understood as an expression that defines a new module
out of previously defined modules by combining and/or modifying them according to a spe-
cific set of operations. In fact, structuring is essential in all specification languages, not only
to facilitate the construction of specifications from already existing ones—with more or less
flexible reusability mechanisms—but also for managing the complexity of understanding and
analyzing large specifications. Maude supports module operations for summation, renaming,
and instantiation of parameterized modules.

Section 6.1 introduces module importations and the different modes in which such impor-
tations can take place. Section 6.2 discusses the summation and renaming module expressions.
Section 6.3 introduces parameterized programming, including the use of theories and views,
the parameterization of functional and system modules, and the instantiation of parameterized
modules. We refer to [44, 52, 53] for a deeper discussion on the semantics of the Maude module
operations.

6.1 Module importation

Recall that a functional module M specifies a membership equational theory of the form (Σ, E∪
A), with Σ its signature, A the equational attributes specified for its operators, and E its set of
equations and memberships. A submodule M ′ of M is either a module directly imported by M ,
or a submodule of one of the modules directly imported by M . Then M ′ specifies a membership
equational subtheory (Σ′, E′ ∪A′) ⊆ (Σ, E ∪A). Specifically, we have three inclusions: Σ′ ⊆ Σ,
E′ ⊆ E, and A′ ⊆ A. Furthermore, since in Maude subsort-overloaded operators must have
the same equational attributes, Maude will enforce that the inclusion A′ ⊆ A satisfies this

105

106 CHAPTER 6. MODULE OPERATIONS

property.

In a similar way, a system module Q specifies a rewrite theory (Σ, E∪A, φ,R). A submodule
Q′ of Q will likewise specify a rewrite subtheory (Σ′, E′ ∪ A′, φ′, R′) ⊆ (Σ, E ∪ A, φ,R). This
means that we have inclusions Σ′ ⊆ Σ, E′ ⊆ E, A′ ⊆ A (again, with the same equational
attributes for subsort-overloaded operators), φ′ ⊆ φ, and R′ ⊆ R, where φ′ ⊆ φ is an inclusion
of functions and means that the freezing function φ extends the function φ′. Note that Q′ could
be a functional module, which is then understood as the rewrite theory (Σ′, E′∪A′, φ′, ∅), where
φ′ specifies whatever freezing information has been given to the operators of Σ′ in Q′. A system
module cannot be imported into a functional module.

In Maude, a module—any module expression giving rise to a module—can be imported as
a submodule of another in three different modes: protecting, extending, or including. This
is done with the syntax declarations

protecting 〈ModuleExpression〉 .

extending 〈ModuleExpression〉 .

including 〈ModuleExpression〉 .

which can be abbreviated, respectively, to

pr 〈ModuleExpression〉 .

ex 〈ModuleExpression〉 .

inc 〈ModuleExpression〉 .

In addition to being allowed as arguments of a protecting, extending, or including

importation, module expressions can also appear as the source or target of a view (see Sec-
tion 6.3.2), or as the parameter of a module, provided the top level is a theory (see Section 6.3.3).

Each of the importation modes places specific semantic constraints on the corresponding
inclusion between the theory of the submodule and that of the supermodule. The user must
be aware that, as explained later, the Maude system does not check that these constraints are
satisfied, that is, the different modes of importation can be understood as promises by the user,
which would need to be proved by him/herself. Although those importation modes have no
effect operationally, they do crucially affect the interpretation given to a module by the theorem
proving tools. If a user is doubtful about the appropriate importation mode the default should
be to use the including mode, which places weaker requirements on the importation.

Importation statements take a module expression as argument, which may be a module
name, the summation of module expressions, the renaming of a module expression, or the
instantiation of a parameterized module expression. Modules are constructed for each subex-
pression of a module expression, and so each submodule signature must be legal. Modules and
module expressions are cached both to save time and so that the same module corresponding
to a module expression will not be imported twice via a diamond of imports. Mutually or self
recursive imports occurring through module expressions are detected and disallowed. Cached
modules generated by module expressions that no longer have any users (if the module(s) con-
taining the module expression have been replaced) are deleted. When a module M used in
a module expression is modified, any modules generated for module expressions that depend
on M are deleted and any modules that depend on M are reevaluated if you attempt to use
them. Here the notion of “depends on” is transitive through arbitrary nesting of importation
and module expressions.

In addition to being imported by the explicit importation statements we have just intro-
duced, modules can be imported in an implicit way (also in the three possible modes) by
means of commands set protect/extend/include module on/off; see more details in Sec-
tion 23.15 and the detailed example in Section 7.1.

6.1. MODULE IMPORTATION 107

6.1.1 Protecting

Importing a module M ′ into M in protecting mode intuitively means that no junk and no
confusion are added to M ′ when we include it in M . For example, we may import the module
NAT of natural numbers into a module FOO. “Junk” would be added to NAT if in FOO we have
new ground terms in canonical form in any of the sorts in NAT, namely Nat and NzNat. For
example, FOO may have declared a constant infinity of sort NzNat to which no equations apply.
“Confusion” would be added if different natural numbers are now identified. For example, if
FOO contains the equation s s 0 = 0, then all even numbers will be identified with 0 and all
odd numbers with s 0.

Let us explain the semantics of the protecting relation in more detail for functional modules
M ′ and M , where M ′ has been imported as a submodule in protecting mode, either by an
explicit protecting importation in M , or transitively through one of M ’s submodules. Let
(Σ′, E′ ∪ A′) ⊆ (Σ, E ∪ A) be the theory inclusion defined by the module inclusion M ′ ⊆ M .
Notice that the existence of the inclusions Σ′ ⊆ Σ, E′ ⊆ E, and A′ ⊆ A means that for each
sort s′ in Σ′ there is a well-defined function

qs′ : TΣ′/E′∪A′,s′ −→ TΣ/E∪A,s′

mapping the equivalence class [t]E′∪A′ of a ground term t to the equivalence class [t]E∪A. By
definition, the submodule inclusion M ′ ⊆M is protecting if and only if for each sort s′ in Σ′ the
above function is bijective. This captures mathematically the “no junk” (surjectivity) and “no
confusion” (injectivity) ideas. Under our ground Church-Rosser and termination assumptions
for M ′ and M this also means that the canonical form of any ground Σ′-term t in M ′ that has
a sort in Σ′ must be the same as its canonical form in M . The requirement that t must have
a sort is crucial. We do not require that for k′ a kind the map

qk′ : TΣ′/E′∪A′,k′ −→ TΣ/E∪A,k′

is bijective. The reason is that the notion of defined function—that is, an operator that disap-
pears and leaves just a term with constructors—is only meaningful when the result has a sort.
The same operator may not disappear for error terms at the kind level. That is, in the module
M extending M ′ there may easily be new error terms of kind k′ created by new operators in
M . For example, if we import the module NAT into the module RAT of rational numbers, the
sorts Nat and Rat belong to the same kind, but there are now new error terms in the kind, such
as 3 + 7/0. Therefore, we should not care about “error junk” being added by a supermodule
at the kind level, provided that the sorts themselves are protected.

For system modules the protecting requirement is interpreted exactly as before as far as
their underlying equational theories are concerned. That is, if Q protects Q′ and the associated
theory inclusion is (Σ′, E′ ∪A′, φ′, R′) ⊆ (Σ, E ∪A, φ,R), then the equational theory inclusion
(Σ′, E′ ∪A′) ⊆ (Σ, E ∪A) must be protecting. We furthermore require that for any two ground
Σ′-terms t and t′ we can reach t′ from t by a sequence of rewrites in the module M ′ if and
only if we can do so in the module M ; that is, for ground terms in M ′ we require that the
reachability relation is not altered by the supermodule.

Of course, the protecting assertion cannot be checked by Maude at runtime: it requires in-
ductive theorem proving. Using the proof techniques in [17] together with an inductive theorem
prover for membership equational logic and a Church-Rosser checker such as those described in
[54, 56, 30] (which are available in the Maude formal tool environment together with other use-
ful tools for termination and sufficient completeness), this can be done for functional modules.
Using the fact that initial models of rewrite theories are also models of equational theories [19],
similar proof techniques could be developed to prove the protecting relation between rewrite
theories.

108 CHAPTER 6. MODULE OPERATIONS

6.1.2 Extending

A weaker, yet substantial, requirement about a module importation is expressed by the key-
word extending. Intuitively, the idea is to allow “junk,” but to rule out confusion. Extending
importations may appear naturally in situations in which the data of some sort is extended
with new data elements, yet not identifying previously defined data, like adding a new constant
infinity to the natural numbers in a module importing NAT. As another example, when defin-
ing the semantics of a programming language in Maude, we can have from the beginning a sort
Program, and define incrementally the syntax of programs in several modules, say, EXPRESSION,
STATEMENT, PROCEDURE, and so on. This will typically give rise to a family of extending module
importations as more syntax is added.

For functional modules M ′ and M , where M ′ has been imported as a submodule in
extending mode, either by an explicit extending importation in M , or transitively through
one of M ’s submodules, if (Σ′, E′ ∪ A′) ⊆ (Σ, E ∪ A) is the theory inclusion defined by the
module inclusion M ′ ⊆ M , the extending requirement means that for each sort s′ in Σ′ the
function

qs′ : TΣ′/E′∪A′,s′ −→ TΣ/E∪A,s′

is injective. For system modules the extending requirement is interpreted exactly as before
as far as their underlying equational theories are concerned. That is, if Q extends Q′ and the
associated theory inclusion is (Σ′, E′∪A′, φ′, R′) ⊆ (Σ, E ∪A, φ,R), then the equational theory
inclusion (Σ′, E′ ∪ A′) ⊆ (Σ, E ∪ A) must be extending. We furthermore require that for any
two ground Σ′-terms t and t′ we can reach t′ from t by a sequence of rewrites in the module M ′

if and only if we can do so in the module M ; that is, for ground terms in M ′ the reachability
relation is not altered by the supermodule.

Under the Church-Rosser and termination assumptions, the extending (Σ′, E′ ∪ A′) ⊆
(Σ, E ∪ A) requirement is a form of conservative extension requirement, in the sense that it
implies that for any Σ′ ground terms t and t′ that have a sort in (Σ′, E′ ∪ A′), E′ ∪ A′ proves
t = t′ if and only if E ∪A proves t = t′. In addition, for system modules it further implies that
for any two ground Σ′-terms t and t′ the reachability relation is not altered by the extension.
In summary, equality and reachability are conservatively preserved for ground terms.

Note that the extending relation does not destroy protecting importations further down the
hierarchy. That is, if M imports M ′ in extending mode, but M ′ imports M ′′ in protecting

mode, then M still imports M ′′ in protecting mode, not in extending mode. If we do not
want M to protect M ′′ (because this is indeed violated), then we have to say so by explicitly
giving an extending importation declaration for M ′′ in M .

6.1.3 Including

The most general form of module importation is provided by the including keyword. No
requirements are made in an including importation about maps of the form qs′ : there can now
be junk (lack of surjectivity) and/or confusion (lack of injectivity). Likewise, for system modules
it is not anymore required that the reachability relation between ground terms in the submodule
is preserved. The including keyword does however impose some requirements. First of all,
there is the requirement that the equational attributes of subsort-overloaded operators must
be the same. Furthermore, the including relation does not destroy protecting or extending
importations further down the hierarchy. That is, if M imports M ′ in including mode, but M ′

imports M ′′ in protecting (resp. extending) mode, then M still imports M ′′ in protecting

(resp. extending) mode, not in including mode. If we do not want M to protect or extend
M ′′ (because this is indeed violated), then we have to say so by explicitly giving an including

importation declaration for M ′′ in M .

6.1. MODULE IMPORTATION 109

Given that, as already mentioned, there is no difference at runtime between the different
modes of importation because the Maude system does not check the corresponding require-
ments, from a pragmatic point of view, when a user is doubtful about the appropriate impor-
tation mode, the best idea is to use the including mode so that at least no false assertion is
made.

6.1.4 Default conventions in module importations

We have already explained our default convention when a submodule M0 is imported indirectly
and transitively into M through the direct importation by M of a module M1 that itself imports
M0. Then, whatever was the mode (protecting, extending, or including) in which M0 was
imported by M1 is also, by default, the mode in which M0 is imported by M , unless M contains
an explicit declaration importing M0 in a different mode. We now explain what our default
convention is in the case of diamond importations.

We talk of a diamond importation of M0 by M , when M0 is imported indirectly by M
through the direct importation of two or more different modules, say M1,M2, . . . ,Mk. The
problem now is that M0 can be imported by each of the modules M1,M2, . . . ,Mk in different
modes. For example, M1 could import it in protecting mode, M2 in extending mode, M3 in
including mode, and so on. What should now be the default convention for the mode in which
M imports M0? We adopt a convention that is consistent with a logical understanding of such
importation declarations. Indeed, such declarations impose semantic constraints of decreasing
strength; that is, we have:

protectingM0 ⇒ extendingM0 ⇒ includingM0.

The default convention consistent with this logical reading is that the strongest mode wins, i.e.,
protecting prevails over extending, which itself prevails over including. This is because we
view the set of all such importing mode declarations as a conjunction, and exploit the logical
equivalence between A⇒ B and (A ∧B)⇔ A.

Note that this “strongest wins” default mode may not always be the correct or intended
mode in which M should import M0. Sometimes it may not be, and then the user should
overrule the default convention by declaring explicitly a different mode in which M imports
M0. A pragmatic reason why this need for overruling the default mode may arise is that,
although a weaker mode of importation (say extending) does not logically preclude such an
importation also satisfying a stronger one (say protecting), in practice, when we declare an
importation in a weaker mode it can often be because we know or suspect that it fails to satisfy
a stronger mode. For example, when we say “extending” we may often mean “extending and
not protecting.”

6.1.5 Some module hierarchy examples

Prime numbers sieve

Section 4.4.7 included a functional module specifying the sieve of Eratosthenes to calculate
prime numbers.

fmod SIEVE is

protecting NAT .

sort NatList .

subsort Nat < NatList .

...

endfm

110 CHAPTER 6. MODULE OPERATIONS

The predefined module of natural numbers (see Section 7.2) is imported in protecting

mode. This is justified because the elements of sort Nat are used to generate the lists of natural
numbers by means of a subsort declaration and also as arguments of other operators. However,
no new operator of result sort Nat is added in the SIEVE module, and all the equations in this
module identify elements of sort NatList without identifying different natural numbers.

Vending machine

The vending machine example in Section 5.1 was presented in a modular way, by separating the
underlying signature defining the states of the machine from the rules defining the corresponding
transitions.

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

...

endm

It is important to notice that in this example the importation mode cannot be either
protecting or extending, because those modes require preservation of the reachability re-
lation, which clearly is not the case when adding (non-identity) rewrite rules to a functional
module (where the reachability relation is the identity).

Bank accounts and object configurations

Later, in Section 8.1, devoted to the definition of configurations of objects and messages for
object-based programming, we will present several modules where additional data are intro-
duced in order to run some tests. For example, the following module introduces three new
constants to be used as object identifiers, and a new constant to be used as a test configu-
ration. This configuration constant is identified with a term of sort Configuration in the
imported module BANK-ACCOUNT by means of an equation whose righthand side is omitted be-
low. However, constants A-001, A-002, and A-003 are new data elements, i.e., junk, of sort
Oid. The sort Oid was declared in the module CONFIGURATION, but since it was imported
in including mode in BANK-ACCOUNT, it is not necessary to import it in a different mode.
Therefore, the appropriate importation mode is extending.

mod BANK-ACCOUNT-TEST is

ex BANK-ACCOUNT .

ops A-001 A-002 A-003 : -> Oid .

op bankConf : -> Configuration .

eq bankConf =

endm

The following example, from Section 8.3, is more interesting, in that it introduces new sorts
MsgBody and Request, not just new constants for a sort in the imported module. Still, the
appropriate importation mode is extending because there are no new rewrite rules and no
equations, and thus no confusion between elements in imported sorts is introduced.

mod DATA-AGENTS-CONF is

ex CONFIGURATION .

sort MsgBody .

op msg : Oid Oid MsgBody -> Msg [ctor message] .

sort Request .

op w4 : Oid Oid MsgBody -> Request [ctor] .

endm

6.2. MODULE SUMMATION AND RENAMING 111

There are several other modules in Chapter 8 illustrating the use of the extending mode
in importing modules, like BANK-MANAGER-TEST, TICKER-TEST, TICKER-FACTORY-TEST, and
AGENT-TEST; see Figures 8.1, 8.2, and 8.3.

Hierarchy of predefined modules

A more complex acyclic importation graph corresponds to the hierarchy of predefined modules
for basic data types, described later in Chapter 7 and shown in Figure 7.1, where all the
importations are in protecting mode.

6.2 Module summation and renaming

6.2.1 The summation module expression

The summation module operation creates a new module that includes all the information in its
summands. The syntax for a summation of module expressions is

ModuleExpression + ModuleExpression

with + associative and commutative.
Summation expressions are flattened before being evaluated, so that A + (B + C) and

(C + A) + B both create a single new module A + B + C, The evaluation of a summation
module expression results in the creation of a new module, with such a module expression as
its name, which imports the module expressions being combined. The new module will be gen-
erated having one type or another, depending on the types of the arguments of the summation
module expression. A summation is a functional module if all the summands are functional
modules and a system module otherwise.

Although the use of the summation module expression is more interesting in combination
with other module expressions, let us consider as an example the following module, in which
the union of the predefined FLOAT and STRING modules (see Chapter 7) are imported together
in protecting mode to illustrate its use.

fmod FLOAT-STRING is

protecting FLOAT + STRING .

...

endfm

Notice that a declaration

protecting A + B .

is not equivalent to a sequence of declarations

protecting A .

protecting B .

because in general the modules A and B may share sorts and operators. The same happens with
extending declarations, for the same reason. However, a declaration of the form

including A + B .

is indeed equivalent to a sequence of declarations

including A .

including B .

112 CHAPTER 6. MODULE OPERATIONS

6.2.2 Module renaming

The syntax of a renaming module expression is

〈ModuleExpression〉 * (〈Renaming〉)

where 〈Renaming 〉 is a comma-separated sequence of renaming items of the forms:

sort 〈identifier〉 to 〈identifier〉
op 〈identifier〉 to 〈identifier〉
op 〈identifier〉 to 〈identifier〉 [〈attribute-set〉]

op 〈identifier〉 : 〈type-list〉 -> 〈type〉 to 〈identifier〉
op 〈identifier〉 : 〈type-list〉 -> 〈type〉 to 〈identifier〉

[〈attribute-set〉]

label 〈identifier〉 to 〈identifier〉

Renaming (_*(_)) binds tighter than summation (_+_), and it groups to the left. Note
that, in addition to the typical renamings of sorts and operators, renaming of labels is also
supported (which may be useful for metalevel applications). Note also how the renaming of
operators allows changing the attributes of the operator being renamed. The only attributes
currently allowed in operator maps are prec, gather, and format. The idea is that when
you rename an operator, the old syntactic properties may no longer be legal and are reset to
defaults, unless you explicitly set them with these attributes; for example, when a change in
the syntax of the operator could cause a parsing different from the intended one. Let us see an
example in which modifying the grammatical attributes of an operator is useful. Consider the
following module defining lists of natural numbers with a max operator returning the greatest
of the elements in a list of natural numbers.

fmod NAT-LIST-MAX is

pr NAT .

sort NeNatList .

subsort Nat < NeNatList .

op __ : NeNatList NeNatList -> NeNatList [ctor assoc] .

op max : NeNatList -> Nat .

var N : Nat .

var NL : NeNatList .

eq max(N) = N .

eq max(N NL) = if N > max(NL) then N else max(NL) fi .

endfm

We may obtain the maximum of a list of natural numbers as follows.

Maude> red max(4 2 5 3) .

result NzNat: 5

Suppose now that we want to change the syntax of the function max in the NAT-LIST-MAX

module above to maximum_.

fmod NAIVE-NAT-LIST-MIXFIX-MAX is

pr NAT-LIST-MAX * (op max : NeNatList -> Nat to maximum_) .

endfm

We can do the following reduction:

Maude> red maximum 2 3 4 1 .

result NeNatList: 2 3 4 1

This result may seem strange, but it makes perfect sense. What has happened is that it has
been parsed as (maximum 2) 3 4 1, the only possible parse given the default precedence values

6.2. MODULE SUMMATION AND RENAMING 113

and gathering patterns assigned. Since by default maximum_ has precedence 15 and gathering E,
it cannot take the list 2 3 4 1 as argument because __ has precedence 41. However, since __

has gathering e E, maximum 2 is a valid argument for it (see Section 3.9 for a detailed discussion
on the use of precedence values and gathering patterns and their default values). We can of
course obtain the intended result by placing parentheses around the set of numbers,

Maude> red maximum (2 3 4 1) .

result NzNat: 4

but it is more convenient to change the precedence values of the operators. We can, for example,
raise the precedence of maximum_.

fmod NAT-LIST-MIXFIX-MAX is

pr NAT-LIST-MAX

* (op max : NeNatList -> Nat to maximum_ [prec 41]) .

endfm

having then the following reduction.

Maude> red maximum 2 3 4 1 .

result NzNat: 4

Notice that if maximum_ has precedence 41, then (maximum 2) 3 4 1 is no longer a valid parse.

A renaming can be considered as a function that, given a module M and a list of mappings
S, returns a copy of the module, with such a module expression as its name, in which the
names of sorts, operators, etc. are changed as indicated by the mappings. However, renaming
a module that has imports is a subtle issue. Given a structured specification, the renaming not
only causes the creation of a copy of the top module in the structure, but renames also the part
of the submodule structure that is affected by the renaming. For any other submodule M ′ in
the structure which is affected by the mappings, a renamed copy of it is generated with name
M ′ * (S′), where S′ is the subset of mappings in S that affect M ′.

A module expression A * (R) evaluates to A if A has no content that is affected by the
renaming R. Otherwise A * (R) evaluates to a new module A * (R′) where R′ is obtained
by deleting those renaming items that do not affect A, and canonizing the types in operator
renamings with respect to A (see below). If A imports modules B and C, A * (R′) will import
modules obtained by evaluating B * (R′) and C * (R′).

There are some subtle cases. Consider for example the following three modules:

fmod RENAMING-EX-A is

sort Foo .

op a : -> Foo .

op f : Foo -> Foo .

endfm

fmod RENAMING-EX-B is

including RENAMING-EX-A .

sort Bar .

subsort Foo < Bar .

op f : Bar -> Bar .

endfm

fmod RENAMING-EX-C is

inc RENAMING-EX-B * (op f : Bar -> Bar to g) .

endfm

114 CHAPTER 6. MODULE OPERATIONS

Here, the operator f in the module RENAMING-EX-A looks as though it is not affected by the
renaming in the module RENAMING-EX-C, but because of the subsort declaration Foo < Bar in
RENAMING-EX-B, it should be renamed for consistency. This is internally handled by the Maude
system by canonizing the type Bar occurring in the renaming

op f : Bar -> Bar to g

to the kind expression [Foo,Bar], which includes all of the sorts in the kind [Bar] occurring
in RENAMING-EX-B. Thus, the module expression

RENAMING-EX-B * (op f : Bar -> Bar to g)

evaluates to a new module

RENAMING-EX-B * (op f : [Foo,Bar] -> [Foo,Bar] to g)

which includes the module expression

RENAMING-EX-A * (op f : [Foo,Bar] -> [Foo,Bar] to g)

which evaluates to a new module

RENAMING-EX-A * (op f : [Foo] -> [Foo] to g)

in which f has been renamed.

In general, * does not distribute over +. Consider this other example:

fmod RENAMING-EX-D is

sorts Foo Bar .

endfm

fmod RENAMING-EX-E is

inc RENAMING-EX-D .

op f : Foo -> Foo .

endfm

fmod RENAMING-EX-F is

inc RENAMING-EX-D .

subsort Foo < Bar .

op f : Bar -> Bar .

endfm

It is not the case that the module expressions

(RENAMING-EX-E + RENAMING-EX-F) * (op f : Bar -> Bar to g)

and

(RENAMING-EX-E * (op f : Bar -> Bar to g))

+ (RENAMING-EX-F * (op f : Bar -> Bar to g))

evaluate to the same module, because in the latter the operator f occurring in RENAMING-EX-E

will not be renamed, since f : Bar -> Bar does not occur in RENAMING-EX-E.

Operators with the poly attribute are only affected by operator renamings that do not
specify types. Renaming a module does not change its module type, that is, renamed functional
modules (resp. system modules) remain functional (resp. system).

6.3. PARAMETERIZED PROGRAMMING 115

6.3 Parameterized programming

Theories, parameterized modules, and views are the basic building blocks of parameterized
programming [21, 79]. As in OBJ, a theory defines the interface of a parameterized module,
that is, the structure and properties required of an actual parameter.

A parameterized module is a module with one or more parameters, each of which is expressed
by means of one theory, that is, modules can be parameterized by one or more theories. If we
want, e.g., to define a list or a set of elements, we may define a module LIST or SET parameterized
by a theory expressing the requirements on the type of the elements to store in such data
structures. Thus, theories are used to declare the interface requirements for parameterized
modules. In the case of lists and sets we do not need any requirement on the data elements,
and therefore we may use the trivial theory TRIV, with just a sort Elt, as parameter of such
modules; but in other cases, say search trees or sorted lists, we may require, e.g., a particular
operator, an order relation, or an equivalence relation, in which cases we shall need to use the
appropriate theories describing the specific requirements.

The instantiation of the formal parameters of a parameterized module with actual parameter
modules or theories requires a view mapping entities from the formal interface theory to the
corresponding entities in the actual parameter module. Views can also be parameterized, which,
as we can see in Section 6.3.7, may greatly improve reusability of specifications

6.3.1 Theories

Theories are used to declare module interfaces, namely the syntactic and semantic properties to
be satisfied by the actual parameter modules used in an instantiation. As for modules, Maude
supports two different types of theories: functional theories and system theories, with the same
structure of their module counterparts, but with a different semantics. Functional theories are
declared with the keywords fth ... endfth, and system theories with the keywords th ...

endth. Both of them can have sorts, subsort relationships, operators, variables, membership
axioms, and equations, and can import other theories or modules. System theories can also
have rules. Although there is no restriction on the operator attributes that can be used in a
theory, there are some subtle restrictions and issues regarding the mapping of such operators
(see Section 6.3.2).

Like functional modules, functional theories are membership equational logic theories, but
they do not need to be Church-Rosser and terminating, and therefore some or all of their
statements may be declared with the nonexec attribute. Theories have a loose semantics, in
the sense that any algebra satisfying the equations and membership axioms in the theory is
an acceptable model. However, functional theories can be executed in exactly the same way
as functional modules; that is, the equations and membership axioms not having the nonexec

attribute should be Church-Rosser and terminating, and can be executed by equational simpli-
fication, whereas the statements declared as nonexec can be arbitrary and can only be executed
in a controlled way at the metalevel. System theories have a similar loose interpretation, but are
treated just as system modules for executability purposes. Theories are then allowed to contain
rules and equations which, if declared with the nonexec attribute, can be arbitrary, that is, can
have variables in their righthand sides or conditions that may not appear in their corresponding
lefthand sides and do not obey the admissibility conditions in Sections 4.6 and 5.3. Similarly,
conditional membership axioms may have variables in their conditions that do not appear in
their head membership assertions. Also, the lefthand side may be a single variable.

Let us begin by introducing the functional theory TRIV, which requires just a sort.

fth TRIV is

116 CHAPTER 6. MODULE OPERATIONS

sort Elt .

endfth

The theory TRIV is used very often, for instance in the definition of data structures, such as
lists, sets, trees, etc., of elements of some type with no specific requirement; in these cases, it
is common to define a module, say LIST, SET, TREE, etc., parameterized by the TRIV theory
(see Section 6.3.3). The theory TRIV is predefined in Maude, together with several useful views
from TRIV to other predefined modules and theories (see Section 7.12.1).

But we can define more interesting theories. For example, the theory of monoids, with an
associative binary operator with identity element 1, can be specified as follows:

fth MONOID is

including TRIV .

op 1 : -> Elt .

op __ : Elt Elt -> Elt [assoc id: 1] .

endfth

Notice the importation of the theory TRIV into the MONOID theory. As for modules, it is
possible to structure our theories by importing other theories and modules (and in general
module expressions involving theories and modules) into theories. However, a theory cannot
be imported into a module: theories can only be used as parameters of modules. Also, theories
do not have automatic importation as modules do (e.g., BOOL, as described in Section 7.1).

Modules and theories can be combined in module expressions (they can be summed, for
example), and modules can be imported into theories. Basically, we have a lattice

system theory

functional theory system module

functional module

�
���

HH
HH

H
HHH

��
��

where summation corresponds to join, and where a module or theory may only import a sub-
module or subtheory of lesser or equal type.

Although the importation of a module into a theory can be done in any mode, a theory can
only be imported in including mode into another theory. The including importation of a
theory into another theory keeps its loose semantics. However, the importation of a theory into
another one in protecting or extending mode would imply additional semantic requirements;
such modes of importation are ruled out.1 On the other hand, although a module keeps its
initial interpretation when imported into a theory in protecting or extending modes, it looses
it if imported in including mode.

Let us see a few examples illustrating all this.
The theory of commutative monoids can be defined just as the theory of monoids; the binary

operator _+_ is now declared associative, commutative, and has 0 as its identity element.

fth +MONOID is

including TRIV .

op 0 : -> Elt .

op _+_ : Elt Elt -> Elt [assoc comm id: 0] .

endfth

1If a theory is imported using a mode other than including, the system gives an error message saying that
the mode is being treated as if it were including. Other illegal importations give an error message saying that
they are being ignored.

6.3. PARAMETERIZED PROGRAMMING 117

The theory of semirings can be expressed as follows.

fth SEMIRING is

including MONOID .

including +MONOID .

vars X Y Z : Elt .

eq X (Y + Z) = (X Y) + (X Z) [nonexec] .

eq (X + Y) Z = (X Z) + (Y Z) [nonexec] .

endfth

Note the use of the nonexec attribute, and note also that given the semantics of theory
inclusions, there is no difference between having a structured theory or one flat theory including
all the declarations.2 For example, the theory of commutative rings can be defined directly as
follows:

fth RING is

sort Ring .

ops z e : -> Ring .

op _+_ : Ring Ring -> Ring [assoc comm id: z] .

op _*_ : Ring Ring -> Ring [assoc comm id: e] .

op -_ : Ring -> Ring .

vars A B C : Ring .

eq A + (- A) = z [nonexec] .

eq A * (B + C) = (A * B) + (A * C) [nonexec] .

endfth

but could also be defined as a structured theory including the theories of commutative groups
and commutative monoids (renamed if necessary), to which the distributivity axiom is added.

As mentioned above, the including importation of a theory into another theory keeps its
loose semantics. However, if the imported theory contains a module, which therefore must be
interpreted with an initial semantics (see Section 5.3), then that initial semantics is maintained
by the importation. For example, in the definition of the TAOSET theory below, the declaration
protecting BOOL ensures that the initial semantics of the functional module for the Booleans
is preserved, which is in fact a crucial requirement.

Let us consider now a hierarchy of theories for partially and totally ordered sets. The most
basic theory specifies a transitive and antisymmetric order _<_ on a set:

fth TAOSET is

protecting BOOL .

sort Elt .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

ceq X = Y if X < Y /\ Y < X [nonexec label antisymmetric] .

endfth

By adding irreflexivity to TAOSET we get a theory specifying a strict partial order:

fth SPOSET is

including TAOSET .

var X : Elt .

eq X < X = false [nonexec label irreflexive] .

2The only exception to this semantic equivalence between structured theories and their flattened form is the
case in which a theory imports some modules, since any of the protecting or extending initiality requirements
of the imported module and its submodules must be preserved. Those requirements would be lost if the whole
structure were to be flattened.

118 CHAPTER 6. MODULE OPERATIONS

endfth

Notice that in this case antisymmetry is implied by irreflexivity and transitivity. Of course,
there are different ways of presenting a theory, and in particular one can always write the corre-
sponding flat theory with only the axioms for irreflexivity and transitivity. In the presentation
above, the initial semantics of BOOL when it is imported in protecting mode in TAOSET is
preserved when the latter is included in SPOSET. The same will hold in further importations in
this hierarchy of order theories.

On the other hand, by adding reflexivity to TAOSET we get a theory specifying a non-strict
partial order. Notice the renaming in the importation, so that the name of the order _<=_

reflects its reflexivity.

fth NSPOSET is

including TAOSET * (op _<_ to _<=_) .

var X : Elt .

eq X <= X = true [nonexec label reflexive] .

endfth

Having both _<_ and _<=_ available together is useful in some applications. There are
standard ways of associating a strict partial order with a non-strict partial order and the other
way around:

• from a < b, one can define a ≤ b as equivalent to a < b or a = b; and

• from a ≤ b, one can define a < b as equivalent to a ≤ b and a 6= b.

These equivalences can be expressed as Maude theories as follows, where we use the same name
for both theories because they are equivalent, that is, we have two different presentations of
the same theory and in what follows we will not care about which version of POSET is used.

fth POSET is

including SPOSET .

op _<=_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X <= X = true [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth

fth POSET is

including NSPOSET .

op _<_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X < X = false [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth

Notice that the axioms are almost the same in both presentations of POSET, but, while the
first presentation defines the reflexive order _<=_ in terms of the irreflexive one _<_, the second
presentation defines the irreflexive order _<_ in terms of the reflexive one _<=_.

To each of the previous theories we can add an axiom requiring the order to be total (or
linear), that is, two different elements have to be related one way or the other. In this way, we
have the following theories for a strict total order, a non-strict total order, and a total order
with both operations.

6.3. PARAMETERIZED PROGRAMMING 119

TOSET

NSTOSETSTOSET POSET

NSPOSETSPOSET

TAOSET

BOOL

Figure 6.1: Hierarchy of order theories

fth STOSET is

including SPOSET .

vars X Y : Elt .

ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth

fth NSTOSET is

including NSPOSET .

vars X Y : Elt .

ceq X <= Y = true if Y <= X = false [nonexec label total] .

endfth

fth TOSET is

including POSET .

vars X Y : Elt .

ceq X <= Y = true if Y <= X = false [nonexec label total] .

endfth

As already mentioned above, the requirement ensuring the initial semantics of BOOL when it
is protected in TAOSET is then preserved by the remaining theories when TAOSET is included in
them via a chain of including importations. In fact, we are dealing with structures in which
part of them, not only the top theory, has a loose semantics, while other parts contain modules
with an initial semantics.

This hierarchy of order theories is displayed in Figure 6.1, where we represent by boxes
the modules (with initiality constraints), by ovals the theories (with loose semantics), by triple
arrows the protecting importations, and by single arrows the including importations.

Finally, as an example of a system theory, let us consider the theory CHOICE of bags of
elements with a choice operator defined on the bags by a rewrite rule that nondeterministically
picks up one of the elements in the bag. We can specify this theory as follows, where we have
a sort Bag declared as a supersort of the sort Elt.

120 CHAPTER 6. MODULE OPERATIONS

th CHOICE is

sorts Bag Elt .

subsort Elt < Bag .

op empty : -> Bag .

op __ : Bag Bag -> Bag [assoc comm id: empty] .

op choice : Bag -> Elt .

var E : Elt .

var B : Bag .

rl [choice] : choice(E B) => E .

endth

6.3.2 Views

We use views to specify how a particular target module or theory is claimed to satisfy a source
theory. In general, there may be several ways in which such requirements might be satisfied, if
at all, by the target module or theory; that is, there can be many different views, each specifying
a particular interpretation of the source theory in the target. Each view declaration has an
associated set of proof obligations, namely, for each axiom in the source theory it should be the
case that the axiom’s translation by the view holds true in the target. Since the target can be
a module interpreted initially, verifying such proof obligations may in general require inductive
proof techniques of the style supported for Maude’s logic in [30], and for which tools in the
Maude formal environment can be used. Such proof obligations are not discharged or checked
by the system.

In the definition of a view we have to indicate its name (which has to be a single identifier,
as defined in Section 3.1), the source theory, the target module or theory, and the mapping
of each sort and operator in the source theory. The name space of views is separate from the
name space of modules and theories, which means that, e.g., a view and a module could have
the same name. In fact, we shall see below how we recommend naming inclusion views as the
target theory. The source and target of a view can be any module expression, with the source
module expression evaluating to a theory and the target module expression evaluating to a
module or a theory.

The syntax for views is as follows:

view 〈ViewName〉 from 〈Source〉 to 〈Target〉 is

〈Mappings〉
endv

The mapping of a sort in the source theory to a sort in the target module or theory is
expressed with syntax

sort 〈identifier〉 to 〈identifier〉 .

For each sort S in the source theory, there must exist a sort S′ in the target module or theory
which is its mapping under the view; unmentioned sorts get the identity mapping. Furthermore,
if sorts S and T in the source theory are in the same kind, then their mappings S′ and T ′ under
the view must be in the same kind in the target module or theory. Finally, if S is a subsort of
T , then it must be true that S′ is a subsort of T ′.

The mapping of operators is expressed with syntax

op 〈identifier〉 to 〈identifier〉 .

op 〈identifier〉 : 〈type-list〉 -> 〈type〉 to 〈identifier〉 .

op 〈op-expr〉 to term 〈term〉 .

6.3. PARAMETERIZED PROGRAMMING 121

In the first case, where only an operator identifier is given, the map affects all operators with
the same name. Existence of appropriate operators in the target is checked for. In the second
case, when explicit arity and coarity are given, the operator map affects not only the operators
with such arity and coarity, but also the entire family of subsort-overloaded operators (see
Section 3.6) associated with the given operator. The third case is similar to the second one,
but instead of mapping the operator to another operator, it is mapped to a given term with
variables; 〈op-expr 〉 is a term consisting of a single operator applied to variables—declared
either on-the-fly or with variable declarations in the same view—and the target term is any
term with variables, those in the source 〈op-expr 〉 in the corresponding sorts resulting from
the mapping. See below for more details and examples.

Maps must preserve the arities and the types of operators, and sort maps and operator maps
must be compatible. For each operator f : S1 . . . Sn -> T in the source theory there must exist
an operator f ′ : S′1 . . . S

′
n -> T ′ in the target module or theory, where S′i is the mapping of sort

Si under such a view.
Unmentioned operators also get the identity mapping. Thus, “obvious” parts of a mapping

do not need to be explicitly given, namely, any identical mapping of a sort or operator such
that its arity and coarity are mapped to those of an operator with the same name in the target
can be omitted.3

As a first example, the following view StringAsToset defines a view from the theory TOSET,
presented in Section 6.3.1, to the predefined functional module STRING, described in Section 7.8.

view StringAsToset from TOSET to STRING is

sort Elt to String .

endv

Notice that the identity maps op _<_ to _<_ and op _<=_ to _<=_ have been omitted.
The maps sending operators to derived operators, that is, terms with variables, allow us to

map an operator, not only to another operator, but also to an expression. The view RingToRat

below is a view from the theory RING, presented in Section 6.3.1, to the predefined functional
module RAT, described in Section 7.6.

view RingToRat from RING to RAT is

sort Ring to Rat .

op e to term 1 .

op z to 0 .

endv

Notice that we have followed the convention of omitting the “obvious” parts of the map con-
cerning the operators _+_ and _*_. Furthermore, we have used an operator map sending the
operator e to the term 1, due to the fact that in RAT 1 is not a constant, but the term s_^1(0)

(see Sections 4.4.2, 7.2, and 7.6 for details). Note that the map op e to term 1 cannot be ex-
pressed with the other forms of operator maps, because 1 is not an operator, but just syntactic
sugar for the term s_^1(0).

As another example, consider the case in which we want to define a view from the theory
NSPOSET in which we have a sort Elt and a non-strict “less or equal” operator _<=_ : Elt Elt -> Bool,
to a module defining the integers with no such operator but instead with a strict operator “less
than” _<_ : Int Int -> Bool. Then, we can define a view with maps

sort Elt to Int .

op X:Elt <= Y:Elt to term X:Int < Y:Int or X:Int == Y:Int .

3In Full Maude (see Chapter 21), maps for all sorts in the source theory have to be explicitly given, even
when they are identity maps.

122 CHAPTER 6. MODULE OPERATIONS

where we have also used the predefined equality operator _==_. The lefthand side of the oper-
ator mapping, X:Elt <= Y:Elt in this case, which consists of an operator with only variable
arguments, must parse to a unique term in the source theory. Each of the variables used in the
maps must have a unique base name (e.g., using both X:Foo and X:Bar in the same argument
list is disallowed).

Also, the righthand side, X:Int < Y:Int or X:Int == Y:Int in this case, must parse to
a unique term in the target module or theory. The only variables that may occur in the target
term are those appearing in the source term; however, they may occur multiple times or not at
all. If the source term parses to a sort S or kind [S], then the target term must parse to sort
T or kind [T] such that T and the mapping of S under the view S′ belong to the same kind.

Views may also contain variable declarations. The syntax is identical to that in modules
and theories. However, its semantics is subtly different. Instead of declaring a single variable,
a declaration

var X : S .

now declares two aliases with the same name; in the lefthand side of an operator mapping, X
is an alias for X:S while in the righthand side of an operator mapping, X is an alias for X:S′,
with S′ the mapping of S under the view.

For example, we can define a view from the theory SPOSET with a strict order operation _<_

to the predefined functional module INT of integers (see Section 7.4) in such a way that the _<_

order relation of a poset is mapped to an expression using the “less than or equal” operator _<=_
on sort Int and the predefined inequality operator _=/=_ in BOOL (see Sections 7.4 and 7.1) as
follows:

view SPosetToInt from SPOSET to INT is

sort Elt to Int .

vars X Y : Elt .

op X < Y to term X <= Y and X =/= Y .

endv

Alternatively, we can specify this view without a variable declaration as

view SPosetToInt from SPOSET to INT is

sort Elt to Int .

op X:Elt < Y:Elt to term X:Int <= Y:Int and X:Int =/= Y:Int .

endv

Note that this view imposes several proof obligations to be checked by the user. In particular,
the translations by the view of the axioms in SPOSET should hold in the target. Given variables
X, Y, and Z of sort Int, the following axioms should be true in INT:

eq X <= X and X =/= X = false .

ceq X <= Z and X =/= Z = true

if X <= Y and X =/= Y /\ Y <= Z and Y =/= Z .

ceq X = Y if X <= Y and X =/= Y /\ Y <= X and Y =/= X .

Of course, since the predefined INT module indeed includes both operators _<_ and _<=_,
it is not necessary to use the feature described in the previous example. We can instead have
simpler view declarations such as the following:

view IntAsStoset from STOSET to INT is

sort Elt to Int .

endv

6.3. PARAMETERIZED PROGRAMMING 123

view IntAsToset from TOSET to INT is

sort Elt to Int .

endv

where the identity maps op _<_ to _<_ and op _<=_ to _<=_ have been omitted.
We recommend following the convention of naming views from TRIV by the name of the

sort to which Elt is mapped, when the name of this sort is not structured.4 Thus, a view from
the theory TRIV to the module INT that sends the sort Elt to Int should be named Int (as we
shall see in Section 7.12.1, the view Int is predefined in Maude).

view Int from TRIV to INT is

sort Elt to Int .

endv

This convention can add understandability to the specifications. As we will see in Section 6.3.4,
given a module LIST of lists parameterized by TRIV with a sort List{X}, once it is instantiated,
e.g., with the view Int above, the sort List{X} becomes List{Int}, defining lists of integers.
Using names of views as labels in interfaces of parameterized modules (see Section 6.3.4 below)
should be avoided, since this can sometimes generate ambiguities.

We can also have views between theories, which is particularly useful to compose instan-
tiations of views to link the formal parameter of some parameterized module to some actual
parameter via some intermediate formal parameter of another parameterized module. We will
discuss the uses of these views and give some examples in the coming sections. An example of
a view whose target is a theory is the following:

view PosetToToset from POSET to TOSET is

sort Elt to Elt .

endv

As said above, identity maps can be omitted. Thus, the following definition is equivalent to
the previous one.

view PosetToToset from POSET to TOSET is

endv

In this example the PosetToToset view represents the inclusion of the POSET theory into TOSET.
In those cases in which a view defines a theory inclusion from TRIV into another theory, we

recommend following the convention of naming the view with the name of the target theory.
An example that will be very useful later is the inclusion of TRIV into TOSET, which is expressed
as a view as follows:

view TOSET from TRIV to TOSET is

endv

Let us finish this section by commenting on some subtle issues that can arise with operator
mappings:

• Operator mappings are not applied to operators that have at least one declaration in a
module (as opposed to a theory); if a mapping applies to such an operator, an advisory is
generated. Although it does not seem to be useful, Maude does not forbid having subsort-
overloaded operators appearing in a theory and in one of its submodules. However, the
operator is considered to “belong” to the module, and therefore it cannot be mapped by
a view.

4Notice that a structured sort name, such as List{Nat} for example, cannot be used as a view name, because
it is not a single identifier; if desired, the user can write the single-identifier form List‘{Nat‘} as view name.
The convention is totally general in Full Maude; see Section 6.3.7.

124 CHAPTER 6. MODULE OPERATIONS

• assoc operators. Nested occurrences of associative operators may have been flattened,
or have been entered in a flattened way such as, for example, f(a, a, b, b). In order
to map this to an operator that has different attributes (perhaps including assoc) or to
a term, flattened occurrences will be temporarily unflattened into a regular term before
translation. The precise choice of unflattening is left unspecified.

• iter operators. Mapping an iter operator (see Section 4.4.2) to a non-iter operator
causes the efficient representation of towers of symbols to be expanded out, with a po-
tential exponential blow up. Mapping an iter operator to a term in which the single
argument variable occurs more than once causes a doubly exponential blow up. Maude
operates under the principle of “you asked for it, you got it” and if the expansion is too
large it will die with a virtual memory exhausted error.

• Built-in operators. The built-in operators for holding non-algebraically defined data
StringSymbol, FloatSymbol, and QuotedIdentifierSymbol have a special internal rep-
resentation for their terms, and can only be mapped to operators of identical type.

• Polymorphic operators. Polymorphic operators must map to polymorphic operators that
are polymorphic on the same arguments. Only generic mappings of the form f to f ′ are
considered when mapping polymorphic operators.

6.3.3 Parameterized modules

System modules and functional modules can be parameterized. A parameterized system module
has syntax

mod M{X1 :: T1 , . . . , Xn :: Tn} is ... endm

with n ≥ 1. Parameterized functional modules have completely analogous syntax.

The {X1 :: T1 , . . . , Xn :: Tn} part is called the interface, where each pair Xi ::Ti is
a parameter, and each Xi is an identifier—the parameter name or parameter label—and each
Ti is an expression that yields a theory—the parameter theory. Each parameter name in an
interface must be unique, although there is no uniqueness restriction on the parameter theories
of a module—we can have, e.g., two TRIV parameters. The parameter theories of a functional
module must be functional theories.

In a parameterized module M , all the sorts and statement labels coming from theories in its
interface must be qualified by their names. Thus, given a parameter Xi ::Ti, each sort S in Ti
must be qualified as Xi$S, and each label l of a statement occurring in Ti must be qualified as
Xi$l. In fact, the parameterized module M is flattened as follows. For each parameter Xi ::Ti,
a renamed copy of the theory Ti, called Xi ::Ti is included. The renaming maps each sort S to
Xi$S, and each label l of a statement occurring in Ti to Xi$l. The renaming percolates down
through nested inclusions of theories, but has no effect on importations of modules. Thus, if Ti
includes a theory T ′, when the renamed theory Xi ::Ti is created and included into M , and
the renamed theory Xi ::T

′ will also be created and included into Xi ::Ti.
5 However, the

renaming will have no effect on modules imported by either the Ti or T ′; for example, if BOOL
is imported by one of these theories, it is not renamed, but imported in the same way into M .

For example, a parameterized module PRELIM-SET with TRIV as interface can be defined as
follows:

5These renamed modules are visible as names when using the show modules command (see Section 23.12)
and will be shared, but they cannot be referred to directly in module expressions.

6.3. PARAMETERIZED PROGRAMMING 125

fmod PRELIM-SET{X :: TRIV} is

protecting BOOL .

sorts Set NeSet .

subsorts X$Elt < NeSet < Set .

op empty : -> Set .

op _,_ : Set Set -> Set [assoc comm id: empty] .

op _,_ : NeSet NeSet -> NeSet [ditto] .

op _in_ : X$Elt Set -> Bool .

op _-_ : Set Set -> Set . *** set difference

var E : X$Elt .

vars S S’ : Set .

eq E, E = E .

eq E in E, S = true .

eq E in S = false [owise] .

eq (E, S) - (E, S’) = S - (E, S’) .

eq S - S’ = S [owise] .

endfm

In Maude—unlike OBJ3 and other similar languages—sorts are not systematically qualified
by their module name. This convention of not qualifying sorts may be particularly weak when
dealing with parameterized modules. However, given that Maude supports ad-hoc overload-
ing and that constants can be qualified in order to be disambiguated (see Section 3.9.3), the
problem of ambiguity in a signature is reduced to collisions of sorts. For example, in a module
one may very easily need sets of integers and sets of quoted identifiers, in which case, given
the specification of the PRELIM-SET module above, we would get two Set sorts from different
importations which would be confused into one sort. Our solution consists in qualifying pa-
rameterized sorts, not with the module expression they belong to, but with the name of the
view or views used in the instantiation of the parameterized module. Since we assume that
all views are named, these names are the ones used in the qualification. Specifically, in the
body of a parameterized module M{X1 ::T1 , . . . ,Xn ::Tn}, any sort S can be written in
the form S{X1 , . . . ,Xn}. When the module is instantiated with views V1 . . . Vn, then this
sort is instantiated to S{V1 , . . . , Vn}.

Note that, although we strongly recommend it, the parameterization of sorts is optional, and
therefore, for example, the above PRELIM-SET specification is a perfectly valid parameterized
module.

Sorts declared in the parameterized module M{X1 ::T1 , . . . ,Xn ::Tn} may in general be
parameterized as S{Y1 , . . . , Ym}, with m ≥ 1, and where each Yj is an Xi. It is recommended
that all sorts declared in a parameterized module be parameterized with m = n and Yj = Xj

for 1 ≤ j ≤ n, but this is not enforced—parameterized sorts may duplicate, omit, or reorder
parameters and unparameterized sorts are also allowed.

Thus, the previous PRELIM-SET module to define sets could instead have been specified in
a better way as follows:

fmod BASIC-SET{X :: TRIV} is

protecting BOOL .

sorts Set{X} NeSet{X} .

subsorts X$Elt < NeSet{X} < Set{X} .

op empty : -> Set{X} .

op _,_ : Set{X} Set{X} -> Set{X} [assoc comm id: empty] .

op _,_ : NeSet{X} NeSet{X} -> NeSet{X} [ditto] .

op _in_ : X$Elt Set{X} -> Bool .

op _-_ : Set{X} Set{X} -> Set{X} . *** set difference

126 CHAPTER 6. MODULE OPERATIONS

var E : X$Elt .

vars S S’ : Set{X} .

eq E, E = E .

eq E in E, S = true .

eq E in S = false [owise] .

eq (E, S) - (E, S’) = S - (E, S’) .

eq S - S’ = S [owise] .

endfm

When this module is instantiated with the predefined view Int, the sort Set{X} becomes
Set{Int}, and when it is instantiated with the predefined view Qid (see Section 7.12.1) it
becomes Set{Qid}. In the following sections we will see additional examples of how this qual-
ification convention for the sorts of a parameterized module avoids many unintended collisions
of sort names, thus making renaming practically unnecessary.6

As another simple example of parameterized module, we consider a module MAYBE{X :: TRIV}

in which we declare a sort Maybe{X} as a supersort of the sort Elt of the parameter theory and
a constant maybe of this sort Maybe{X}. This technique is useful to declare a partial function
as a total function, as we will see in the PFUN module of Section 6.3.7.

fmod MAYBE{X :: TRIV} is

sort Maybe{X} .

subsort X$Elt < Maybe{X} .

op maybe : -> Maybe{X} [ctor] .

endfm

The PRELIM-SET, BASIC-SET, and MAYBE modules above have only one parameter. In gen-
eral, however, parameterized modules can have several parameters. It can furthermore happen
that several parameters are declared with the same parameter theory, that is, we can have, for
example, an interface of the form {X :: TRIV, Y :: TRIV} involving two copies of the theory
TRIV. Therefore, parameters cannot be treated as normal submodules, since we do not want
them to be shared when their labels are different. We regard the relationship between the body
of a parameterized module and the interface of its parameters not as an inclusion, but as a
module constructor which is evaluated generating renamed copies of the parameters, which are
then included. For the above interface, two copies of the theory TRIV are generated, with names
X :: TRIV and Y :: TRIV. As already mentioned, in such copies of parameter theories, sorts are
renamed as follows: if Z is the label of a parameter theory T , then each sort S in T is renamed
to Z$S and each statement label l is renamed to Z$l. All occurrences of these sorts and labels
in the body of the parameterized module must mention their corresponding renaming.

Let us consider as an example the following module PAIR, in which we would like to point
out the use of the qualifications for the sorts coming from each of the parameters.

fmod PAIR{X :: TRIV, Y :: TRIV} is

sort Pair{X, Y} .

op <_;_> : X$Elt Y$Elt -> Pair{X, Y} .

op 1st : Pair{X, Y} -> X$Elt .

op 2nd : Pair{X, Y} -> Y$Elt .

var A : X$Elt .

var B : Y$Elt .

eq 1st(< A ; B >) = A .

6In Section 6.3.7, we shall see how this naming convention can be easily extended to the case of parameterized
views.

6.3. PARAMETERIZED PROGRAMMING 127

X :: STOSET Y :: STOSET

X :: SPOSET Y :: SPOSET

X :: TAOSET Y :: TAOSET

LEX-PAIR

BOOL

Figure 6.2: Structure of LEX-PAIR

eq 2nd(< A ; B >) = B .

endfm

As already mentioned, if a parameter theory is structured, this renaming process for pa-
rameter theories is carried out not only at the top level, but for the whole “theory part,” that
is, renaming subtheories but not renaming submodules. Consider, for example, the following
parameterized module defining a lexicographical ordering on pairs of elements of two totally
strictly ordered sets.

fmod LEX-PAIR{X :: STOSET, Y :: STOSET} is

sort Pair{X, Y} .

op <_;_> : X$Elt Y$Elt -> Pair{X, Y} .

op _<_ : Pair{X, Y} Pair{X, Y} -> Bool .

op 1st : Pair{X, Y} -> X$Elt .

op 2nd : Pair{X, Y} -> Y$Elt .

vars A A’ : X$Elt .

vars B B’ : Y$Elt .

eq 1st(< A ; B >) = A .

eq 2nd(< A ; B >) = B .

eq < A ; B > < < A’ ; B’ > = (A < A’) or (A == A’ and B < B’) .

endfm

Representing by boxes the modules (with initiality constraints), by ovals the theories (with
loose semantics), by triple arrows the protecting and parameter importations, and by single
arrows the including importations, we can depict the structure of the LEX-PAIR functional
module defining a lexicographic order on pairs as in Figure 6.2, where we have two copies not
only of STOSET but also of the SPOSET and TAOSET subtheories (see also Figure 6.1 in page 119),
but only one copy of the BOOL submodule.

The parameter theory of a module can be any module expression whose result is a theory.
The following module defines bags of elements with an occurrences operation that returns the

128 CHAPTER 6. MODULE OPERATIONS

number of occurrences of a particular element in a given bag.

fmod BAG{X :: TRIV * (sort Elt to Element)} is

protecting NAT .

sorts Bag{X} NeBag{X} .

subsorts X$Element < NeBag{X} < Bag{X} .

op mt : -> Bag{X} .

op __ : Bag{X} Bag{X} -> Bag{X} [assoc comm id: mt] .

op __ : Bag{X} NeBag{X} -> NeBag{X} [ditto] .

op occurrences : X$Element Bag{X} -> Nat .

vars E E’ : X$Element .

var S : Bag{X} .

eq occurrences(E, E S) = 1 + occurrences(E, S) .

eq occurrences(E, S) = 0 [owise] .

endfm

Module instantiation will be explained in the next section, and then we shall see some
execution examples.

6.3.4 Module instantiation

Instantiation is the process by which actual parameters are bound to the formal parameters
of a parameterized module and a new module is created as a result. This can be seen in fact
as the evaluation of a module expression. The instantiation requires a view from each formal
parameter to its corresponding actual parameter. Each such view is then used to bind the
names of sorts, operators, etc. in the formal parameters to the corresponding sorts, operators
(or expressions), etc. in the actual target.

The instantiation of a parameterized module must be made with views explicitly defined
previously. Thus, given the views Int (from TRIV to INT) and IntAsStoset (from STOSET to
INT), both introduced in Section 6.3.2, we can define sets of integers with the module expression
BASIC-SET{Int}, and lexicographically ordered pairs of integers with LEX-PAIR{IntAsStoset,

IntAsStoset}.
As mentioned in Section 6.3.2, there are also views from theories to theories. Using such

views we can, for example, instantiate the module BASIC-SET with the view TOSET (from TRIV

to TOSET) given also in Section 6.3.2. The result is a module BASIC-SET{TOSET} which is
still parameterized, but now by the theory TOSET. We can instantiate it again with a view
from TOSET to some other theory or module, for example, IntAsToset (from TOSET to INT),
obtaining the module BASIC-SET{TOSET}{IntAsToset}, which defines sets of integers. Note
that certain new operations, which would not be meaningful in the original BASIC-SET module,
could now be defined in a totally parametric way in an extension of BASIC-SET{TOSET}. For
example, we could define in this way a maximum function

op max : NeSet{TOSET}{X} -> X$Elt .

as done in the SET-MAX module later in this section.
Another interesting use of parameterized modules is the linking of parameters. Suppose that

we wish to define lists of sets of elements. We may define a module SET-LIST parameterized
by the theory TRIV that imports the module BASIC-SET and declares the sort SetList{X}

with constructors nil and _;_. Note however that BASIC-SET is also a parameterized module,
which must be instantiated to be imported. In cases like this one, we can use the label of the
parameter to link the parameter of the module with the parameter of the submodule. Once
the module is instantiated, the parameterized submodule gets instantiated with the same view.

6.3. PARAMETERIZED PROGRAMMING 129

Thus, if the module SET-LIST below is instantiated by, say, the view Int to define lists of sets
of integers, the submodule BASIC-SET also gets instantiated with the same view, providing a
definition of sets of integers.7

fmod SET-LIST{X :: TRIV} is

protecting BASIC-SET{X} .

sort SetList{X} .

subsort Set{X} < SetList{X} .

op nil : -> SetList{X} [ctor] .

op _;_ : SetList{X} SetList{X} -> SetList{X}

[ctor assoc id: nil] .

endfm

As another example, let us consider the following modules MONOMIAL and POLYNOMIAL,
defining, respectively, monomials on a set of variables and polynomials on a commutative ring
and a set of variables. First, the module MONOMIAL defines monomials as terms of the form
X ^ N, with X a variable8 and N a nonzero natural number indicating the power to which the
variable is raised, and with an empty syntax multiplication operation __ on monomials.

fmod MONOMIAL{X :: TRIV} is

protecting NAT .

sorts Pow{X} Mon{X} .

subsorts Pow{X} < Mon{X} .

*** multiplication

op __ : Mon{X} Mon{X} -> Mon{X} [assoc comm] .

op _^_ : X$Elt NzNat -> Pow{X} .

var X : X$Elt .

vars N M : NzNat .

eq (X ^ N) (X ^ M) = X ^ (N + M) .

endfm

Once we have the specification of monomials, we can specify polynomials as monomials
with coefficients in some commutative ring, and with addition and multiplication operations.
Thus, for specifying polynomials on a ring and a set of variables in a module POLYNOMIAL, we
need to import the above module MONOMIAL. But notice that POLYNOMIAL is parameterized by
two theories: RING, for the coefficients, and TRIV, for the variables. Since we need to import
monomials on the same set of variables, we need to bind or link such parameters. This linking
is done by means of the label X of the parameter theory X :: TRIV.

fmod POLYNOMIAL{R :: RING, X :: TRIV} is

protecting MONOMIAL{X} .

sorts Poly{R, X} .

subsorts R$Ring < Poly{R, X} .

*** multiplication

op __ : Poly{R, X} Poly{R, X} -> Poly{R, X} [assoc comm] .

*** addition

op _++_ : Poly{R, X} Poly{R, X} -> Poly{R, X} [assoc comm] .

op --_ : Poly{R, X} -> Poly{R, X} .

7In Section 6.3.7, we shall introduce the notion of parameterized views, a more convenient way of defining
this kind of structures.

8Note that a variable in a monomial or polynomial is a constant, not a mathematical variable in the Maude
sense. That is, in this example variables are understood as names. Of course, in Maude we can also define a
variable X:X$Elt in the parameter sort to which variables belong as constants, or, more generally, variables such
as P:Poly{R, X}. In this context such mathematical variables can be distinguished from variables as names by
referring to them as metavariables.

130 CHAPTER 6. MODULE OPERATIONS

op __ : R$Ring Mon{X} -> Poly{R, X} .

vars A B : R$Ring .

vars U V : Mon{X} .

vars P Q R : Poly{R, X} .

eq P ++ z = P .

eq P ++ (-- P) = z .

eq P e = P .

eq -- (P ++ Q) = (-- P) ++ (-- Q) .

eq -- (A U) = (- A) U .

eq P (Q ++ R) = (P Q) ++ (P R) .

eq z U = z .

eq z P = z .

eq A (B U) = (A B) U .

eq (A U) ++ (B U) = (A ++ B) U .

eq (A U) (B V) = (A B) (U V) .

eq A B = A * B .

eq A ++ B = A + B .

endfm

If the module POLYNOMIAL is instantiated with, say, views RingToRat and Qid, the submodule
MONOMIAL then gets automatically instantiated with Qid, thanks to the binding of the parame-
ters.

As an additional example, let us give a more concise definition of the parameterized module
LEX-PAIR{X :: STOSET, Y :: STOSET} given in Section 6.3.3 using these ideas as follows:

view STOSET from TRIV to STOSET is

endv

fmod LEX-PAIR{X :: STOSET, Y :: STOSET} is

protecting PAIR{STOSET, STOSET}{X, Y} .

op _<_ :

Pair{STOSET, STOSET}{X, Y} Pair{STOSET, STOSET}{X, Y} -> Bool .

vars A A’ : X$Elt .

vars B B’ : Y$Elt .

eq < A ; B > < < A’ ; B’ > = (A < A’) or (A == A’ and B < B’) .

endfm

In Section 6.2.2, we presented a NAT-LIST-MAX module in which we defined a max function
that returns the greatest element of a list of natural numbers. However, we can define such
a function on lists or sets of any type of elements as long as there is a total order relation
available for them. Let us consider the following module SET-MAX, parameterized by the theory
TOSET (see Section 6.3.1. Given a non-empty finite set of elements in a totally ordered set, the
operation max returns the maximum element in the set. Note that we have used the or-else

operator for short-circuit disjunction from the EXT-BOOL module to improve the efficiency of
the calculation.

fmod SET-MAX{T :: TOSET} is

protecting BASIC-SET{TOSET}{T} .

protecting EXT-BOOL .

op max : NeSet{TOSET}{T} -> T$Elt .

var E : T$Elt .

var S : Set{TOSET}{T} .

eq max(E, S)

= if S == empty or-else max(S) < E

6.3. PARAMETERIZED PROGRAMMING 131

then E

else max(S)

fi .

endfm

We can now calculate the maximum of a set of integers by instantiating this module with
the view IntAsToset introduced in Section 6.3.2. Notice that in this example we need an extra
set of parentheses to disambiguate between the operator max just defined and the associative
operator max on integers.

fmod INT-SET-MAX is

protecting SET-MAX{IntAsToset} .

endfm

Maude> red max((4, 3, 5, 2, 1)) .

result NzNat: 5

Similarly, we can calculate the greatest element in sets of any type with a total order relation;
for example, sets of strings, by using the view StringAsToset also introduced in Section 6.3.2:

fmod STRING-SET-MAX is

protecting SET-MAX{StringAsToset} .

endfm

Maude> red max("four", "three", "five", "two", "one") .

result String: "two"

Notice that, if we have several parameters, we can instantiate the parameterized module or
theory with some views going to theories and others going to modules. The result in such case
is the expected one, that is, we get a module or theory parameterized by the targets of those
views going to theories. For example, the module RAT-POLY below gives us a specification of
the polynomials with rational coefficients by just importing the module POLYNOMIAL introduced
above instantiated with the view RingToRat from the theory RING to the functional module
RAT (see Section 6.3.2).

fmod RAT-POLY{X :: TRIV} is

protecting POLYNOMIAL{RingToRat, X} .

endfm

We can then define the polynomials with rational coefficients and with quoted identifiers as
variables by instantiating the module RAT-POLY with the following Qid view, which is predefined
in Maude (see Section 7.12.1).

view Qid from TRIV to QID is

sort Elt to Qid .

endv

fmod QID-RAT-POLY is

pr RAT-POLY{Qid} .

endfm

Let us reduce as an example the following polynomial expression:

Maude> red in QID-RAT-POLY :

(((2 / 3) ((’X ^ 2) (’Y ^ 3)))

++ ((7 / 5) ((’Y ^ 2) (’Z ^ 5))))

(((1 / 7) (’U ^ 2))

132 CHAPTER 6. MODULE OPERATIONS

++ (1 / 2)) .

result Poly{RingToRat, Qid}:

(1/3 (’X ^ 2) ’Y ^ 3)

++ (1/5 (’U ^ 2) (’Y ^ 2) ’Z ^ 5)

++ (2/21 (’U ^ 2) (’X ^ 2) ’Y ^ 3)

++ (7/10 (’Y ^ 2) ’Z ^ 5)

Summarizing, a parameterized moduleM{X1 ::T1 , . . . ,Xn ::Tn} with n free parameters
is instantiated by the module expression M{A1, . . . , An}, where each Ai is an instance of one
of the following three alternatives:

• The name Yj of a parameter of the correct theory from the module enclosing the module
expression. In this case the parameter becomes a bound parameter in the module resulting
from the instantiation. Each sort Xi$S is mapped to Yj$S, and each Xi occurring as a
parameter in a parameterized sort becomes Yj (and similarly for statement labels).

• The name of a view V with a theory as target with the correct source theory. In this case,
the parameter becomes a free parameter with V ’s target theory in the module resulting
from the instantiation.

• The name of a view V with a module as target with the correct source theory. In this
case, the parameter disappears. Each sort Xi$S is mapped to S′, where S′ is the mapping
of S under V . Each Xi occurring as a parameter in a parameterized sort becomes V .
Each statement label Xi$l is mapped to l′, where l′ is the mapping of l under the view
V .

Parameterized modules with free parameters cannot be imported: first all of the free pa-
rameters must be instantiated away. Parameterized modules with bound parameters may only
be imported, since they were created for module expressions in a context where the parameters
are bound by an enclosing parameterized module.

Parameterized functional modules may be instantiated with views that have system modules
as their targets; then the instantiated module is promoted to a system module.

Parameterized modules cannot be summed, even if all the parameters are bound. Param-
eterized modules may be renamed, but the renaming must not affect any sorts or operators
coming from a parameter theory. The result of renaming a parameterized module is a parame-
terized module with the same parameters, and we can use it as any other parameterized module;
for example, we can instantiate it with a view, or bind its parameters to the parameters of the
module in which the module expression is being imported, as in the following example, where
we rename the SET-LIST parameterized module above.

fmod MY-SET-LIST{Y :: TRIV} is

pr (SET-LIST

* (sort Set{X} to MySet{X},

op __ : SetList{X} SetList{X} -> SetList{X} to _._))

{Y} .

endfm

fmod MY-QID-SET-LIST is

protecting MY-SET-LIST{Qid} .

endfm

The SET-LIST module has only free parameters and so it can be renamed; however its renaming
imports the renaming of BASIC-SET{X} which has a bound parameter. Note that the parameter
of the sorts appearing in the renaming of the SET-LIST module is X, since this is the label of

6.3. PARAMETERIZED PROGRAMMING 133

the parameter in such module. We have used label Y for the parameter of MY-SET-LIST to
emphasize this fact, although they could be the same.

Allowing renaming of modules with bound parameters requires that renamings be capable
of instantiation; that is, parameterized sort names inside a renaming have their parameters
instantiated, with an extra pair of curly brackets being added in the case of instantiation by a
view with a theory as target.

Let us illustrate these ideas. When, due to instantiation by a view with a theory as tar-
get, a bound parameter in a renamed module escapes and needs to be rebound by an extra
instantiation, the extra instantiation is inserted before rather than after the renaming. Let us
consider the following example, where we use the views TOSET, from the theory TRIV to the
theory TOSET, and IntAsToset, from the theory TOSET to the predefined module INT, both
described in Section 6.3.2.

fmod RENAMING-PAR-MOD-A{X :: TRIV} is

sort Foo{X} .

op f : Foo{X} -> Foo{X} .

endfm

fmod RENAMING-PAR-MOD-B{X :: TRIV} is

extending RENAMING-PAR-MOD-A{X} .

sort Bar{X} .

op g : Bar{X} -> Foo{X} .

endfm

fmod RENAMING-PAR-MOD-C is

pr (RENAMING-PAR-MOD-B * (sort Foo{X} to Foo’{X},

sort Bar{X} to Bar’{X},

op f : Foo{X} -> Foo{X} to f’,

op g : Bar{X} -> Foo{X} to g’)) {TOSET} {IntAsToset} .

endfm

In this case, the module RENAMING-PAR-MOD-A gets instantiated before it is renamed:

RENAMING-PAR-MOD-A{TOSET}{IntAsToset}

* (sort Foo{TOSET}{IntAsToset} to Foo’{TOSET}{IntAsToset},

op f : [Foo{TOSET}{IntAsToset}] -> [Foo{TOSET}{IntAsToset}]

to f’)

Passing parameters from an enclosing module in nonfinal instantiations is prohibited. This
restriction avoids many subtle issues. Thus:

fmod ILLEGAL-INST{X :: RING, Y :: POSET} is

protecting POLYNOMIAL{X, POSET}{Y} .

endfm

is illegal, because X occurs in the nonfinal instantiation POLYNOMIAL{X, POSET}. With appro-
priate views, this example can be correctly written as follows:

view RING from RING to RING is

endv

view POSET from TRIV to POSET is

endv

fmod LEGAL-INST{X :: RING, Y :: POSET} is

protecting POLYNOMIAL{RING, POSET}{X, Y} .

endfm

134 CHAPTER 6. MODULE OPERATIONS

Another way of viewing this restriction is that parameters from an enclosing module and
views with theories as targets may not occur in the same instantiation. Note that views with
theories as targets may never occur in a final instantiation (otherwise there would be free
parameters in an import) and must occur in any nonfinal instantiation (otherwise there would
be no free parameters for the next instantiation).

6.3.5 Lists

There are different ways of building lists. One possibility is to begin with the empty list
and the singleton lists, and then use the concatenation operation to get bigger lists. However,
concatenation cannot be a free list constructor, because it satisfies an associativity equation and
has the empty list as identity. This approach will be used in the predefined module for generic
lists described in Section 7.13.1, and appears in many similar examples throughout this book.
Given the support for equational attributes (associativity, commutativity, etc.) in Maude, as
explained in Section 4.4.1, one can argue that this is indeed the most natural specification for
lists in Maude.

Here we use instead the two standard free constructors for lists that can be found in many
functional programming languages: the empty list nil, here denoted [], and the cons operation
that adds an element to the beginning of a list, here denoted with the mixfix syntax _:_. This
approach facilitates proving properties of lists by structural induction in Maude’s inductive the-
orem prover (ITP), and provides a simple basis for specifying sorted lists and sorting operations
on them in Section 6.3.6.

As usual, head and tail are the selectors associated with the _:_ constructor. Since they
are not defined on the empty list, we avoid their partiality in the same way as we have done for
stacks and queues in the previous sections by means of a subsort NeList of non-empty lists.

fmod LIST-CONS{X :: TRIV} is

protecting NAT .

sorts NeList{X} List{X} .

subsort NeList{X} < List{X} .

op [] : -> List{X} [ctor] .

op _:_ : X$Elt List{X} -> NeList{X} [ctor] .

op tail : NeList{X} -> List{X} .

op head : NeList{X} -> X$Elt .

var E : X$Elt .

var N : Nat .

vars L L’ : List{X} .

eq tail(E : L) = L .

eq head(E : L) = E .

Three interesting operations on lists are list concatenation (here denoted with mixfix syntax
++), the length of a list, and reversing a list. The length operator has a result of sort Nat, that
comes from the predefined module NAT, imported in protecting mode. These three operations
are defined as usual by structural induction on the two constructors, with an equation for the
empty base case and another for the cons case E : L.

Here we are not concerned with efficiency and therefore we just specify the operations in
a simple way, without using, for example, tail-recursive auxiliary operations in the style of
Section 7.13.1.

6.3. PARAMETERIZED PROGRAMMING 135

op _++_ : List{X} List{X} -> List{X} .

op length : List{X} -> Nat .

op reverse : List{X} -> List{X} .

eq [] ++ L = L .

eq (E : L) ++ L’ = E : (L ++ L’) .

eq length([]) = 0 .

eq length(E : L) = 1 + length(L) .

eq reverse([]) = [] .

eq reverse(E : L) = reverse(L) ++ (E : []) .

In this specification of generic lists we also add two operations that will be useful later, in
Section 6.3.6, when sorting lists: take_from_ and throw_from_. The first one builds a list by
taking the first n elements of the given list, while the second one deletes the first n elements of
the given list. Both of them are defined by structural induction on both arguments, the base
case being when either the first is 0 or the second is empty. As usual, s_ denotes the successor
operator on natural numbers.

op take_from_ : Nat List{X} -> List{X} .

op throw_from_ : Nat List{X} -> List{X} .

eq take 0 from L = [] .

eq take N from [] = [] .

eq take s(N) from (E : L) = E : take N from L .

eq throw 0 from L = L .

eq throw N from [] = [] .

eq throw s(N) from (E : L) = throw N from L .

endfm

The following sample reduction shows the result of reversing a list of character strings.

fmod LIST-CONS-TEST is

protecting LIST-CONS{String} .

endfm

Maude> red reverse("one" : "two" : "three" : []) .

result NeList{String}: "three" : "two" : "one" : []

6.3.6 Sorted lists

In order-sorted equational specifications, subsorts must be defined by means of constructors,
but it is not possible to have a subsort of sorted lists, for example, defined by a property
over lists; a more expressive formalism is needed. Membership equational logic allows subsort
definition by means of conditions involving equations and/or sort predicates. In this example
we use this technique to define a subsort of sorted lists, included in the sort of lists imported
from the module LIST-CONS in Section 6.3.5. Furthermore, we will also specify here different
well-known sorting algorithms.

Parameterized sorted lists need a stronger requirement than TRIV, because a total order
over the elements to be sorted is needed. Since repetitions pose no problems for sorting a list,
the order relation should be non-strict, like in the NSTOSET theory introduced in Section 6.3.1.
However, for the specification of the sorting algorithms, it is more convenient to use also the
strict version of the order. For these reasons, we will use as requirement for parameterized
sorted lists the theory TOSET, also introduced in Section 6.3.1.

136 CHAPTER 6. MODULE OPERATIONS

The parameterized module for sorted lists imports the parameterized list module. However,
note that we want lists over a totally ordered set, instead of lists over any set; therefore, first
we partially instantiate LIST-CONS with an inclusion view from the theory TRIV to the theory
TOSET.

view TOSET from TRIV to TOSET is

endv

We are still left with a parameterized module and corresponding dependent sorts, but now with
respect to the TOSET requirement. This is the reason justifying the notation LIST-CONS{TOSET}{X}

in the protecting importation below, as well as NeList{TOSET}{X} and List{TOSET}{X} as
names of the imported sorts.

Notice the three (conditional) membership axioms defining the subsort SortedList{X}: the
empty and singleton lists are always sorted, and a longer list is sorted when the first element
is less than or equal to the second, and the list without the first element is also sorted.

fmod SORTED-LIST{X :: TOSET} is

protecting LIST-CONS{TOSET}{X} .

sorts SortedList{X} NeSortedList{X} .

subsorts NeSortedList{X} < SortedList{X} < List{TOSET}{X} .

subsort NeSortedList{X} < NeList{TOSET}{X} .

vars N M : X$Elt .

vars L L’ : List{TOSET}{X} .

vars OL OL’ : SortedList{X} .

var NEOL : NeSortedList{X} .

mb [] : SortedList{X} .

mb (N : []) : NeSortedList{X} .

cmb (N : NEOL) : NeSortedList{X} if N <= head(NEOL) .

As part of this module, we also define several well-known sorting operations: insertion-sort,
quicksort, and mergesort, based on appropriate auxiliary operations. The important point
is that we are able to give finer typing to all these sorting operations than the usual typing
in other algebraic specification frameworks or functional programming languages. For exam-
ple, insertion-sort is declared as an operation from List{TOSET}{X} to SortedList{X},
instead of the much less informative typing from List{TOSET}{X} to List{TOSET}{X}. The
same applies to each of the auxiliary operations. Furthermore, a function that requires its input
argument to be a sorted list can now be defined as a total function, whereas in less expressive
typing formalisms it would have to be either partial, or to be defined with exceptional behavior
on the erroneous arguments.

The operation insert-list inserts an element in the appropriate position of an already
sorted list, so that the resulting list is also sorted. The sorting operation insertion-sort

recursively sorts the list without the first element and then calls insert-list, which inserts
the missing element in the correct position.

op insertion-sort : List{TOSET}{X} -> SortedList{X} .

op insert-list : SortedList{X} X$Elt -> SortedList{X} .

eq insertion-sort([]) = [] .

eq insertion-sort(N : L) = insert-list(insertion-sort(L), N) .

eq insert-list([], M) = M : [] .

6.3. PARAMETERIZED PROGRAMMING 137

ceq insert-list(N : OL, M) = M : N : OL if M <= N .

ceq insert-list(N : OL, M) = N : insert-list(OL, M) if N < M .

The sorting operation mergesort splits a given list in half by means of the operations
take_from_ and throw_from_ described in Section 6.3.5 above, recursively sorts each sublist,
and then calls the commutative merge operation on the sorted sublists to obtain the final
sorted result. In Section 7.13.6 on sortable lists there is a more efficient (albeit more complex)
definition of the mergesort algorithm on lists.

op mergesort : List{TOSET}{X} -> SortedList{X} .

op merge : SortedList{X} SortedList{X} -> SortedList{X} [comm] .

eq mergesort([]) = [] .

eq mergesort(N : []) = N : [] .

ceq mergesort(L)

= merge(mergesort(take (length(L) quo 2) from L),

mergesort(throw (length(L) quo 2) from L))

if length(L) > 1 .

eq merge(OL, []) = OL .

ceq merge(N : OL, M : OL’) = N : merge(OL, M : OL’) if N <= M .

Finally, quicksort works on a list by separating its elements into those smaller than the
first element (taken as the pivot) and those bigger than the first, recursively sorts each of the
resulting lists, and simply puts them together by concatenating them with the pivot in the
middle.

op quicksort : List{TOSET}{X} -> SortedList{X} .

op leq-elems : List{TOSET}{X} X$Elt -> List{TOSET}{X} .

op gr-elems : List{TOSET}{X} X$Elt -> List{TOSET}{X} .

eq quicksort([]) = [] .

eq quicksort(N : L)

= quicksort(leq-elems(L,N)) ++ (N : quicksort(gr-elems(L,N))) .

eq leq-elems([], M) = [] .

ceq leq-elems(N : L, M) = N : leq-elems(L, M) if N <= M .

ceq leq-elems(N : L, M) = leq-elems(L, M) if M < N .

eq gr-elems([], M) = [] .

ceq gr-elems(N : L, M) = gr-elems(L, M) if N <= M .

ceq gr-elems(N : L, M) = N : gr-elems(L, M) if M < N .

endfm

We now apply the sorting operations to lists of natural numbers.

view NatAsToset from TOSET to NAT is

sort Elt to Nat .

endv

fmod SORTED-LIST-TEST is

protecting SORTED-LIST{NatAsToset} .

endfm

Maude> red insertion-sort(5 : 4 : 3 : 2 : 1 : 0 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

138 CHAPTER 6. MODULE OPERATIONS

Maude> red mergesort(5 : 3 : 1 : 0 : 2 : 4 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red quicksort(0 : 1 : 2 : 5 : 4 : 3 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

6.3.7 Parameterized views

Suppose we have defined modules LIST{X :: TRIV} and SET{X :: TRIV}, specifying, respec-
tively, lists and sets, and suppose that we need, e.g., the data type of lists of sets of natural
numbers. Typically, we would first instantiate the module SET with a

view, say Nat, from TRIV to the module NAT mapping the sort Elt to the sort Nat, thus
getting the module SET{Nat} of sets of natural numbers. Then, we would instantiate the
module specifying lists with a view, say NatSet, from TRIV to SET{Nat}, obtaining the mod-
ule LIST{NatSet}. But, what if we need now the data type of lists of sets of Booleans?
Should we repeat the whole process again? One possibility is to define a combined module
SET-LIST{X :: TRIV}. But what if we later want stacks of sets instead of lists of sets?

We can greatly improve the reusability of specifications by using parameterized views. Let
us consider the following parameterized vietw Set from TRIV to SET, which maps the sort Elt
to the sort Set{X}.

view Set{X :: TRIV} from TRIV to SET{X} is

sort Elt to Set{X} .

endv

With this kind of views we can keep the parameter part of the target module still as a
parameter. We can now have lists of sets, stacks of sets, and so on, for any instance of TRIV, by
instantiating the appropriate parameterized module with the appropriate view. For example,
given the view Nat above, we can have the module LIST{Set{Nat}} of lists of sets of natural
numbers, or lists of sets of Booleans with LIST{Set{Bool}}, given a view Bool from TRIV to
the predefined module BOOL. Similarly, we can have STACK{Set{Nat}} or STACK{Set{Bool}}.

We can also link the parameter of a module like LIST{Set{X}} to the parameter of the
module in which it is being included. That is, we can, for example, declare a module of the
form

fmod GENERIC-SET-LIST{X :: TRIV} is

protecting LIST{Set{X}} .

endfm

Then, instantiating the parameterized module GENERIC-SET-LIST with a view V from TRIV

to another module or theory results in a module with name GENERIC-SET-LIST{V}, which
includes the module LIST{Set{V}}. Note that even with parameterized views we still follow
conventions for module interfaces and for sort names (see Section 6.3). The only difference is
that now, instead of having simple view names, we must consider names of views which are
parameterized.

The use of parameterized views in the instantiation of parameterized modules allows very
reusable specifications. For example, a very simple way of specifying (finite) partial functions
is to see a partial function as a set of input-result pairs.9 Of course, for such a set to represent
a function there cannot be two pairs associating different results with the same input value.
We show later in this section (in the module PFUN below) how this property can be specified
by means of appropriate membership axioms. Note, however, that since membership axioms

9An alternative specification is available in Maude’s prelude, see Section 7.14.

6.3. PARAMETERIZED PROGRAMMING 139

cannot be given on associative operators over sorts (see Section 20.3.8), we cannot use either
the specification of sets described in Section 6.3.3 or the predefined module in Section 7.13.2.
Let us consider instead the following module:

fmod SET-KIND{X :: TRIV} is

sorts NeKSet{X} KSet{X} .

subsort X$Elt < NeKSet{X} < KSet{X} .

op empty : -> KSet{X} [ctor] .

op _,_ : KSet{X} KSet{X} ~> KSet{X} [ctor assoc comm id: empty] .

mb NS:NeKSet{X}, NS’:NeKSet{X} : NeKSet{X} .

eq E:X$Elt, E:X$Elt = E:X$Elt . *** idempotency

endfm

Here the operator _,_ is declared at the kind level—notice the different form of the arrow in its
declaration—together with a membership axiom, that is logically equivalent to the declaration

op _,_ : NeKSet{X} NeKSet{X} -> NeKSet{X} .

at the sort level.
We can then specify sets of pairs by instantiating this SET-KIND module with a parameterized

view from TRIV to the parameterized module PAIR{X, Y} defining pairs of elements introduced
in Section 6.3.3. The appropriate parameterized view can be defined as follows:

view Pair{X :: TRIV, Y :: TRIV} from TRIV to PAIR{X, Y} is

sort Elt to Pair{X, Y} .

endv

A partial function can be lifted to a total function by adding a special value to its codomain,
to be used as the result for the input elements for which the function is not defined. For this
we make good use of the parameterized module MAYBE, introduced in Section 6.3.3, which adds
a supersort and a new element maybe to this supersort; in this application, the constant maybe
is renamed to undefined.

We are now ready to give the specification of partial functions. The sets representing
the domain and codomain of the function are given by TRIV parameters, and then the set
of tuples is provided by the imported module expression SET-KIND{Pair{X, Y}} with sorts
KSet{Pair{X, Y}} and NeKSet{Pair{X, Y}}. We define operations dom and im returning,
respectively, the domain and image of a set of pairs. The dom operation will be used for
checking whether there is already a pair in a set of pairs with a given input value. With these
declarations we can define the sort PFun{X, Y} as a subsort of KSet{Pair{X, Y}}, by adding
the appropriate membership axioms specifying those sets that satisfy the required property.
Finally, we define operators _[_] and _[_->_] to evaluate a function at a particular element,
and to add or redefine an input-result pair, respectively. We use the Maude predefined module
SET (see Section 7.13.2) for representing the sets of elements in the domain and image of a
partial function.

fmod PFUN{X :: TRIV, Y :: TRIV} is

pr SET-KIND{Pair{X, Y}} .

pr SET{X} + SET{Y} .

pr (MAYBE * (op maybe to undefined)){Y} .

sort PFun{X, Y} .

subsorts Pair{X, Y} < PFun{X, Y} < KSet{Pair{X, Y}} .

vars A D : X$Elt .

vars B C : Y$Elt .

140 CHAPTER 6. MODULE OPERATIONS

var F : PFun{X, Y} .

var S : KSet{Pair{X, Y}} .

op dom : KSet{Pair{X, Y}} -> Set{X} . *** domain

eq dom(empty) = empty .

eq dom(< A ; B >, S) = A, dom(S) .

op im : KSet{Pair{X, Y}} -> Set{Y} . *** image

eq im(empty) = empty .

eq im(< A ; B >, S) = B, im(S) .

op empty : -> PFun{X, Y} [ctor] .

cmb < A ; B >, < D ; C >, F : PFun{X, Y}

if < D ; C >, F : PFun{X, Y} /\ not(A in dom(< D ; C >, F)) .

op _[_] : PFun{X, Y} X$Elt -> Maybe{Y} .

op _[_->_] : PFun{X, Y} X$Elt Y$Elt -> PFun{X, Y} .

ceq (< A ; B >, F)[A] = B

if (< A ; B >, F) : PFun{X, Y} .

eq F [A] = undefined [owise] .

ceq (< A ; B >, F)[A -> C] = < A ; C >, F

if (< A ; B >, F) : PFun{X, Y} .

eq F [A -> C] = < A ; C >, F [owise] .

endfm

Now, we can instantiate the PFUN module with, for example, views Set{String} and Nat,
in order to get the finite partial functions from string sets to natural numbers by means of the
module expression PFUN{Set{String}, Nat}.

fmod SIZES is

pr PFUN{List{String}, Nat} .

endfm

Notice that views can be instantiated directly with another view rather than a parameter
from an enclosing module or view. We can then do some rewrites:

Maude> red in SIZES :

(< "o" ; 1 >, < "o" "t" ; 2 >, < "o" "t" "t" ; 3 >) ["o" "t"] .

result NzNat: 2

View nesting may be useful in some occasions. For instance, suppose that we want to
generalize our SIZES module so that lists can be of any type and we want to allow default
values. The MAYBE module in Section 6.3.3 is handy for this.

view Maybe{X :: TRIV} from TRIV to MAYBE{X} is

sort Elt to Maybe{X} .

endv

To allow lists of any type, including null elements, we can specify the following module.

fmod NULL-SIZES{X :: TRIV} is

pr PFUN{List{Maybe{X}}, Nat} * (op maybe to null) .

endfm

fmod STRING-NULL-SIZES is

pr NULL-SIZES{String} .

endfm

6.3. PARAMETERIZED PROGRAMMING 141

Maude> red in STRING-NULL-SIZES :

(< "o" null ; 1 >, < null "o" "t" ; 2 >, < "o" null "t" "t" ; 3 >) ["o" "t"] .

result Maybe{Nat}: undefined

Maude> red in STRING-NULL-SIZES :

(< "o" null ; 1 >, < null "o" "t" ; 2 >, < "o" null "t" "t" ; 3 >) [null "o" "t"] .

result NzNat: 2

Parameterized views can also be instantiated on theory-views to change the theory of pa-
rameters. Assume we wanted to have our sizes structure on lists of elements with a total
order. We could use predefined theory-views STRICT-WEAK-ORDER and STRICT-TOTAL-ORDER

as follows:

fmod SORTED-SIZES{X :: STRICT-TOTAL-ORDER, Y :: TRIV} is

pr PFUN{List{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}, Y} .

endfm

And then use predefined views Nat< and String to instantiate it.

fmod NAT-SORTED-SIZES is

pr SORTED-SIZES{Nat<, String} .

endfm

Maude> red in NAT-SORTED-SIZES :

(< 0 ; "zero" >, < 1 ; "one" >, < 2 ; "two" >) [1] .

result String: "one"

Just as with module instantiation, a view instantiation that includes a theory-view is non-
final since the parameter taking the theory-view must be recaptured or instantiated in a final
instantiation. Note that as with module instantiations, bound parameters may not be passed in
a nonfinal instantiation. Furthermore for both module instantiations and view instantiations,
nested view instantiations with bound parameters may not be passed in a nonfinal instantia-
tion. In other words view instantiations with bound parameters must obey the same rule as
bare bound parameters.

One subtle point is that an operator-to-term mapping in a parameterized view may use any
operators in the (parameterized) to-module in its to-term, including operators from parameter-
theories. Thus by extension, operator-to-operator mappings may map operators in the from-
theory to operators in a parameter-theory and sort-to-sort mappings may map sorts in a from-
theory to sorts in a parameter-theory:

fmod PAR-TH-EXAMPLE{X :: TRIV} is

sort Foo{X} .

op f : X$Elt -> Foo{X} .

endfm

view PAR-TH-EXAMPLE{X :: TRIV} from TRIV to PAR-TH-EXAMPLE{X} is

sort Elt to X$Elt . *** mapping from-theory sort to parameter-theory sort

endv

Having parameterized views allows complex nesting of instantiations with bound parameters
which can be difficult or impossible to evaluate correctly when the bound parameters are
instantiated. Thus, two technical restrictions are enforced on the use of parameterized views:

• Every parameter of a parameterized view must appear as a bound parameter in its to-
module. If a parameter does not appear in the to-module then it is effectively useless and
should be removed.

142 CHAPTER 6. MODULE OPERATIONS

• We introduce the notion of a conflict between parameters: Two bound parameters, X

and Y are in conflict if X is an argument to a module or view final-instantiation, and
Y is a bound parameter in some view expression that is also an argument in the same
final-instantiation.

For example, the module expressions M2{X, V{Y}} and M{V2{X, V{Y}}} both induce a
conflict on bound parameters X and Y. Conflicts on bound parameters in a module expres-
sion are propagated to the free parameters of a view that uses that module expression as
its to-module and to the free parameters of a module that imports that module expression.
So, for example:

view V3{X :: TRIV, Y :: TRIV} from TRIV to M{X, V{Y}} is

...

endv

receives a conflict between its X and Y parameters. Conflicts are also propagated when
parameters are directly instantiated by parameters from an enclosing module or view. So,
for example,

fmod M3{A :: TRIV, B :: TRIV} is

inc M{V3{A, B}} .

...

endfm

receives a conflict between its A and B parameters because they are used to instantiate
conflicting parameters in V3.

A parameter may have a conflict with itself. For example,

fmod MMAP{X :: TRIV} is

inc MAP{X, Set{X}} .

endfm

For the most part, conflicts are quietly generated and propagated through arbitrarily deep
nesting of importations and instantiations without users being aware of them. The only
place they become important is in nonfinal instantiations, when the following restriction
is enforced: The nonfinal instantiation of a module or view may not pass theory-view ar-
guments to two parameters that have a conflict (or to a parameter that has a conflict with
itself). Passing a theory-view to one of a pair of conflicting parameters is allowed as long
as the other receives a (unparameterized) module-view (recall bound parameters are not
allowed in nonfinal instantiations). This restriction avoids situations where the recapture
of a bound parameter following instantiation by a theory-view results in the bound pa-
rameter appearing in a nonfinal instantiation. For example, if X and Y were instantiated
by theory-views TV1 and TV2, respectively, then the expression M{V2{X, V{Y}}} would
become M{V2{TV1, V{TV2}{Y}}{X}}, and Y appears as a bound parameter in a nonfinal
instantiation of view V2: V2{TV1, V{TV2}{Y}}.

Chapter 7

Predefined Data Modules

Maude has a standard library of predefined modules that, by default, are entered into the system
at the beginning of each session, so that any of these predefined modules can be imported by any
other module defined by the user. Also, by default, the predefined functional module BOOL is
automatically imported (in including mode) as a submodule of any user-defined module, unless
such importation is explicitly disabled. These modules can be found in the file prelude.maude

that is part of the Maude distribution.

We describe below those predefined modules that provide commonly used data types, in-
cluding Booleans, numbers, strings, and quoted identifiers. The relationships among these
modules are shown in the importation graph in Figure 7.1, where all the importations are in
protecting mode.

We also describe typical parameterized collections of data types such as lists and sets,
and associations such as maps and arrays. The chapter ends introducing the built-in linear
Diophantine equation solver, defined in the file linear.maude that is also part of the Maude
distribution.

Other predefined modules, also in the prelude.maude file, are discussed later; more specifi-
cally, the META-LEVEL module is discussed in Chapter 17, the LOOP-MODE module in Section 18.4,
and the CONFIGURATION module in Sections 8.1 and 9.

Furthermore, this chapter also describes a predefined module MACHINE-INT for machine
integers, which is obtained from the module INT of (arbitrary size) integers, but is distributed
in a separate file machine-int.maude.

As explained in Section 4.4.10, many operators in predefined modules are declared with
the special attribute, so that they are to be treated as built-in operators associated with
appropriate C++ code by “hooks” specified after the special attribute. In what follows, to
lighten the exposition, we will omit the details about such hooks in special operators, writing
special (...) instead. The full definitions can be found in the file prelude.maude.

Most built-in data types are algebraically constructed, that is, they are built out of con-
stants and constructor operators; however, floating point numbers (floats), strings, and quoted
identifiers (qids) are treated as countable sets of constants and are represented by “special” op-
erators <Floats>, <Strings>, and <Qids>, respectively. These operators are used in specifying
the hooks mentioned above, but they cannot be used explicitly in terms.

143

144 CHAPTER 7. PREDEFINED DATA MODULES

CONVERSIONQID

RATSTRING FLOAT

COUNTER

INT

RANDOM

NAT EXT-BOOL

BOOL

TRUTH BOOL-OPS

TRUTH-VALUE

Figure 7.1: Importation (protecting) graph of predefined modules

7.1 Boolean values

There are five modules involving Boolean values, namely, TRUTH-VALUE, TRUTH, BOOL-OPS, BOOL,
and EXT-BOOL. The most basic one is TRUTH-VALUE, which has the following definition.

fmod TRUTH-VALUE is

sort Bool .

op true : -> Bool [ctor special (...)] .

op false : -> Bool [ctor special (...)] .

endfm

This module just declares the two Boolean values true and false as constants of sort
Bool. The key thing to note is the special attribute associated with each of the operator
declarations for these constants. In the case of Boolean values this is especially important,
because certain basic constructs of the language such as conditions in a conditional equation,
membership axiom, or rule, and also sort predicates associated with membership assertions
evaluate to these built-in truth values.

The module TRUTH adds three important operators to TRUTH-VALUE.

fmod TRUTH is

protecting TRUTH-VALUE .

op if_then_else_fi : Bool Universal Universal -> Universal

[poly (2 3 0) special (...)] .

7.1. BOOLEAN VALUES 145

op _==_ : Universal Universal -> Bool

[poly (1 2) prec 51 special (...)] .

op _=/=_ : Universal Universal -> Bool

[poly (1 2) prec 51 special (...)] .

endfm

The operators are, respectively, if_then_else_fi, and the built-in operators for equality
and inequality predicates.1 These operators are special in a number of ways. Firstly, they
are, by default, automatically added to every module (see Section 3.9.3). Secondly, they are
polymorphic, so that, for each module, they can be considered to be normal operators that are
ad-hoc overloaded for each connected component in the module. This is done by means of the
polymorphic (or poly) attribute, as discussed in Section 4.4.4, and the symbol Universal, that
should not be considered a common sort, as explained at the end of this section. For example,
in the declaration of the if_then_else_fi operator, the attribute poly (2 3 0) means that
if_then_else_fi is polymorphic in its second and third arguments as well as in its result.

The if_then_else_fi operator first rewrites its first argument, the test. If the result is
of sort Bool, the then or else argument is selected, according to whether the test evaluated to
true or false, and rewritten. If the test result is not of sort Bool the then and else arguments
are rewritten. For example, working in the INT module (see Section 7.4) we get the following
reductions:

Maude> red in INT : if 4 - 2 == 2 then 0 else 1 fi .

result Zero: 0

Maude> red if 4 - 2 =/= 2 then 0 else 1 fi .

result NzNat: 1

The built-in Boolean predicates _==_ and _=/=_ have a straightforward operational meaning:
given an expression u == v with u and v ground terms (i.e., terms without variables), then both
u and v are simplified by the equations in the module (which are assumed to be Church-Rosser
and terminating) to their canonical forms (perhaps modulo some axioms such as assoc, etc.,
see Section 4.4.1) and these canonical forms are compared for equality. If they are equal, the
value of u == v is true; if they are different, it is false. The predicate u =/= v is just the
negation of u == v.

Similar in spirit to the built-in operators for equality predicates, there are built-in operators
for membership predicates: _:: S for each sort S. These do not need to be explicitly declared,
because they are part of the extended signature associated with each module, as described in
Section 3.9.3. The operational meaning for membership operators is analogous to that of the
equality operators. Namely, given a term u and a sort S in its kind, the built-in predicate
u :: S is evaluated by reducing u to its canonical form, computing its least sort (under the
preregularity, Church-Rosser, and termination assumptions), and checking that it is smaller
than or equal to S.

But what about the mathematical meaning of these built-in predicates? That is, do they
really correspond to ordinary equations (and not to negations or other Boolean combinations
of such equations)? The point is that these built-in and efficiently implemented equality and
inequality predicates could in principle have been defined in a more cumbersome and inefficient
way by the user. In fact, assuming that the equations and membership axioms in the user’s
module are Church-Rosser and terminating modulo the equational axioms in the operator
attributes (see Section 4.4.1) and that the operators satisfy the preregularity requirement, the
corresponding initial algebra is a computable algebraic data type, for which equality, inequality,

1The prec attribute in the last two operators assigns each of them an appropriate precedence value for
parsing purposes (see Section 3.9).

146 CHAPTER 7. PREDEFINED DATA MODULES

and membership in a sort are also computable functions. Therefore, by a well-known theorem
of Bergstra and Tucker [10], such predicates can themselves be equationally defined by Church-
Rosser and terminating equations. It is of course very convenient, and much more efficient,
to unburden the user from having to give those explicit equational definitions of the equality,
inequality, and membership predicates by providing them in a built-in way.

Note also that, by the above meta-argument, the use of inequality predicates, negations of
membership predicates, or any Boolean combination of such predicates in abbreviated Boolean
conditions does not involve any real introduction of negation (or other Boolean connectives) in
the underlying membership equational logic, which remains a Horn logic. What we are really
doing is adding more Boolean-valued functions to the module, but such functions, although
provided in a built-in way for convenience and efficiency, could have been equationally defined
by the user without any use of negation.

The module BOOL-OPS imports TRUTH-VALUE and adds the usual conjunction, disjunction,
exclusive or, negation, and implication operators.2 These operators are defined entirely equa-
tionally.

fmod BOOL-OPS is

protecting TRUTH-VALUE .

op _and_ : Bool Bool -> Bool [assoc comm prec 55] .

op _or_ : Bool Bool -> Bool [assoc comm prec 59] .

op _xor_ : Bool Bool -> Bool [assoc comm prec 57] .

op not_ : Bool -> Bool [prec 53] .

op _implies_ : Bool Bool -> Bool [gather (e E) prec 61] .

vars A B C : Bool .

eq true and A = A .

eq false and A = false .

eq A and A = A .

eq false xor A = A .

eq A xor A = false .

eq A and (B xor C) = A and B xor A and C .

eq not A = A xor true .

eq A or B = A and B xor A xor B .

eq A implies B = not(A xor A and B) .

endfm

Finally, the module BOOL puts together all the operators in TRUTH and in BOOL-OPS.

fmod BOOL is

protecting BOOL-OPS .

protecting TRUTH .

endfm

As noted above, the BOOL module is imported (in including mode) by default as a submodule
of any other module defined by the user. This is accomplished by the command

set include BOOL on .

that appears in the standard library file prelude.maude. The set include command can
mention any module we wish to import—in this case BOOL. However, this default importation
can be disabled. For example, if the user wished to have the polymorphic equality, inequality
and if_then_else_fi operators automatically added to modules, but wanted to exclude the
usual Boolean connectives for the built-in truth values, this could be accomplished by writing

2See Section 3.9 for information on precedence values and gathering patterns.

7.1. BOOLEAN VALUES 147

set include BOOL off .

set include TRUTH on .

Similar commands are available for enabling and disabling implicit importation in extending

and protecting modes (see Section 23.15). For example, the BOOL module can be protected
by default instead of included by writing

set include BOOL off .

set protect BOOL on .

The module EXT-BOOL declares short-circuit versions of the conjunction and disjunction
operators such as those found in LISP and other programming languages. Like the operators
declared in BOOL, these operators are defined entirely equationally. The short-circuit behavior
is the result of the strategy attributes declared for the operators as discussed in Section 4.4.7.

fmod EXT-BOOL is

protecting BOOL .

op _and-then_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 55] .

op _or-else_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 59] .

var B : [Bool] .

eq true and-then B = B .

eq false and-then B = false .

eq true or-else B = true .

eq false or-else B = B .

endfm

When the module BOOL is imported, the system automatically adds to the module an oper-
ator to test for membership, _:: S, for each sort S, as mentioned above (see also Section 3.9.3).
Again, working in the NUMBERS module we have the following examples:

Maude> red in NUMBERS : sd(zero, zero) :: Zero .

result Bool: true

Maude> red sd(zero, zero) :: NzNat .

result Bool: false

Maude> red sd(zero, zero) :: Nat .

result Bool: true

Maude> red (zero nil) :: Zero .

result Bool: true

The term sd(zero, zero) reduces to zero, which has least sort Zero but also its supersort
Nat. The term zero nil has also sort Zero because, using the equational axioms for the assoc

and id: nil attributes, zero nil is the same as zero, which has sort Zero.
Note that these membership predicates are polymorphic on sorts, not on kinds. This is

because to be syntactically well-formed the argument term must be of the right kind, namely
the connected component containing the sort being tested. Thus a membership at the kind
level is either trivially true or a syntactic error. Also, the presence of the system truth values is
required for the predicates to be meaningful, so they are only added to modules that import the
module TRUTH-VALUE (which is included by default, as part of BOOL, unless the user specifies
otherwise).

Advisory. In fact, the symbol Universal does not denote a real sort: it is instead a place
holder for parsing purposes that is given an interpretation by the polymorphic attribute (see

148 CHAPTER 7. PREDEFINED DATA MODULES

Section 4.4.4). The concrete effect of the interpretation of Universal is the instantiation in
each connected component of the operators with one or more Universal arguments.

7.2 Natural numbers

The natural numbers module NAT provides a Peano-like specification of the natural numbers
with an explicit successor function, while at the same time providing efficient built-in operators
thanks to the iter theory (see Section 4.4.2) and an efficient binary representation of unbounded
natural numbers arithmetic using the GNU GMP library.

The natural numbers sort hierarchy has top sort Nat and (disjoint) subsorts Zero and NzNat.
The sort Nat is generated from the constant 0 (of sort Zero) and the successor operator s_.

fmod NAT is

protecting BOOL .

sorts Zero NzNat Nat .

subsort Zero NzNat < Nat .

*** constructors

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor iter special (...)] .

Having 0 and successor as constructors means that you can define functions on the natural
numbers by matching into the successor notation; for example:

fmod FACTORIAL is

protecting NAT .

op _! : Nat -> NzNat .

var N : Nat .

eq 0 ! = 1 .

eq (s N) ! = (s N) * N ! .

endfm

Try entering this module into Maude and then entering the commands

Maude> red 100 ! .

Maude> red 1000 ! .

(The results are omitted; the first has 158 digits and the second 2568 digits.)
Natural numbers can be input, and by default will be output, in normal decimal notation;

however 42 is just syntactic sugar for s_^42(0). The command set print number on/off

controls whether or not decimal notation is used by the pretty printer. Thus executing the
command set print number off will cause numbers to be printed using iteration notation.

Most of the usual arithmetic operators are provided in NAT. They are not defined alge-
braically but could be given an algebraic definition by the user if desired, for example for
theorem proving purposes.

*** ARITHMETIC OPERATIONS

*** addition

op _+_ : NzNat Nat -> NzNat [assoc comm prec 33 special (...)] .

op _+_ : Nat Nat -> Nat [ditto] .

*** symmetric difference

op sd : Nat Nat -> Nat [comm special (...)] .

*** multiplication

op _*_ : NzNat NzNat -> NzNat [assoc comm prec 31 special (...)] .

op _*_ : Nat Nat -> Nat [ditto] .

*** quotient

7.2. NATURAL NUMBERS 149

op _quo_ : Nat NzNat -> Nat [prec 31 gather (E e) special (...)] .

*** remainder

op _rem_ : Nat NzNat -> Nat [prec 31 gather (E e) special (...)] .

*** exponential n^m = n * * n (m times)

op _^_ : Nat Nat -> Nat [prec 29 gather (E e) special (...)] .

op _^_ : NzNat Nat -> NzNat [ditto] .

*** exponential modulo modExp(n,m,p) = n^m mod p

op modExp : Nat Nat NzNat ~> Nat [special (...)] .

*** greatest common divisor

op gcd : NzNat NzNat -> NzNat [assoc comm special (...)] .

op gcd : Nat Nat -> Nat [ditto] .

*** least common multiple

op lcm : NzNat NzNat -> NzNat [assoc comm special (...)] .

op lcm : Nat Nat -> Nat [ditto] .

*** minimum

op min : NzNat NzNat -> NzNat [assoc comm special (...)] .

op min : Nat Nat -> Nat [ditto] .

*** maximum

op max : NzNat Nat -> NzNat [assoc comm special (...)] .

op max : Nat Nat -> Nat [ditto] .

The operators _+_ and _*_ compute the usual addition and multiplication operations and
^ is exponentiation.

The symmetric difference operator, sd, subtracts the smaller of its arguments from the
larger. Thus, for example,

Maude> red in NAT : sd(4, 9) .

result NzNat: 5

Maude> red sd(9, 4) .

result NzNat: 5

The quotient and remainder operators, denoted _quo_ and _rem_, satisfy the equation

((i quo j) * j) + (i rem j) = i,

for natural numbers i and j. For example,

Maude> red in NAT : 11 quo 4 .

result NzNat: 2

Maude> red 11 rem 4 .

result NzNat: 3

The operator modExp computes modular exponentiation, with the third argument being the
modulus. For example,

Maude> red in NAT : modExp(7, 1234, 2) .

result NzNat: 1

Maude> red modExp(8, 1234, 2) .

result Zero: 0

The operators gcd, lcm, min, and max compute the greatest common divisor, the least
common multiple, the minimum and the maximum, respectively. Since these operators are
associative and commutative, they can be used with any number (at least two) of arguments.
For example,

150 CHAPTER 7. PREDEFINED DATA MODULES

Maude> red in NAT : gcd(6, 15, 21) .

result NzNat: 3

Maude> red lcm(6, 15, 21) .

result NzNat: 210

Maude> red min(6, 15, 21) .

result NzNat: 6

Maude> red max(6, 15, 21) .

result NzNat: 21

Maude> red gcd(0, 0) .

result Zero: 0

Operators that act on the binary representation of natural numbers interpreted as bit strings
are:

• bitwise exclusive or (_xor_);

• bitwise and (_&_);

• bitwise or (_|_);

• rightshift—quotient by a power of 2 (_>>_); and

• leftshift—multiplication by a power of 2 (_<<_).

*** BITSTRING MANIPULATION

*** bitwise exclusive or

op _xor_ : Nat Nat -> Nat [assoc comm prec 55 special (...)] .

*** bitwise and

op _&_ : Nat Nat -> Nat [assoc comm prec 53 special (...)] .

*** bitwise or

op _|_ : NzNat Nat -> NzNat [assoc comm prec 57 special (...)] .

op _|_ : Nat Nat -> Nat [ditto] .

*** right shift -- quotient by power of 2

op _>>_ : Nat Nat -> Nat [prec 35 gather (E e) special (...)] .

*** left shift -- multiplication by power of 2

op _<<_ : Nat Nat -> Nat [prec 35 gather (E e) special (...)] .

Here are some examples using the bitwise operators.

Maude> red in NAT : 5 xor 7 .

result NzNat: 2

Maude> red 5 xor 2 .

result NzNat: 7

Maude> red 5 xor 5 .

result Zero: 0

Maude> red 5 & 7 .

result NzNat: 5

7.2. NATURAL NUMBERS 151

Maude> red 5 & 2 .

result Zero: 0

Maude> red 5 | 7 .

result NzNat: 7

Maude> red 5 | 2 .

result NzNat: 7

Maude> red 5 >> 2 .

result NzNat: 1

Maude> red 5 << 2 .

result NzNat: 20

The operators _<_, _<=_, _>_, and _>=_ denote the usual operations for comparing numbers:
less than, less than or equal, greater than, and greater than or equal, respectively. The operator
divides returns true if and only if its second argument is a multiple of the first one.

*** TESTS

*** n less than m

op _<_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n less than or equal to m

op _<=_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n greater than m

op _>_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n greater than or equal to m

op _>=_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n divides m

op _divides_ : NzNat Nat -> Bool [prec 51 special (...)] .

endfm

Note that, to avoid producing negative numbers, subtraction and bitwise not are not pro-
vided. The symmetric difference can be used in place of subtraction.

The operational semantics for most of the built-in operators is such that you only get built-
in behavior when all the arguments are actually natural numbers. The exception is associative
and commutative built-in operators which will compute as much as possible on natural number
arguments and leave the remaining arguments unchanged; for example,

Maude> red in NAT : gcd(gcd(12, X:Nat), 15) .

result Nat: gcd(X:Nat, 3)

If the built-in operator does not disappear using the built-in semantics, then user equations
are tried.

Advisory. It is easy to overload your machine’s memory by generating huge natural num-
bers. There is a limit on exponentiation in that built-in behavior will not occur if the first
argument is greater than 1 and the second argument is too large. Similarly, leftshift does not
work if the first argument is greater than or equal to 1 and the second argument is too large.
Currently “too large” means greater than 1000000 but this may change. Modular exponenti-
ation has no such limits as its built-in semantics takes advantage of the fact that the result
cannot be larger than the modulus. This is likely to be useful for cryptographic algorithms.

152 CHAPTER 7. PREDEFINED DATA MODULES

7.3 Random numbers and counters

The functional module RANDOM adds to NAT a pseudo-random number generator:

fmod RANDOM is

protecting NAT .

op random : Nat -> Nat [special (...)] .

endfm

The function random is the mapping from Nat into the range of natural numbers [0, 232 −
1] computed by successive calls to the Mersenne Twister Random Number Generator.3 For
example,

Maude> red in RANDOM : random(17) .

result NzNat: 1171049868

Although random is purely functional, it caches the state of the random number generator
so that evaluating random(0) is always fast, as is evaluating random(n+1) if random(n) was the
previous call to the operator random. In general, after generating random(n), both random(n)

and random(n+1) are computed efficiently because random(n) is a look up, while random(n+k)

takes k steps of the twister or O(k) time.
By default the seed 0 is used, but a different seed, giving rise to a different function, may be

specified by the command line option -random-seed=n, where n is a natural number in the range
[0, 232−1]. For example, if we invoke the Maude interpreter with the option -random-seed=42

and run the previous example again we get

Maude> red in RANDOM : random(17) .

result NzNat: 613608295

The predefined system module COUNTER adds a “counter” that can be used to generate new
names and new random numbers in Maude programs that do not want to explicitly maintain
this state.

mod COUNTER is

protecting NAT .

op counter : -> [Nat] [special (...)] .

endm

For the rewrite and frewrite commands (see Sections 5.4 and 23.2), as well as the
erewrite command (see later Section 9), the built-in constant counter has special rule rewrit-
ing semantics: each time it has the opportunity to do a rule rewrite, it rewrites to the next
natural number, starting at 0. In this way the predefined system module COUNTER provides a
built-in strategy for the application of the implicit nondeterministic rewrite rule

rl counter => N:Nat .

that rewrites the constant counter to a natural number. The built-in strategy applies this rule
so that the natural number obtained after applying the rule is exactly the successor of the value
obtained in the preceding rule application.

We can use the COUNTER module together with the predefined RANDOM module described
above to sample various probability distributions. We illustrate the general idea with the
following SAMPLER module, which can be used to sample a Bernoulli distribution corresponding
to tossing a biased coin. This module also imports the predefined module CONVERSION, described
later in Section 7.9, which includes conversion functions between different types of numbers.

3For information on the Mersenne Twister Random Number Generator, see http://www-personal.engin.

umich.edu/~wagnerr/MersenneTwister.html.

http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html
http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html

7.3. RANDOM NUMBERS AND COUNTERS 153

mod SAMPLER is

pr RANDOM .

pr COUNTER .

pr CONVERSION .

op rand : -> [Float] .

op sampleBernoulli : Float -> [Bool] .

rl rand => float(random(counter) / 4294967295) .

rl sampleBernoulli(P:Float) => rand < P:Float .

endm

The first rule rewrites the constant rand to a floating point number between 0 and 1 pseudo-
randomly chosen according to the uniform distribution. This floating point number is obtained
by converting the rational number random(counter) / 4294967295 into a floating point num-
ber, where 4294967295= 232 − 1 is the maximum value that the random function can attain.
We can then use the uniform sampling of a number between 0 and 1 to sample the tossing of
a coin with a given bias P:Float between 0 and 1. This is accomplished by the second rewrite
rule in SAMPLER.

Sampling capabilities defined in this style for different probability distributions can then be
used to specify probabilistic models in Maude. We can give a flavor for how such models can be
simulated in Maude by means of a simple battery-operated clock example. We may represent
the state of such a clock as a term clock(T,C), with T a natural number denoting the time,
and C a positive real denoting the amount of battery charge. Each time the clock ticks, the
time is increased by one unit, and the battery charge slightly decreases; however, the lower the
battery charge, the greater the chance that the clock will stop, going into a state of the form
broken(T,C). We can model this system by means of the following Maude specification:

mod CLOCK is

pr SAMPLER .

sort Clock .

op clock : Nat Float -> Clock [ctor] .

op broken : Nat Float -> Clock [ctor] .

var T : Nat .

var C : Float .

rl clock(T,C)

=> if sampleBernoulli(C / 1000.0)

then clock(s(T), C - (C / 1000.0))

else broken(T, C)

fi .

endm

This rule models the fact that each time the clock is going to tick a coin is tossed; if the
result is true, then the clock ticks normally, but if the result is false, then the clock breaks
down. If the battery charge is high enough, the bias of the coin will be highly towards normal
ticking, but as the battery charge decreases, the bias gradually decreases, so that a breakdown
becomes increasingly likely.

One can use a module such as CLOCK above to perform Monte Carlo simulations of the
probabilistic system we are interested in. Of course, we want different arguments for the
random number generator to be used each time from the same initial state so that we obtain
different behaviors. In Maude this can be easily achieved within the same Maude session by
typing the command

set clear rules off .

154 CHAPTER 7. PREDEFINED DATA MODULES

which turns off the automatic clearing of rule state information, including counter values (see
Section 23.2). This means that when we run several times the same computation, a different
counter value will be initially used each time, therefore getting different behaviors in the ex-
pected Monte Carlo way. For example, we get the following simulations for the behavior of a
clock until it breaks:

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(40, 9.607702107358117e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(46, 9.5501998182355942e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(16, 9.8411944181564002e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(6, 9.9401498001499397e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(28, 9.7237474437709557e+2)

Since it is reasonable for a program to use multiple counters, the safe way to do this is to
import renamed copies of COUNTER; for example

protecting COUNTER * (op counter to counter2) .

Counters are inactive with respect to search, model checking, and equational rewriting.
Notice that there are potentially bad interactions with the debugger (see Section 20.1.3) since
another rewrite/frewrite/erewrite executed in the debugger will lose the counter state of
the interrupted rewrite/frewrite/erewrite.

7.4 Integer numbers

The module INT extends NAT with a unary minus -_ on nonzero natural numbers to construct
the negative integers. Integers can be input, and by default are output, in normal decimal
notation; however, -42 is just an alternative concrete syntax for - 42, which itself is just an
alternative concrete syntax for - s_^42(0).

fmod INT is

protecting NAT .

sorts NzInt Int .

subsorts NzNat < NzInt Nat < Int .

op -_ : NzNat -> NzInt [ctor special (...)] .

Unary minus is then extended to Int so that

- - I:Int = I:Int

- 0 = 0

The arithmetic operations of NAT are extended to integers. In addition, there are operators
for subtraction, _-_, and absolute value, abs.

*** ARITHMETIC OPERATIONS

*** unary minus

op -_ : NzInt -> NzInt [ditto] .

7.4. INTEGER NUMBERS 155

op -_ : Int -> Int [ditto] .

*** addition

op _+_ : Int Int -> Int [assoc comm prec 33 special (...)] .

*** subtraction

op _-_ : Int Int -> Int [prec 33 gather (E e) special (...)] .

*** multiplication

op _*_ : NzInt NzInt -> NzInt [assoc comm prec 31 special (...)] .

op _*_ : Int Int -> Int [ditto] .

*** quotient

op _quo_ : Int NzInt -> Int [prec 31 gather (E e) special (...)] .

*** remainder

op _rem_ : Int NzInt -> Int [prec 31 gather (E e) special (...)] .

*** exponentiation

op _^_ : Int Nat -> Int [prec 29 gather (E e) special (...)] .

op _^_ : NzInt Nat -> NzInt [ditto] .

*** absolute value

op abs : NzInt -> NzNat [special (...)] .

op abs : Int -> Nat [ditto] .

*** greatest common divisor

op gcd : NzInt NzInt -> NzNat [assoc comm special (...)] .

op gcd : Int Int -> Nat [ditto] .

*** least common multiple

op lcm : NzInt NzInt -> NzNat [assoc comm special (...)] .

op lcm : Int Int -> Nat [ditto] .

*** minimum

op min : NzInt NzInt -> NzInt [assoc comm special (...)] .

op min : Int Int -> Int [ditto] .

*** maximum

op max : NzInt NzInt -> NzInt [assoc comm special (...)] .

op max : Int Int -> Int [ditto] .

op max : NzNat Int -> NzNat [ditto] .

op max : Nat Int -> Nat [ditto] .

The operators _quo_ and _rem_ satisfy the same equation for integer arguments as for
natural numbers. The sign of the quotient is the product of the signs of the arguments.

Maude> red in INT : -11 quo 4 .

result NzInt: -2

Maude> red 11 quo -4 .

result NzInt: -2

Maude> red -11 quo -4 .

result NzNat: 2

Maude> red 11 rem -4 .

result NzNat: 3

Maude> red -11 rem 4 .

result NzInt: -3

Maude> red -11 rem -4 .

result NzInt: -3

Bitwise operations on negative integers use the 2’s complement representation and the op-
erator ~_, computing the bitwise not operation, is added.

156 CHAPTER 7. PREDEFINED DATA MODULES

*** BITSTRING MANIPULATION (TWO’S COMPLEMENT)

*** bitwise not

op ~_ : Int -> Int [special (...)] .

*** bitwise exclusive or

op _xor_ : Int Int -> Int [assoc comm prec 55 special (...)] .

*** bitwise and

op _&_ : Nat Int -> Nat [assoc comm prec 53 special (...)] .

op _&_ : Int Int -> Int [ditto] .

*** bitwise or

op _|_ : NzInt Int -> NzInt [assoc comm prec 57 special (...)] .

op _|_ : Int Int -> Int [ditto] .

*** rightshift

op _>>_ : Int Nat -> Int [prec 35 gather (E e) special (...)] .

*** leftshift

op _<<_ : Int Nat -> Int [prec 35 gather (E e) special (...)] .

Tests on integers extend those on the natural numbers.

*** TESTS

*** less than

op _<_ : Int Int -> Bool [prec 37 special (...)] .

*** less than or equal

op _<=_ : Int Int -> Bool [prec 37 special (...)] .

*** greater than

op _>_ : Int Int -> Bool [prec 37 special (...)] .

*** greater than or equal

op _>=_ : Int Int -> Bool [prec 37 special (...)] .

op _divides_ : NzInt Int -> Bool [prec 51 special (...)] .

endfm

Let us show with an example how a predefined module can be reused to define new subsorts
that refine the sort structure of the data type. In the following example, we introduce addi-
tional subsorts and overload the successor operator s_ (originally coming from the module NAT

imported in protecting mode into INT) in order to specify the sort of integers greater than
three.

fmod INT-GT-3 is

protecting INT .

sorts One Two Three IntGt3 .

subsorts One Two Three IntGt3 < NzNat .

op s_ : Zero -> One [ctor ditto] .

op s_ : One -> Two [ctor ditto] .

op s_ : Two -> Three [ctor ditto] .

op s_ : Three -> IntGt3 [ctor ditto] .

op s_ : IntGt3 -> IntGt3 [ctor ditto] .

endfm

We can check the sort of a number by “reducing” the corresponding constant, as follows:

Maude> red -1 .

result NzInt: -1

Maude> red 0 .

result Zero: 0

7.5. MACHINE INTEGERS 157

Maude> red 1 .

result One: 1

Maude> red 2 .

result Two: 2

Maude> red 3 .

result Three: 3

Maude> red 4 .

result IntGt3: 4

Maude> red 12345678901234567890 .

result IntGt3: 12345678901234567890

In theory, the sort of integers greater than three could also be specified by means of mem-
bership axioms (see Sections 4.2 and 4.3). However, memberships are not guaranteed to work
correctly with the number hierarchy, because of the special internal representation for iterated
towers of s_ symbols.

7.5 Machine integers

Versions of Maude prior to 2.0 supported machine integers in place of arbitrary size integers.
Initially they were 32-bit in Maude 1.0 but were increased to 64-bit in Maude 1.0.5.

For certain applications, such as specifying programming languages that support machine
integers as a built-in data type, it is convenient to have a predefined specification for machine
integers. Fortunately, it is straightforward to efficiently emulate machine integers in terms of
arbitrary size integers.

First we rename a copy of the regular integers, giving the sorts new names consistent with
the new semantics and renaming those operators that either will not be defined on machine
integers or else will have new semantics. Note that the operators ~_, _&_, _|_, _<_, _<=_, _>_,
and _=>_ are not modified by the renaming.

fmod RENAMED-INT is

protecting INT * (sort Zero to MachineZero,

sort NzNat to NzMachineNat,

sort Nat to MachineNat,

sort NzInt to NzMachineInt,

sort Int to MachineInt,

op s_ : Nat -> NzNat to $succ,
op sd : Nat Nat -> Nat to $sd,
op -_ : Int -> Int to $neg,
op _+_ : Int Int -> Int to $add,
op _-_ : Int Int -> Int to $sub,
op _*_ : NzInt NzInt -> NzInt to $mult,
op _quo_ : Int NzInt -> Int to $quo,
op _rem_ : Int NzInt -> Int to $rem,
op _^_ : Int Nat -> Int to $pow,
op abs : NzInt -> NzNat to $abs,
op gcd : NzInt Int -> NzNat to $gcd,
op lcm : NzInt NzInt -> NzNat to $lcm,
op min : NzInt NzInt -> NzInt to $min,
op max : NzInt NzInt -> NzInt to $max,

158 CHAPTER 7. PREDEFINED DATA MODULES

op _xor_ : Int Int -> Int to $xor,
op _>>_ : Int Nat -> Int to $shr,
op _<<_ : Int Nat -> Int to $shl,
op _divides_ : NzInt Int -> Bool to $divides) .

endfm

We then give a parameter theory that specifies the number of bits in a machine integer,
which must be a power of 2, greater or equal to 2. Notice that this theory is based on the
previous module, which is imported in protecting mode. Therefore, $nrBits is a parameter
constant ranging over the NzMachineNat sort in the RENAMED-INT module, which is imported
with an initial algebra semantics.

fth BIT-WIDTH is

protecting RENAMED-INT .

op $nrBits : -> NzMachineNat .

var N : NzMachineNat .

eq $divides(2, $nrBits) = true [nonexec] .

ceq $divides(2, N) = true

if $divides(N, $nrBits) /\ N > 1 [nonexec] .

endfth

Also provided are two predefined views that set the number of bits value $nrBits respec-
tively to 32 and 64, the two most common sizes.

view 32-BIT from BIT-WIDTH to RENAMED-INT is

op $nrBits to term 32 .

endv

view 64-BIT from BIT-WIDTH to RENAMED-INT is

op $nrBits to term 64 .

endv

The module MACHINE-INT takes a bit width parameter and defines those operations that
have a new semantics when applied to machine integers. In many cases this means applying
the operation $wrap to the results to correctly simulate the wrap-around effect over an overflow
on signed fixed bit width integers by, in effect, extending the sign bit infinitely to the left. In
the case of _^_ the meaning of the operation changes to exclusive or (from exponentiation on
arbitrary size integers).

fmod MACHINE-INT{X :: BIT-WIDTH} is

vars I J : MachineInt .

var K : NzMachineInt .

op $mask : -> NzMachineInt [memo] .

eq $mask = $sub($nrBits, 1) .

op $sign : -> NzMachineInt [memo] .

eq $sign = $pow(2, $mask) .

op maxMachineInt : -> NzMachineInt [memo] .

eq maxMachineInt = $sub($sign, 1) .

op minMachineInt : -> NzMachineInt [memo] .

eq minMachineInt = $neg($sign) .

7.5. MACHINE INTEGERS 159

op $wrap : MachineInt -> MachineInt .

eq $wrap(I) = (I & maxMachineInt) | $neg(I & $sign) .

op _+_ : MachineInt MachineInt -> MachineInt

[assoc comm prec 33] .

eq I + J = $wrap($add(I, J)) .

op -_ : MachineInt -> MachineInt .

eq - I = $wrap($neg(I)) .

op _-_ : MachineInt MachineInt -> MachineInt

[prec 33 gather (E e)] .

eq I - J = $wrap($sub(I, J)) .

op _*_ : MachineInt MachineInt -> MachineInt

[assoc comm prec 31] .

eq I * J = $wrap($mult(I, J)) .

op _/_ : MachineInt NzMachineInt -> MachineInt

[prec 31 gather (E e)] .

eq I / K = $wrap($quo(I, K)) .

op _%_ : MachineInt NzMachineInt -> MachineInt

[prec 31 gather (E e)] .

eq I % K = $rem(I, K) .

op _^_ : MachineInt MachineInt -> MachineInt

[prec 55 gather (E e)] .

eq I ^ J = $xor(I, J) .

op _>>_ : MachineInt MachineInt -> MachineInt

[prec 35 gather (E e)] .

eq I >> J = $shr(I, ($mask & J)) .

op _<<_ : MachineInt MachineInt -> MachineInt

[prec 35 gather (E e)] .

eq I << J = $wrap($shl(I, ($mask & J))) .

endfm

Notice that using out of range integer constants may cause incorrect results.
We consider now the instantiation with the predefined view 32-BIT, and show the wrap-

around effect in several examples.

fmod MACHINE-INT-TEST is

protecting MACHINE-INT{32-BIT} .

endfm

In the first examples, we can see the wrap-around from negative to positive and vice versa:

Maude> red -2147483648 - 1 .

result NzMachineNat: 2147483647

Maude> red 2147483647 + 1 .

result NzMachineInt: -2147483648

160 CHAPTER 7. PREDEFINED DATA MODULES

In the following product, the negative case does not wrap-around but the positive case does:

Maude> red -1073741824 * 2 .

result NzMachineInt: -2147483648

Maude> red 1073741824 * 2 .

result NzMachineInt: -2147483648

Division can only cause a wrap-around in this one case:

Maude> red -2147483648 / -1 .

result NzMachineInt: -2147483648

Remainder never wraps around:

Maude> red -2147483648 % -1 .

result MachineZero: 0

Finally, we see that the sign bit “falls off the left end” in a left shift:

Maude> red -2147483648 << 1 .

result MachineZero: 0

The parameterized MACHINE-INT module is an interesting example of Maude’s support for
what in type theory are called dependent types (see, for example, [100]). These are types like
the power type X[n] or the ARRAY{X,[n]} type depending on a data parameter n, for example
a natural number. We can view MACHINE-INT as the Maude analogue of a dependent type
definition; however, note that the data parameter is not just any nonzero natural number,
but must also satisfy additional axioms, specified in the BIT-WIDTH theory. For two other
interesting examples of a Maude parameterized module defining the analogue of a dependent
type, see the POWER[n] module in Section 21.3.1 (the exact analogue of the power type X[n])
and the NAT/{N} module of natural numbers modulo N in Section 22.7. Similarly, the TUPLE[n]

module in Section 21.3.1 provides a form of dependent type that is not even available in some
type theories with dependent types.

7.6 Rational numbers

The module RAT extends INT with a binary division operator _/_ to construct the rationals
from integers and nonzero naturals. Rationals can be input, and by default are output, in
normal decimal notation; however -5/42 is equivalent to -5 / 42, which is equivalent to - 5

/ 42, which really denotes - s_^5(0) / s_^42(0). The command

set print rat off .

switches off the special printing for _/_ so that rational numbers will be printed with spaces
around the foreslash sign. Note that set print number off also affects the printing of rational
numbers, so with both number and rational pretty-printing switches turned off -5/42 is printed
using the final notation given above.

The numerator and denominator of a rational may contain common factors but these are
removed by a single built-in rewrite whenever the rational is reduced (thus _/_ is not a free
constructor).

Notice that, in addition to the subsort NzRat of nonzero rational numbers, there is a subsort
PosRat of positive rational numbers.

7.6. RATIONAL NUMBERS 161

fmod RAT is

protecting INT .

sorts PosRat NzRat Rat .

subsorts NzInt < NzRat Int < Rat .

subsorts NzNat < PosRat < NzRat .

op _/_ : NzInt NzNat -> NzRat

[ctor prec 31 gather (E e) special (...)] .

vars I J : NzInt .

vars N M : NzNat .

var K : Int .

var Z : Nat .

var Q : NzRat .

var R : Rat .

The basic arithmetic operations on integers are extended to rational numbers as usual.
The operator _/_ is declared special for the case when the first argument is of sort NzInt to
enhance performance. The remaining operators are defined in Maude by equations and may do
some rewriting even when their arguments are not properly constructed rationals. Note that
the choice of equations for defining operators on the rationals is motivated by performance:
simpler equations are possible in many cases but they turn out to incur a big performance
penalty.

*** ARITHMETIC OPERATIONS

op _/_ : NzNat NzNat -> PosRat [ctor ditto] .

op _/_ : PosRat PosRat -> PosRat [ditto] .

op _/_ : NzRat NzRat -> NzRat [ditto] .

op _/_ : Rat NzRat -> Rat [ditto] .

eq 0 / Q = 0 .

eq I / - N = - I / N .

eq (I / N) / (J / M) = (I * M) / (J * N) .

eq (I / N) / J = I / (J * N) .

eq I / (J / M) = (I * M) / J .

op -_ : NzRat -> NzRat [ditto] .

op -_ : Rat -> Rat [ditto] .

eq - (I / N) = - I / N .

op _+_ : PosRat PosRat -> PosRat [ditto] .

op _+_ : PosRat Nat -> PosRat [ditto] .

op _+_ : Rat Rat -> Rat [ditto] .

eq I / N + J / M = (I * M + J * N) / (N * M) .

eq I / N + K = (I + K * N) / N .

op _-_ : Rat Rat -> Rat [ditto] .

eq I / N - J / M = (I * M - J * N) / (N * M) .

eq I / N - K = (I - K * N) / N .

eq K - J / M = (K * M - J) / M .

op _*_ : PosRat PosRat -> PosRat [ditto] .

op _*_ : NzRat NzRat -> NzRat [ditto] .

op _*_ : Rat Rat -> Rat [ditto] .

eq Q * 0 = 0 .

eq (I / N) * (J / M) = (I * J) / (N * M).

162 CHAPTER 7. PREDEFINED DATA MODULES

eq (I / N) * K = (I * K) / N .

op _^_ : PosRat Nat -> PosRat [ditto] .

op _^_ : NzRat Nat -> NzRat [ditto] .

op _^_ : Rat Nat -> Rat [ditto] .

eq (I / N) ^ Z = (I ^ Z) / (N ^ Z) .

op abs : NzRat -> PosRat [ditto] .

op abs : Rat -> Rat [ditto] .

eq abs(I / N) = abs(I) / N .

The integer operations quo, rem, gcd, lcm, min, and max are also extended to the rational
numbers. The operator quo gives the number of whole times a rational can be divided by
another, rem gives the rational remainder. The operator gcd returns the largest rational that
divides into each of its arguments a whole number of times, while lcm returns the smallest
rational that is an integer multiple of its arguments.

op _quo_ : PosRat PosRat -> Nat [ditto] .

op _quo_ : Rat NzRat -> Int [ditto] .

eq (I / N) quo Q = I quo (N * Q) .

eq K quo (J / M) = (K * M) quo J .

op _rem_ : Rat NzRat -> Rat [ditto] .

eq (I / N) rem (J / M) = ((I * M) rem (J * N)) / (N * M) .

eq K rem (J / M) = ((K * M) rem J) / M .

eq (I / N) rem J = (I rem (J * N)) / N .

op gcd : NzRat Rat -> PosRat [ditto] .

op gcd : Rat Rat -> Rat [ditto] .

eq gcd(I / N, R) = gcd(I, N * R) / N .

op lcm : NzRat NzRat -> PosRat [ditto] .

op lcm : Rat Rat -> Rat [ditto] .

eq lcm(I / N, R) = lcm(I, N * R) / N .

op min : PosRat PosRat -> PosRat [ditto] .

op min : NzRat NzRat -> NzRat [ditto] .

op min : Rat Rat -> Rat [ditto] .

eq min(I / N, R) = min(I, N * R) / N .

op max : PosRat Rat -> PosRat [ditto] .

op max : NzRat NzRat -> NzRat [ditto] .

op max : Rat Rat -> Rat [ditto] .

eq max(I / N, R) = max(I, N * R) / N .

Some examples involving these operations are the following:

Maude> red in RAT : 1/2 quo 1/3 .

result NzNat: 1

Maude> red 1/2 rem 1/3 .

result PosRat: 1/6

Maude> red gcd(1/2, 1/3) .

result PosRat: 1/6

7.6. RATIONAL NUMBERS 163

Maude> red lcm(1/2, 1/3) .

result NzNat: 1

Tests on integers are extended to rational numbers. The test divides returns true if a
rational number divides another rational number a whole number of times.

*** tests

op _<_ : Rat Rat -> Bool [ditto] .

eq (I / N) < (J / M) = (I * M) < (J * N) .

eq (I / N) < K = I < (K * N) .

eq K < (J / M) = (K * M) < J .

op _<=_ : Rat Rat -> Bool [ditto] .

eq (I / N) <= (J / M) = (I * M) <= (J * N) .

eq (I / N) <= K = I <= (K * N) .

eq K <= (J / M) = (K * M) <= J .

op _>_ : Rat Rat -> Bool [ditto] .

eq (I / N) > (J / M) = (I * M) > (J * N) .

eq (I / N) > K = I > (K * N) .

eq K > (J / M) = (K * M) > J .

op _>=_ : Rat Rat -> Bool [ditto] .

eq (I / N) >= (J / M) = (I * M) >= (J * N) .

eq (I / N) >= K = I >= (K * N) .

eq K >= (J / M) = (K * M) >= J .

op _divides_ : NzRat Rat -> Bool [ditto] .

eq (I / N) divides K = I divides N * K .

eq Q divides (J / M) = Q * M divides J .

There are four new operators: trunc, frac, floor, and ceiling. The operator floor

converts a rational number to an integer by rounding down to the nearest integer, ceiling
rounds up, and trunc rounds towards 0. The operator frac gives the fraction part of its
argument and this always has the same sign as its argument.

*** ROUNDING

op trunc : PosRat -> Nat .

op trunc : Rat -> Int .

eq trunc(K) = K .

eq trunc(I / N) = I quo N .

op frac : Rat -> Rat .

eq frac(K) = 0 .

eq frac(I / N) = (I rem N) / N .

op floor : PosRat -> Nat .

op floor : Rat -> Int .

eq floor(K) = K .

eq floor(N / M) = N quo M .

eq floor(- N / M) = - ceiling(N / M) .

op ceiling : PosRat -> NzNat .

op ceiling : Rat -> Int .

eq ceiling(K) = K .

eq ceiling(N / M) = ((N + M) - 1) quo M .

164 CHAPTER 7. PREDEFINED DATA MODULES

eq ceiling(- N / M) = - floor(N / M) .

endfm

Here are some examples of reductions involving the rounding operators:

Maude> red in RAT : trunc(9/7) .

result NzNat: 1

Maude> red floor(9/7) .

result NzNat: 1

Maude> red ceiling(9/7) .

result NzNat: 2

Maude> red frac(9/7) .

result PosRat: 2/7

Maude> red trunc(-9/7) .

result NzInt: -1

Maude> red floor(-9/7) .

result NzInt: -2

Maude> red ceiling(-9/7) .

result NzInt: -1

Maude> red frac(-9/7) .

result NzRat: -2/7

7.7 Floating-point numbers

The module FLOAT declares sorts and operators for manipulating floating-point numbers, which
are implemented using double precision floating-point arithmetic of the underlying hardware
platform, conforming to the IEEE-754 standard when supported by the hardware platform.
Floating-point numbers are treated as a large set of constants, that is, a floating-point number
has no algebraic structure (this is the reason for the special operator declaration <Floats>, as
explained in the introduction of this chapter).

The sort FiniteFloat consists of the floating-point numbers that have a 64-bit represen-
tation. Finite floating-point numbers can be input, and by default are output, in scientific
notation; they can also be input using decimal point notation. Thus 100.0 is equivalent to
1.0e+2. The constants Infinity and -Infinity represent floating-point numbers that are
outside the 64-bit representable range. Thus Infinity and -Infinity are of sort Float but
not of sort FiniteFloat. Note that there are some surprises when using decimal notation to
input floating-point numbers. For example, in the FLOAT module we have the reduction

Maude> red in FLOAT : 1.1 .

result FiniteFloat: 1.1000000000000001

This is because floating-point numbers are represented internally using a binary expansion
rather than a decimal expansion and 1.1 does not have a finite length binary expansion.

7.7. FLOATING-POINT NUMBERS 165

fmod FLOAT is

protecting BOOL .

sorts FiniteFloat Float .

subsort FiniteFloat < Float .

op <Floats> : -> FiniteFloat [special (...)] .

op <Floats> : -> Float [ditto] .

The arithmetic operators -_, _-_, _+_, _*_, _/_, _^_, and abs have the usual interpretation,
as in the module INT. Note that 1.2 / 0.0 is just an expression of kind [Float] and reducing
it does not cause your system to crash!

*** ARITHMETIC OPERATIONS

op -_ : Float -> Float [prec 15 special (...)] .

op -_ : FiniteFloat -> FiniteFloat [ditto] .

op _+_ : Float Float -> Float

[prec 33 gather (E e) special (...)] .

op _-_ : Float Float -> Float

[prec 33 gather (E e) special (...)] .

op _*_ : Float Float -> Float

[prec 31 gather (E e) special (...)] .

op _/_ : Float Float ~> Float

[prec 31 gather (E e) special (...)] .

op _^_ : Float Float ~> Float

[prec 29 gather (E e) special (...)] .

op abs : Float -> Float [special (...)] .

op abs : FiniteFloat -> FiniteFloat [ditto] .

The operator _rem_ computes the remainder of a division, floor rounds down to the nearest
integer, ceiling rounds up, and sqrt computes the square root.

op _rem_ : Float Float ~> Float

[prec 31 gather (E e) special (...)] .

op floor : Float -> Float [special (...)] .

op ceiling : Float -> Float [special (...)] .

op sqrt : Float ~> Float [special (...)] .

For terms f1 and f2 of sort FiniteFloat, f1 rem f2 computes the remainder of dividing f1

by f2. Specifically, f1 rem f2 is equal to f1 - n * f2, where n is f1 / f2 rounded towards
zero to the nearest integer. For example,

Maude> red in FLOAT : 5.0 rem 2.0 .

result FiniteFloat: 1.0

Maude> red -5.0 rem 2.0 .

result FiniteFloat: -1.0

Maude> red 5.0 rem 2.5 .

result FiniteFloat: 0.0

Some examples of reductions using the floor and ceiling operations are the following:

Maude> red in FLOAT : ceiling(2.5) .

result FiniteFloat: 3.0

166 CHAPTER 7. PREDEFINED DATA MODULES

Maude> red floor(2.5) .

result FiniteFloat: 2.0

Maude> red ceiling(- 2.5) .

result FiniteFloat: -2.0

Maude> red floor(- 2.5) .

result FiniteFloat: -3.0

Maude> red ceiling(Infinity) .

result Float: Infinity

Maude> red floor(-Infinity) .

result Float: -Infinity

The operators max and min for computing the maximum and the minimum, respectively,
work as expected,

op min : Float Float -> Float [special (...)] .

op max : Float Float -> Float [special (...)] .

as we can see in the following examples:

Maude> red in FLOAT : min(2.0, -2.0) .

result FiniteFloat: -2.0

Maude> red max(2.0, -2.0) .

result FiniteFloat: 2.0

Maude> red max(2.0, Infinity) .

result Float: Infinity

Maude> red in FLOAT : min(Infinity, -Infinity) .

result Float: -Infinity

The operators exp and log compute the natural exponent and logarithm, respectively.

*** TRANSCENDENTAL OPERATIONS

op exp : Float -> Float [special (...)] .

op log : Float ~> Float [special (...)] .

Here are some examples:

Maude> red in FLOAT : exp(1.0) .

result FiniteFloat: 2.7182818284590451

Maude> red log(exp(1.0)) .

result FiniteFloat: 1.0

Maude> red log(0.0) .

result Float: -Infinity

The constant pi approximates the value of π. The number of digits is chosen to be the largest
that can accurately be represented as a floating-point number. The trigonometric operators
sin, cos, and tan expect arguments in radians. The operators asin, acos, atan are the
corresponding inverses.

7.7. FLOATING-POINT NUMBERS 167

*** TRIGONOMETRIC OPERATIONS

op sin : Float -> Float [special (...)] .

op cos : Float -> Float [special (...)] .

op tan : Float -> Float [special (...)] .

op asin : Float ~> Float [special (...)] .

op acos : Float ~> Float [special (...)] .

op atan : Float -> Float [special (...)] .

op atan : Float Float -> Float [special (...)] .

op pi : -> FiniteFloat .

eq pi = 3.1415926535897931 .

Here are some examples of reductions of trigonometric expressions.

Maude> red in FLOAT : sin(0.0) .

result FiniteFloat: 0.0

Maude> red sin(pi) .

result FiniteFloat: 1.2246467991473532e-16

Maude> red cos(pi) .

result FiniteFloat: -1.0

Maude> red acos(cos(pi)) .

result FiniteFloat: 3.1415926535897931

Maude> red tan(pi) .

result FiniteFloat: -1.2246467991473532e-16

Maude> red sin(pi / 2.0) .

result FiniteFloat: 1.0

Maude> red cos(pi / 2.0) .

result FiniteFloat: 6.123233995736766e-17

Maude> red tan(pi / 2.0) .

result FiniteFloat: 1.633123935319537e+16

Maude> red atan(tan(pi / 2.0)) .

result FiniteFloat: 1.5707963267948966

Maude> red pi / 2.0 .

result FiniteFloat: 1.5707963267948966

Using the binary form of the arc tangent operator, atan(f1, f2), is similar to computing
atan(f1 / f2), except that the signs of both arguments are used to control the quadrant of
the result.

Maude> red in FLOAT : atan(tan(pi / 3.0)) .

result FiniteFloat: 1.0471975511965976

Maude> red atan(tan(pi / 3.0), 1.0) .

result FiniteFloat: 1.0471975511965976

168 CHAPTER 7. PREDEFINED DATA MODULES

Maude> red atan(tan(pi / 3.0), -1.0) .

result FiniteFloat: 2.0943951023931957

Maude> red atan(- tan(pi / 3.0), -1.0) .

result FiniteFloat: -2.0943951023931957

Maude> red atan(- tan(pi / 3.0), 1.0) .

result FiniteFloat: -1.0471975511965976

Numerical comparisons have the usual meaning on floating-point numbers.

*** TESTS

op _<_ : Float Float -> Bool [prec 51 special (...)] .

op _<=_ : Float Float -> Bool [prec 51 special (...)] .

op _>_ : Float Float -> Bool [prec 51 special (...)] .

op _>=_ : Float Float -> Bool [prec 51 special (...)] .

*** approximate equality

op _=[_]_ : Float FiniteFloat Float -> Bool [prec 51] .

vars X Y : Float .

var Z : FiniteFloat .

eq X =[Z] Y = abs(X - Y) < Z .

endfm

The operator _=[_]_ tests for approximate equality, where the second argument bounds
the allowed error. For example:

Maude> red in FLOAT : 1.111111111 =[1.0e-9] 1.111111112 .

result Bool: true

Maude> red 1.111111111 =[1.0e-10] 1.111111112 .

result Bool: false

7.8 Strings

The module STRING declares sorts and operators for manipulating strings of characters. Strings
of length one form a subsort Char of String. Operations on strings are based on the rope
data structure [11], which has been optimized for functional programming, where copying with
modification is supported efficiently, whereas arbitrary in-place updates are not.

Strings are input and output using the usual convention of enclosing the string characters
in a pair of matching quotes "...". When a string is parsed, it is interpreted using a subset of
ANSI C backslash escape conventions [87, Section A2.5.2].

To define the results of searching a string for an occurrence of another substring the sort
FindResult is introduced. This sort consists of the natural numbers, returned as the index
in the string where a found substring begins (string indexing begins with 0), and a special
constant notFound, returned if no occurrence is found.

fmod STRING is

protecting NAT .

sorts String Char FindResult .

subsort Char < String .

subsort Nat < FindResult .

op <Strings> : -> Char [special (...)] .

op <Strings> : -> String [ditto] .

op notFound : -> FindResult [ctor] .

7.8. STRINGS 169

The operators ascii and char convert between characters and ASCII codes.

*** conversion between ascii code and character

op ascii : Char -> Nat [special (...)] .

op char : Nat ~> Char [special (...)] .

For a natural number n less than 256 and a character c, we have ascii(char(n)) = n and
char(ascii(c)) = c. For a natural number n greater than 255, char(n) is an error term of
kind [String]. For example,

Maude> red in STRING : ascii("#") .

result NzNat: 35

Maude> red char(35) .

result Char: "#"

Maude> red ascii("a") .

result NzNat: 97

Maude> red char(97) .

result Char: "a"

Maude> red char(255) .

result Char: "\377"

On strings, _+_ denotes the concatenation operation, with identity the empty string, "".
String length is computed by the length operator.

*** string concatenation

op _+_ : String String -> String

[prec 33 gather (E e) special (...)] .

*** string length

op length : String -> Nat [special (...)] .

Here are some examples.

Maude> red in STRING : "abc" + "def" .

result String: "abcdef"

Maude> red "ab" + "cd" + "ef" .

result String: "abcdef"

Maude> red "abc" + "" .

result String: "abc"

Maude> red length("abcdef") .

result NzNat: 6

Maude> red length("") .

result Zero: 0

The operators substr, find, and rfind deal with finding and extracting substrings. Re-
member that string indexing begins with 0.

170 CHAPTER 7. PREDEFINED DATA MODULES

*** substring

*** second argument is starting position, third is length

op substr : String Nat Nat -> String [special (...)] .

*** starting position of substring (second argument)

*** least one >= third argument (find)

*** greatest one <= third argument (rfind)

op find : String String Nat -> FindResult [special (...)] .

op rfind : String String Nat -> FindResult [special (...)] .

The expression substr(S:String, Start:Nat, Len:Nat) returns the substring of S:String

of length Len:Nat beginning at position Start:Nat. If the value of the term Start:Nat + Len:Nat

is greater than length(S:String) then the returned substring is the tail of S:String starting
from position Start:Nat. This will be empty if the starting position is past the end of the
string.

Maude> red in STRING : substr("abc", 0, 2) .

result String: "ab"

Maude> red substr("abc", 1, 2) .

result String: "bc"

Maude> red substr("abc", 1, 3) .

result String: "bc"

Maude> red substr("abc", 3, 2) .

result String: ""

find searches for the first match from the beginning of the string, while rfind searches
from the end of the string backwards.

find(S:String, Pat:String, Start:Nat) returns the least index of an occurrence of
Pat:String in S:String that is greater than or equal to Start:Nat. If no such index ex-
ists the constant notFound is returned.

rfind(S:String, Pat:String, Start:Nat) returns the greatest index of an occurrence
of Pat:String in S:String that is less than or equal to Start:Nat. If no such index exists
the constant notFound is returned.

Maude> red in STRING : find("abc", "b", 0) .

result NzNat: 1

Maude> red find("abc", "b", 1) .

result NzNat: 1

Maude> red find("abc", "b", 2) .

result FindResult: notFound

Maude> red find("abc", "d", 2) .

result FindResult: notFound

Maude> red rfind("abc", "b", 2) .

result NzNat: 1

Maude> red rfind("abc", "b", 1) .

result NzNat: 1

7.9. STRING AND NUMBER CONVERSIONS 171

Maude> red rfind("abc", "b", 0) .

result FindResult: notFound

Maude> red rfind("abc", "d", 2) .

result FindResult: notFound

Some properties relating substr, find, and rfind are the following, where S and P are
variables of sort String, and I, J , and K are variables of sort Nat such that length(S) = K
and length(P) = J .

I ≤ find(S, P, I) ≤ K-J

0 ≤ rfind(S, P, I) ≤ min(I,K-J)

find(S, S, 0) = 0 = rfind(S, S, I)

find(S, "", I) = if I ≤ K then Ielse notFound

rfind(S, "", I) = if I ≥ K then Kelse I

find(S, P, I) 6= notFound

=⇒ substr(S, 0, find(S, P, I)) + P + substr(S, find(S, P, I)+J,K) = S

rfind(S, P, I) 6= notFound

=⇒ substr(S, 0, rfind(S, P, I)) + P + substr(S, rfind(S, P, I)+J,K) = S

The operators _<_, _<=_, _>_, and _>=_ denote string comparison operations using the
lexicographic order, where characters are compared going through their ASCII codes.

*** lexicographic string comparison

op _<_ : String String -> Bool [prec 37 special (...)] .

op _<=_ : String String -> Bool [prec 37 special (...)] .

op _>_ : String String -> Bool [prec 37 special (...)] .

op _>=_ : String String -> Bool [prec 37 special (...)] .

endfm

Here are some examples.

Maude> red in STRING : "abc" < "abd" .

result Bool: true

Maude> red "abc" < "abb" .

result Bool: false

Maude> red "abc" < "abcd" .

result Bool: true

7.9 String and number conversions

The module CONVERSION consolidates all the conversion functions between the three major
built-in data types: Nat/Int/Rat, Float, and String.

fmod CONVERSION is

protecting RAT .

protecting FLOAT .

protecting STRING .

172 CHAPTER 7. PREDEFINED DATA MODULES

*** number type conversions

op float : Rat -> Float [special (...)] .

op rat : FiniteFloat -> Rat [special (...)] .

The operation float computes the floating-point number nearest to a given rational number.
If the value of the rational number falls outside the range representable by IEEE-754 double
precision finite floating-point numbers, Infinity or -Infinity is returned as appropriate. This
is in accord with the convention that Infinity and -Infinity are used to handle out-of-range
situations in the floating-point world.

The operator rat converts finite floating-point numbers to rational numbers exactly (since
every IEEE-754 finite floating-point number is a rational number). Of course, if the result
happens to be a natural number or an integer, that is what you get. rat(Infinity) and
rat(-Infinity) do not reduce, since they have no reasonable representation in the world of
rational numbers. It is intended that the equation

float(rat(F:FiniteFloat)) = F:FiniteFloat

is satisfied, although this holds only if the third party library (GNU GMP) being used in the
implementation meets its related requirements.

*** string <-> number conversions

op string : Rat NzNat ~> String [special (...)] .

op rat : String NzNat ~> Rat [special (...)] .

op string : Float -> String [special (...)] .

op float : String ~> Float [special (...)] .

The operator string converts a rational number to a string using a given base, which
must lie in the range 2..36. Rational numbers that are really natural numbers or integers are
converted to string representations of natural numbers or integers, so we have for example

Maude> red in CONVERSION : string(-1, 10) .

result String: "-1"

The operator rat converts a string to a rational number using a given base, which must
lie in the range 2..36. Of course, if the result happens to be a natural number or an integer,
that is what you get. Currently the function is very strict about which strings are converted:
the string must be something that the Maude parser would recognize as a natural number, an
integer or a rational number. This could be changed to a more generous interpretation in the
future.

The operators string and float for conversion between floating-point numbers and strings
satisfy the equation

float(string(F:Float)) = F:Float

A new sort, DecFloat, is introduced to provide the means for arbitrary formatting of
floating-point numbers.

sort DecFloat .

op <_,_,_> : Int String Int -> DecFloat [ctor] .

op decFloat : Float Nat -> DecFloat [special (...)] .

endfm

A DecFloat consists of a sign (1, 0 or −1), a string of digits, and a decimal point position
(0 is just in front of first digit, −n is n positions to the left, and +n is n positions to the
right). Thus, < -1, "123", 11 > represents -1.23e10. decFloat(F, N) converts F to a
DecFloat, rounding to N significant digits using the IEEE-754 “round to nearest” rule with

7.10. QUOTED IDENTIFIERS 173

trailing zeros if needed. If N is 0, an exact DecFloat representation of F is produced—this
may require hundreds of digits. For any natural number N, decFloat(Infinity, N) reduces
to < 1, "Infinity", 0 >. Here are some examples.

Maude> red in CONVERSION : decFloat(Infinity, 9) .

result DecFloat: < 1,"Infinity",0 >

Maude> red decFloat(-Infinity, 9) .

result DecFloat: < -1,"Infinity",0 >

Maude> red decFloat(123.0, 5) .

result DecFloat: < 1,"12300",3 >

Maude> red decFloat(-123.0, 5) .

result DecFloat: < -1,"12300",3 >

Maude> red decFloat(.123, 5) .

result DecFloat: < 1,"12300",0 >

Maude> red decFloat(.00123, 5) .

result DecFloat: < 1,"12300",-2 >

Maude> red decFloat(0.0, 5) .

result DecFloat: < 0,"00000",0 >

Advisory. Counterintuitive results are possible when converting from the approximate
world of floating-point numbers to the exact world of rational numbers. For example,

Maude> red in CONVERSION : rat(1.1) .

result PosRat: 2476979795053773/2251799813685248

This is because, as mentioned above, 1.1 cannot be represented exactly as a floating-point
number, and the nearest floating-point number is

1.100000000000000088817841970012523233890533447265625

which is the above rational number. (Note that Maude prints the number 1.1 as 1.1000000000000001,
using 17 significant digits. The above representation is obtained by reducing decFloat(1.1,

52).)

7.10 Quoted identifiers

The module QID is a wrapper for strings in order to provide a Maude representation for tokens
of Maude syntax. Quoted identifiers are input and output by preceding a Maude identifier4

with a (fore) quote sign. Thus ’abc is a quoted identifier whose underlying string is "abc". A
quoted identifier is also an identifier, as are strings. Thus ’’abc and ’"abc" are both quoted
identifiers.

fmod QID is

protecting STRING .

sort Qid .

op <Qids> : -> Qid [special (...)] .

4The syntax of Maude identifiers is discussed in Section 3.1.

174 CHAPTER 7. PREDEFINED DATA MODULES

*** qid <-> string conversions

op string : Qid -> String [special (...)] .

op qid : String ~> Qid [special (...)] .

endfm

The operators qid and string do the wrapping and unwrapping. string is injective, since
every quoted identifier has a unique corresponding string.

Maude> red in QID : string(’abc) .

result String: "abc"

Maude> red qid("abc") .

result Qid: ’abc

Maude> red string(’a\b) .

result String: "a\\b"

Maude> red qid("a\\b") .

result Qid: ’a\b

Maude> red string(’a‘[b) .

result String: "a‘[b"

Maude> red qid("a[b") .

result Qid: ’a‘[b

The operator qid is only injective on strings without white space, control characters, and
certain other characters which are converted to backquote. Thus the equation qid(string(q))

= q holds for quoted identifiers q.

Maude> red in QID : qid("a b c") .

result Qid: ’a‘b‘c

Maude> red string(’a‘b‘c) .

result String: "a‘b‘c"

Maude> red qid("a\t b") .

result Qid: ’a‘b

Maude> red string(’a‘b) .

result String: "a‘b"

An example of a string that cannot be converted to a quoted identifier is "a\"b" since
identifiers are not allowed to have unpaired double quotes. Thus qid("a\"b") has kind [Qid]

but does not reduce to something of sort Qid.

7.11 Conversions between strings and lists of quoted iden-
tifiers

The module LEXICAL provides support for converting between strings and lists of quoted iden-
tifiers using Maude’s lexical conventions.

7.11. CONVERSIONS BETWEEN STRINGS AND LISTS OF QUOTED IDENTIFIERS175

fmod LEXICAL is

protecting QID-LIST .

op printTokens : QidList -> String [special (...)] .

op tokenize : String -> QidList [special (...)] .

endfm

printTokens() converts each quoted identifier to a string and concatenates with spaces
where appropriate.

The conversion is slightly different from the string function in the QID module (see Sec-
tion 7.10). For simple quoted identifers the conversions are the same:

printTokens(’abc) = string(’abc) = "abc"

However, there are a number of character sequences that are not legitimate identifiers, and
hence do not have quoted identifiers as such, but are useful and so are instead represented as
quoted identifiers using the metaPrettyPrint()/LOOP-MODE conventions:

• For the seven special tokens (,), [,], {, }, and , the conversions of the associated quoted
identifiers differ, with printTokens() returning a one-character string while string()

includes the backquote:

printTokens(’‘() = "(" whereas string(’‘()) = "‘("

• For quoted identifiers of the form ’\x where x is a single character, there are several
possibilities. If x is n, t, or \, then printTokens() understands the C escape convention:

printTokens(’\n) = "\n" whereas string(’\n) = "\\n"

• The special case of ’\s is used to have a quoted identifier that represents a single space:

printTokens(’\s) = " " whereas string(’\s) = "\\s"

• The 21 special values of x:

!, ?, u, f, x, h, o, p, r, g, y, m, c, w, P, R, G, Y, M, X, and W

are used to represent ANSI control sequences. For example:

printTokens(’\r) = "\033[31m" whereas string(’\r) = "\\r"

If x has any other value, printTokens() behaves the same as string() to produce a
two-character string (though of course when printing this string as an identifier, it is
surrounded by double quotes and the itself is escaped):

printTokens(’\q) = string(’\q) = "\\q"

printTokens() also works on lists of quoted identifers. The nil list is mapped to the
empty string:

printTokens(nil) = ""

Lists with more than one quoted identifier map to the concatenation of strings produced
for each quoted identifier, with a single space inserted between such strings with two
exceptions:

– No space is inserted before (,), [,], {, }, ,.

– No space is inserted after (, [, {.

176 CHAPTER 7. PREDEFINED DATA MODULES

For example:

reduce in LEXICAL : printTokens(’f ’‘(’a ’‘, ’b ’‘) ’+ ’c) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result String: "f(a, b) + c"

• Furthermore the quoted-identifiers forms of the seven special symbols that include a
backslash are not recognized as special:

printTokens(’\‘() = string(’\‘() = "\\‘("

tokenize() converts a string into a list of quoted identifers. Characters that cannot be
part of a token terminate any partial token and are otherwise ignored.

reduce in LEXICAL : tokenize("f(a, b) + c") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result NeQidList: ’f ’‘(’a ’‘, ’b ’‘) ’+ ’c

reduce in LEXICAL : tokenize(" ") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result QidList: nil

reduce in LEXICAL : tokenize("") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result QidList: nil

reduce in LEXICAL : tokenize("\"string identifier\"") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Qid: ’"string identifier"

In particular, an unclosed double quote will terminate the current token but otherwise be
ignored:

reduce in LEXICAL : tokenize("foo\"bar") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result NeQidList: ’foo ’bar

A closed double quote is a legitimate continuation of the current token:

reduce in LEXICAL : tokenize("foo\"bar\"") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Qid: ’foo"bar"

Backslash-newline pairs inside double quotes are edited out:

reduce in LEXICAL : tokenize("\"foo\\\nbar\"") .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Qid: ’"foobar"

7.12 Basic theories and standard views

The library of predefined modules provided by Maude in the prelude.maude file includes some
well-known parameterized data types that will be described in the following sections. Here
we will introduce the standard theories that provide the requirements for those parameterized
modules.

7.12. BASIC THEORIES AND STANDARD VIEWS 177

7.12.1 TRIV

As already described in Section 6.3.1, the simplest non-empty theory is called TRIV and consists
of a single sort. A model of this theory is just a set of any cardinality (finite or infinite). The
intuition behind this simple theory is that the minimum requirement possible on a parameter-
ized data type construction is having a data type as a set of basic elements to build more data
on top of it. For example, in the LIST{X :: TRIV} parameterized data type construction we
need a data type (set) of basic elements satisfying TRIV to then build lists of such elements.

fth TRIV is

sort Elt .

endfth

The file prelude.maude includes many views out of TRIV that select the main sort of the
built-in modules that we have already described in the previous sections. All these views are
named in the same way: by the sort they select; for example, the standard view from TRIV into
RAT selecting the sort Rat is also named Rat.

view Bool from TRIV to BOOL is

sort Elt to Bool .

endv

view Nat from TRIV to NAT is

sort Elt to Nat .

endv

view Int from TRIV to INT is

sort Elt to Int .

endv

view Rat from TRIV to RAT is

sort Elt to Rat .

endv

view Float from TRIV to FLOAT is

sort Elt to Float .

endv

et

view String from TRIV to STRING is

sort Elt to String .

endv

view Qid from TRIV to QID is

sort Elt to Qid .

endv

7.12.2 DEFAULT

The theory DEFAULT is slightly more complex than TRIV, in that in addition to a sort it also
requires that there be a distinguished “default” element in such a sort. Notice that DEFAULT

imports TRIV in the following presentation:

178 CHAPTER 7. PREDEFINED DATA MODULES

fth DEFAULT is

including TRIV .

op 0 : -> Elt .

endfth

The inclusion of the theory TRIV into the theory DEFAULT is made explicit by the following
view, whose name coincides with the name of the target theory.

view DEFAULT from TRIV to DEFAULT is

endv

The Maude library also includes several views that map from DEFAULT to the various built-in
data type modules by selecting the main sort and a distinguished element in it. In the case of
the number sorts, this element is the zero, while for strings it is the empty string and for quoted
identifiers is just the quote. Notice that operator mappings that are the identity (i.e., of the
form op 0 to 0) do not appear explicitly in the following views but are left implicit. These
views are named by appending “0” to the name of the selected sort; for example, the standard
view from DEFAULT into RAT selecting the sort Rat and 0 as the default element is named Rat0.

view Nat0 from DEFAULT to NAT is

sort Elt to Nat .

endv

view Int0 from DEFAULT to INT is

sort Elt to Int .

endv

view Rat0 from DEFAULT to RAT is

sort Elt to Rat .

endv

view Float0 from DEFAULT to FLOAT is

sort Elt to Float .

op 0 to term 0.0 .

endv

view String0 from DEFAULT to STRING is

sort Elt to String .

op 0 to term "" .

endv

view Qid0 from DEFAULT to QID is

sort Elt to Qid .

op 0 to term ’ .

endv

7.12.3 STRICT-WEAK-ORDER and STRICT-TOTAL-ORDER

Although in Section 6.3.6 we have defined the notion of sorted list as based on a totally ordered
set of elements, we will see in Section 7.13.6 how to relax this requirement in two different
ways. The first possibility is to consider a partially strictly ordered set where the incompa-
rability relation is transitive, that is, if a is not comparable with b and b is not comparable
with c with respect to the given order, then a and c are not comparable either. The pre-
defined STRICT-WEAK-ORDER theory below specifies a strict partial order with this additional

7.12. BASIC THEORIES AND STANDARD VIEWS 179

requirement, a concept known as strict weak order. The second possibility is to consider a total
preorder, as specified in Section 7.12.4 below.

Given a strict partial order <, that is, an irreflexive and transitive binary relation, we define
the incomparability relation by x ∼ y iff both x 6< y and y 6< x. Incomparability is symmetric
by definition, and its reflexivity follows from the irreflexivity of <. Therefore, when we impose
the additional requirement of transitivity of incomparability, we get that the relation ∼ for a
strict weak order is an equivalence relation.

Notice that STRICT-WEAK-ORDER, as presented below, imports the theory TRIV and also
(in protecting mode) the module BOOL. The three equations express the required properties
(antisymmetry is derivable from irreflexivity and transitivity) of the binary relation _<_ on the
sort Elt, as is made explicit in the corresponding labels.

fth STRICT-WEAK-ORDER is

protecting BOOL .

including TRIV .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

eq X < X = false [nonexec label irreflexive] .

ceq X < Y or Y < X or Y < Z or Z < Y = true if X < Z or Z < X

[nonexec label incomparability-transitive] .

endfth

The following theory extends the previous one with a totality requirement, thus specifying a
strict total order. Under these conditions, the incomparability relation reduces to the identity
(because any pair of different elements is comparable) and the transitivity of incomparability
holds trivially.

fth STRICT-TOTAL-ORDER is

including STRICT-WEAK-ORDER .

vars X Y : Elt .

ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth

The theory STRICT-TOTAL-ORDER is a different presentation of the equivalent theory STOSET

for strict total orders introduced in Section 6.3.1.
There is a view from TRIV to STRICT-WEAK-ORDER that forgets the order and its properties.

The name of this view coincides with the name of the target theory.

view STRICT-WEAK-ORDER from TRIV to STRICT-WEAK-ORDER is

endv

The inclusion from the theory STRICT-WEAK-ORDER into STRICT-TOTAL-ORDER gives rise to
another view, which is also called as the target theory.

view STRICT-TOTAL-ORDER from STRICT-WEAK-ORDER

to STRICT-TOTAL-ORDER is

endv

The Maude library includes views that map from STRICT-TOTAL-ORDER to built-in data type
modules by selecting the main sort and the standard strict total order between the corresponding
elements, namely, the “less than” comparison between numbers and the lexicographic ordering
between strings, as described in previous sections. Again, operator mappings that are the
identity (in this case of the form op < to <) do not appear explicitly in the following
views, but are left implicit. These views are named by appending “<” to the name of the

180 CHAPTER 7. PREDEFINED DATA MODULES

selected sort; for example, the standard view from STRICT-TOTAL-ORDER into RAT is named
Rat<.

view Nat< from STRICT-TOTAL-ORDER to NAT is

sort Elt to Nat .

endv

view Int< from STRICT-TOTAL-ORDER to INT is

sort Elt to Int .

endv

view Rat< from STRICT-TOTAL-ORDER to RAT is

sort Elt to Rat .

endv

view Float< from STRICT-TOTAL-ORDER to FLOAT is

sort Elt to Float .

endv

view String< from STRICT-TOTAL-ORDER to STRING is

sort Elt to String .

endv

As explained in Section 6.3.2, these views impose some proof obligations corresponding in
this case to the properties that are stated about the binary relation selected in the target
module; recall that such proof obligations are not discharged or checked by the system.

7.12.4 TOTAL-PREORDER and TOTAL-ORDER

The predefined TOTAL-PREORDER theory specifies, as its name clearly suggests, a total preorder,
that is, a total binary relation which is reflexive and transitive. This theory will also be used
as requirement for sorting lists in Section 7.13.6.

The notions of strict weak order (see Section 7.12.3) and of total preorder are complemen-
tary: the set-theoretic complement of a strict weak order is a total preorder and vice versa.
They can also be related in a way that preserves the direction of the order. Given a strict
weak order <, a total preorder ≤ is obtained by defining x ≤ y whenever y 6< x. In the other
direction, a strict weak order < is obtained from a total preorder ≤ by defining x < y whenever
y 6≤ x.

Given a total preorder ≤, we say that two elements x and y are equivalent iff both x ≤ y
and y ≤ x. Then, it follows from the properties of a total preorder that this is an equivalence
relation and, furthermore, two elements are equivalent in a total preorder if and only if they
are incomparable in the associated strict weak order (we have seen in Section 7.12.3 that the
incomparability relation ∼ associated to a strict weak order is an equivalence relation).

Both kinds of relations capture the notion that the set of elements is split into partitions
which are linearly ordered. This situation naturally arises when records are compared on a
given field.

The theory TOTAL-PREORDER, as presented below, imports the theory TRIV and the module
BOOL. The three equations express the required properties of the binary relation _<=_ on the
sort Elt.

fth TOTAL-PREORDER is

protecting BOOL .

including TRIV .

7.12. BASIC THEORIES AND STANDARD VIEWS 181

op _<=_ : Elt Elt -> Bool .

vars X Y Z : Elt .

eq X <= X = true [nonexec label reflexive] .

ceq X <= Z = true if X <= Y /\ Y <= Z [nonexec label transitive] .

eq X <= Y or Y <= X = true [nonexec label total] .

endfth

A total order is a total preorder that, in addition, is antisymmetric.

fth TOTAL-ORDER is

inc TOTAL-PREORDER .

vars X Y : Elt .

ceq X = Y if X <= Y /\ Y <= X [nonexec label antisymmetric] .

endfth

The theory TOTAL-ORDER is a different presentation of the equivalent theory NSTOSET for non-
strict total orders introduced in Section 6.3.1. Its name follows the usual convention according
to which, when nothing is said, a total order is assumed to be reflexive, that is, non-strict.

There is a view from TRIV to TOTAL-PREORDER, named like the target theory, that forgets
the binary relation and its preorder properties.

view TOTAL-PREORDER from TRIV to TOTAL-PREORDER is

endv

The following view represents the inclusion from the TOTAL-PREORDER theory into TOTAL-ORDER.

view TOTAL-ORDER from TOTAL-PREORDER to TOTAL-ORDER is

endv

In the Maude prelude we can also find views that map from TOTAL-ORDER to several built-in
data type modules by selecting the main sort and the standard non-strict total order between
the corresponding elements, namely, the “less than or equal to” comparison between numbers
and the lexicographic ordering between strings. These views are named by appending “<=” to
the name of the selected sort; for example, the standard view from TOTAL-ORDER into FLOAT is
named Float<.

view Nat<= from TOTAL-ORDER to NAT is

sort Elt to Nat .

endv

view Int<= from TOTAL-ORDER to INT is

sort Elt to Int .

endv

view Rat<= from TOTAL-ORDER to RAT is

sort Elt to Rat .

endv

view Float<= from TOTAL-ORDER to FLOAT is

sort Elt to Float .

endv

view String<= from TOTAL-ORDER to STRING is

sort Elt to String .

endv

Again, these views impose some proof obligations that are not discharged or checked by the
system.

182 CHAPTER 7. PREDEFINED DATA MODULES

X :: TRIV

SET*SET

LIST-AND-SET

LIST

NAT

LIST*

Figure 7.2: Importation graph of parameterized list and set modules

7.13 Containers: lists and sets

The current Maude prelude includes two parameterized containers: lists and sets.
Figure 7.2 shows the relationships between the modules described in this section specify-

ing parameterized lists and sets, including the theory TRIV. The module specifying sortable
lists is not included in this figure, because its relationship is more complex than protecting

importations (see later Figure 7.4).
Other container data types may be added to the Maude prelude in the future.

7.13.1 Lists

Lists over a given sort of elements (provided by the theory TRIV) are constructed from the
constant nil (representing the empty list) and singleton lists (identified with the corresponding
elements by means of a subsort declaration) by means of an associative concatenation operator
written as juxtaposition with empty syntax __.

Since there are several operations that are not well defined over the empty list, it is most
useful to define the subsort of non-empty lists.

fmod LIST{X :: TRIV} is

protecting NAT .

sorts NeList{X} List{X} .

subsort X$Elt < NeList{X} < List{X} .

op nil : -> List{X} [ctor] .

op __ : List{X} List{X} -> List{X} [ctor assoc id: nil prec 25] .

op __ : NeList{X} List{X} -> NeList{X} [ctor ditto] .

op __ : List{X} NeList{X} -> NeList{X} [ctor ditto] .

vars E E’ : X$Elt .

vars A L : List{X} .

var C : Nat .

The operator append is just another name for concatenation.

op append : List{X} List{X} -> List{X} .

op append : NeList{X} List{X} -> NeList{X} .

op append : List{X} NeList{X} -> NeList{X} .

7.13. CONTAINERS: LISTS AND SETS 183

eq append(A, L) = A L .

The operations head and tail take and discard, respectively, the first (leftmost) element
in a list. Analogously, the operations last and front take and discard, respectively, the last
(rightmost) element in a list. It is enough to have one equation for each operation, because the
case of a singleton list is obtained by matching modulo identity with L = nil.

op head : NeList{X} -> X$Elt .

eq head(E L) = E .

op tail : NeList{X} -> List{X} .

eq tail(E L) = L .

op last : NeList{X} -> X$Elt .

eq last(L E) = E .

op front : NeList{X} -> List{X} .

eq front(L E) = L .

The predicate occurs checks whether an element appears in any position in a list. The two
equations in its specification correspond to the typical case analysis (or structural induction)
over lists: either the list is empty or we consider the corresponding first element (in the latter
case, again one equation is enough).

op occurs : X$Elt List{X} -> Bool .

eq occurs(E, nil) = false .

eq occurs(E, E’ L) = if E == E’ then true else occurs(E, L) fi .

Reversing a list is accomplished by means of the operator reverse, which is efficiently
defined through an auxiliary operator $reverse that has an additional accumulator argument.
With this argument, $reverse has a simple tail-recursive and thus efficient definition.

op reverse : List{X} -> List{X} .

op reverse : NeList{X} -> NeList{X} .

eq reverse(L) = $reverse(L, nil) .

op $reverse : List{X} List{X} -> List{X} .

eq $reverse(nil, A) = A .

eq $reverse(E L, A) = $reverse(L, E A).

The tail-recursive method of definition just described will be used in the specification of
several other operators, including the size operator on lists, which computes the number of
elements in a list.

op size : List{X} -> Nat .

op size : NeList{X} -> NzNat .

eq size(L) = $size(L, 0) .

op $size : List{X} Nat -> Nat .

eq $size(nil, C) = C .

eq $size(E L, C) = $size(L, C + 1) .

endfm

In the Maude prelude there are two list instantiations on built-in data types (natural num-
bers and quoted identifiers) that are needed by the metalevel (see Chapter 17).

fmod NAT-LIST is

184 CHAPTER 7. PREDEFINED DATA MODULES

protecting LIST{Nat} * (sort NeList{Nat} to NeNatList,

sort List{Nat} to NatList) .

endfm

fmod QID-LIST is

protecting LIST{Qid} * (sort NeList{Qid} to NeQidList,

sort List{Qid} to QidList) .

endfm

Other instantiations can be built as desired. For example, we can use the view Int from
TRIV to INT, and then test some reductions, as follows.

fmod INT-LIST is

pr LIST{Int} .

endfm

Maude> red in INT-LIST : reverse(0 -1 2 -3 4 -5 6) .

result NeList{Int}: 6 -5 4 -3 2 -1 0

Maude> red occurs(7, 0 -1 2 -3 4 -5 6) .

result Bool: false

Maude> red size(0 -1 2 -3 4 -5 6) .

result NzNat: 7

7.13.2 Sets

Sets over a given sort of elements (provided by the theory TRIV) are built from the constant
empty and singleton sets (identified with the corresponding elements by means of a subsort
declaration) with an associative, commutative, and idempotent union operator written _,_. The
first two such properties are declared as attributes, while the third is written as an equation;
remember that the attributes idem and assoc cannot be used together (see Section 4.4.1).

fmod SET{X :: TRIV} is

protecting EXT-BOOL .

protecting NAT .

sorts NeSet{X} Set{X} .

subsort X$Elt < NeSet{X} < Set{X} .

op empty : -> Set{X} [ctor] .

op _,_ : Set{X} Set{X} -> Set{X}

[ctor assoc comm id: empty prec 121 format (d r os d)] .

op _,_ : NeSet{X} Set{X} -> NeSet{X} [ctor ditto] .

var E : X$Elt .

var N : NeSet{X} .

vars A S S’ : Set{X} .

var C : Nat .

eq N, N = N .

The prefix operator union is just another name for the infix operator _,_. Moreover, given
the identification between elements and singleton sets, inserting an element is a particular case
of union.

7.13. CONTAINERS: LISTS AND SETS 185

op union : Set{X} Set{X} -> Set{X} .

op union : NeSet{X} Set{X} -> NeSet{X} .

op union : Set{X} NeSet{X} -> NeSet{X} .

eq union(S, S’) = S, S’ .

op insert : X$Elt Set{X} -> Set{X} .

eq insert(E, S) = E, S .

The definitions of the operators delete, that deletes an element from a set, and in , that
checks if an element belongs to a set, are based on the statement attribute otherwise (see
Section 4.5.4):

1. When a given term representing a set matches the pattern (E, S) (modulo the equational
attributes of the _,_ operator), then we can delete the element E (and continue deleting,
since there may be repetitions of such element in the given term), and state that indeed
the element E belongs to the set.

2. Otherwise, the element E does not belong to the set and deleting such element does not
change the set.

op delete : X$Elt Set{X} -> Set{X} .

eq delete(E, (E, S)) = delete(E, S) .

eq delete(E, S) = S [owise] .

op _in_ : X$Elt Set{X} -> Bool .

eq E in (E, S) = true .

eq E in S = false [owise] .

The operator | | computes the cardinality of a set. Its definition goes through an auxiliary
operator $card with an additional accumulator argument that allows a tail-recursive definition.
In turn, the specification of $card is based on an equation that eliminates repetitions of elements
in a term representing a set; when such equation can no longer be applied (hence the owise

attribute in the last equation), the accumulator argument does its job by counting once each
different element.

op |_| : Set{X} -> Nat .

op |_| : NeSet{X} -> NzNat .

eq | S | = $card(S, 0) .

op $card : Set{X} Nat -> Nat .

eq $card(empty, C) = C .

eq $card((N, N, S), C) = $card((N, S), C) .

eq $card((E, S), C) = $card(S, C + 1) [owise] .

Both the intersection and set difference operations also use an auxiliary operation with a
tail-recursive efficient definition. The accumulator argument keeps the elements that belong to
both sets (for intersection) or to the first but not to the second set (for difference).

op intersection : Set{X} Set{X} -> Set{X} .

eq intersection(S, empty) = empty .

eq intersection(S, N) = $intersect(S, N, empty) .

op $intersect : Set{X} Set{X} Set{X} -> Set{X} .

eq $intersect(empty, S’, A) = A .

eq $intersect((E, S), S’, A)

186 CHAPTER 7. PREDEFINED DATA MODULES

= $intersect(S, S’, if E in S’ then E, A else A fi) .

op __ : Set{X} Set{X} -> Set{X} [gather (E e)].

eq S \ empty = S .

eq S \ N = $diff(S, N, empty) .

op $diff : Set{X} Set{X} Set{X} -> Set{X} .

eq $diff(empty, S’, A) = A .

eq $diff((E, S), S’, A)

= $diff(S, S’, if E in S’ then A else E, A fi) .

The following two predicates check whether their first argument is a (proper) subset of
the second argument. The second one is defined in terms of the first, and in both cases the
corresponding equations use the short-circuit version _and-then_ of conjunction imported from
the EXT-BOOL module.

op _subset_ : Set{X} Set{X} -> Bool .

eq empty subset S’ = true .

eq (E, S) subset S’ = E in S’ and-then S subset S’ .

op _psubset_ : Set{X} Set{X} -> Bool .

eq S psubset S’ = S =/= S’ and-then S subset S’ .

endfm

The Maude metalevel (see Chapter 17) imports a set instantiation on the built-in data type
of quoted identifiers.

fmod QID-SET is

protecting SET{Qid} * (sort NeSet{Qid} to NeQidSet,

sort Set{Qid} to QidSet) .

endfm

Another example of instantiation with some reductions is the following:

fmod INT-SET is

pr SET{Int} .

endfm

Maude> red in INT-SET : | -1, 2, -3, 3, 2, -1 | .

result NzNat: 4

Maude> red 4 in (-1, 2, -3, 3, 2, -1) .

result Bool: false

Maude> red insert(4, (-1, 2, -3, 3, 2, -1)) .

result NeSet{Int}: 2, 3, 4, -1, -3

Maude> red union((2, 3, 4, -1, -3, 0), (-1, 2, -3, 3, 2, -1)) .

result NeSet{Int}: 0, 2, 3, 4, -1, -3

Maude> red intersection((2, 3, 4, -1, -3, 0),

(-1, 2, -3, 3, 2, -1)) .

result NeSet{Int}: 2, 3, -1, -3

Maude> red (2, 3, 4, -1, -3, 0) \ (-1, 2, -3, 3, 2, -1) .

result NeSet{Int}: 0, 4

7.13. CONTAINERS: LISTS AND SETS 187

7.13.3 Relating lists and sets

The following module provides some operations that involve both lists and sets; since these
data types are not affected by the new operations, both of them are imported in protecting

mode.

fmod LIST-AND-SET{X :: TRIV} is

protecting LIST{X} .

protecting SET{X} .

var E : X$Elt .

vars A L : List{X} .

var S : Set{X} .

The operation makeSet transforms a list into a set, that is, it forgets the order between the
elements and its repetitions; operationally, it simply transforms the constructors nil and __

for lists into the constructors empty and _,_ for sets, but this is done in an efficient way by
using an auxiliary operator $makeSet with an accumulator argument that allows a tail-recursive
definition by structural induction on the list given as first argument. Notice that both operators
are overloaded to take into account in their declarations whether their arguments are empty or
not.

op makeSet : List{X} -> Set{X} .

op makeSet : NeList{X} -> NeSet{X} .

eq makeSet(L) = $makeSet(L, empty) .

op $makeSet : List{X} Set{X} -> Set{X} .

op $makeSet : NeList{X} Set{X} -> NeSet{X} .

op $makeSet : List{X} NeSet{X} -> NeSet{X} .

eq $makeSet(nil, S) = S .

eq $makeSet(E L, S) = $makeSet(L, (E, S)) .

An inverse operation makeList that transforms a set into a list will be seen in Section 7.13.7,
because it only makes sense when we have additional information to put the elements of the
set in a sequence in a univocally defined way.

The operations filter and filterOut take a list and a set as arguments, and return the list
formed by those elements of the given list that belong and that do not belong, respectively, to
the given set, in their original order. Again, both are defined by means of auxiliary operations
with accumulator arguments allowing efficient tail-recursive definitions.

op filter : List{X} Set{X} -> List{X} .

eq filter(L, S) = $filter(L, S, nil) .

op $filter : List{X} Set{X} List{X} -> List{X} .

eq $filter(nil, S, A) = A .

eq $filter(E L, S, A)

= $filter(L, S, if E in S then A E else A fi) .

op filterOut : List{X} Set{X} -> List{X} .

eq filterOut(L, S) = $filterOut(L, S, nil) .

op $filterOut : List{X} Set{X} List{X} -> List{X} .

eq $filterOut(nil, S, A) = A .

eq $filterOut(E L, S, A)

= $filterOut(L, S, if E in S then A else A E fi) .

endfm

188 CHAPTER 7. PREDEFINED DATA MODULES

For illustration, we consider the following instantiation and some reductions.

fmod INT-LIST-AND-SET is

pr LIST-AND-SET{Int} .

endfm

Maude> red in INT-LIST-AND-SET : filter((1 -1 1 -2 1), (1, 2)) .

result NeList{Int}: 1 1 1

Maude> red filterOut((1 -1 1 -2 1), (1, 2)) .

result NeList{Int}: -1 -2

Maude> red makeSet(1 -1 1 -2 1) .

result NeSet{Int}: 1, -1, -2

7.13.4 Generalized lists

With the construction of parameterized lists described in Section 7.13.1, we can build, for
example, lists of integers, or lists of lists of integers, but we cannot build lists in which we have
as elements both integers and lists of integers; for this, we specify in this section the container
of generalized or nestable lists.

In this specification we cannot use empty syntax in the same way as in Section 7.13.1,
because we need something to distinguish the different levels of nesting of lists inside lists. We
use an auxiliary sort Item, whose data are both elements and generalized lists (see the subsort
declarations below); then we put such items next to each other by juxtaposition, getting in
this way data of another auxiliary sort PreList, and finally we put square brackets around a
“prelist” in order to get a generalized list. Notice that there is no empty “prelist” and that the
empty generalized list [] is declared separately.

fmod LIST*{X :: TRIV} is

protecting NAT .

sorts Item{X} PreList{X} NeList{X} List{X} .

subsort X$Elt List{X} < Item{X} < PreList{X} .

subsort NeList{X} < List{X} .

op __ : PreList{X} PreList{X} -> PreList{X} [ctor assoc prec 25] .

op [_] : PreList{X} -> NeList{X} [ctor] .

op [] : -> List{X} [ctor] .

vars A P : PreList{X} .

var L : List{X} .

vars E E’ : Item{X} .

var C : Nat .

The operator append now corresponds to concatenation of generalized lists and its definition
is based on the juxtaposition of the “prelists” inside the generalized lists.

op append : List{X} List{X} -> List{X} .

op append : NeList{X} List{X} -> NeList{X} .

op append : List{X} NeList{X} -> NeList{X} .

eq append([], L) = L .

eq append(L, []) = L .

eq append([P], [A]) = [P A] .

7.13. CONTAINERS: LISTS AND SETS 189

The operations head, tail, last, and front work as for “standard” lists, but now they
refer to the first or last item in the list, which can be either an element or a nested list. Now we
need two equations for each operation, because the singleton case needs to be treated separately
(recall that there is no empty “prelist”).

op head : NeList{X} -> Item{X} .

eq head([E]) = E .

eq head([E P]) = E .

op tail : NeList{X} -> List{X} .

eq tail([E]) = [] .

eq tail([E P]) = [P] .

op last : NeList{X} -> Item{X} .

eq last([E]) = E .

eq last([P E]) = E .

op front : NeList{X} -> List{X} .

eq front([E]) = [] .

eq front([P E]) = [P] .

The predicate occurs checks whether an item (either an element or a list) appears in any
position of the first level of a generalized list (but it does not go into deeper levels, that is, into
nested lists). The three equations in its specification correspond to the typical case analysis (or
structural induction) over these lists: either the list is empty, or it is a list with a single item,
or it is a list with two or more items.

op occurs : Item{X} List{X} -> Bool .

eq occurs(E, []) = false .

eq occurs(E, [E’]) = (E == E’) .

eq occurs(E, [E’ P])

= if E == E’ then true else occurs(E, [P]) fi .

The operators reverse and size for generalized lists work in a similar way to the operators
with the same names in Section 7.13.1, and they are also defined by means of auxiliary operators
$reverse and $size, respectively, with a tail-recursive definition. Notice, however, that these
auxiliary operators work on “prelists” instead of lists. Moreover, size counts the number of
items in the first level of a generalized list, but it does not count the items inside nested lists
at deeper levels.

op reverse : List{X} -> List{X} .

op reverse : NeList{X} -> NeList{X} .

eq reverse([]) = [] .

eq reverse([E]) = [E] .

eq reverse([E P]) = [$reverse(P, E)] .

op $reverse : PreList{X} PreList{X} -> PreList{X} .

eq $reverse(E, A) = E A .

eq $reverse(E P, A) = $reverse(P, E A).

op size : List{X} -> Nat .

op size : NeList{X} -> NzNat .

eq size([]) = 0 .

eq size([P]) = $size(P, 0) .

190 CHAPTER 7. PREDEFINED DATA MODULES

op $size : PreList{X} Nat -> NzNat .

eq $size(E, C) = C + 1 .

eq $size(E P, C) = $size(P, C + 1) .

endfm

We consider the following instantiation and sample reductions:

fmod INT-LIST* is

pr LIST*{Int} .

endfm

Maude> red in INT-LIST* : append([1 []], [[] 2]) .

result NeList{Int}: [1 [] [] 2]

Maude> red reverse([[1 []] [[] 2]]) .

result NeList{Int}: [[[] 2] [1 []]]

Maude> red occurs(1, [[[] 2] [1 []]]) .

result Bool: false

Maude> red size([[[] 2] [1 []]]) .

result NzNat: 2

7.13.5 Generalized sets

The construction of generalized or nestable sets follows exactly the same pattern as the one we
have seen for generalized lists in the previous section, but now we use braces instead of square
brackets to make explicit the level of nesting. In particular, there is no empty “preset.” Note
that braces {_} and comma _,_ exactly reflect standard set theory notation.

Notice that the sort named Element plays here the same role as Item played for nestable
lists; do not confuse this sort with the sort Elt coming from the parameter theory TRIV in the
form X$Elt.

The module SET* provides for generalized sets the same operations we have seen in Sec-
tion 7.13.2 for “standard” sets, and, in addition, it specifies a powerset operator that was not
possible in the previous setting.

fmod SET*{X :: TRIV} is

protecting EXT-BOOL .

protecting NAT .

sorts Element{X} PreSet{X} NeSet{X} Set{X} .

subsort X$Elt Set{X} < Element{X} < PreSet{X} .

subsort NeSet{X} < Set{X} .

op _,_ : PreSet{X} PreSet{X} -> PreSet{X}

[ctor assoc comm prec 121 format (d r os d)] .

op {_} : PreSet{X} -> NeSet{X} [ctor] .

op {} : -> Set{X} [ctor] .

vars P Q : PreSet{X} .

vars A S : Set{X} .

var E : Element{X} .

var N : NeSet{X} .

var C : Nat .

7.13. CONTAINERS: LISTS AND SETS 191

eq {P, P} = {P} .

eq {P, P, Q} = {P, Q} .

The operations for insertion, deletion, and membership testing now work for items that can
be either basic elements or nested sets, but always at the first level of nesting. For example,
the membership predicate in cannot be used to test if a basic element belongs to a set inside
another set, but on the other hand can check if a set is a member of another set. In other
words, the operation in exactly corresponds to the set theory membership predicate ∈. As in
Section 7.13.2, the operators delete and in are defined by means of the otherwise attribute.
Moreover, each one has an additional equation for the singleton case, which is treated separately
because there is no empty “preset.”

op insert : Element{X} Set{X} -> Set{X} .

eq insert(E, {}) = {E} .

eq insert(E, {P}) = {E, P} .

op delete : Element{X} Set{X} -> Set{X} .

eq delete(E, {E}) = {} .

eq delete(E, {E, P}) = delete(E, {P}) .

eq delete(E, S) = S [owise] .

op _in_ : Element{X} Set{X} -> Bool .

eq E in {E} = true .

eq E in {E, P} = true .

eq E in S = false [owise] .

The cardinality operator | | computes the number of items (either basic elements or other
sets, at the first level of nesting) in a given set. It is defined with the help of an auxiliary
tail-recursive operator $card on “presets.”

op |_| : Set{X} -> Nat .

op |_| : NeSet{X} -> NzNat .

eq | {} | = 0 .

eq | {P} | = $card(P, 0) .

op $card : PreSet{X} Nat -> Nat .

eq $card(E, C) = C + 1 .

eq $card((N, N, P), C) = $card((N, P), C) .

eq $card((E, P), C) = $card(P, C + 1) [owise] .

The union operator union on generalized sets is based on the “union” operator , on the
“presets” inside the generalized sets.

op union : Set{X} Set{X} -> Set{X} .

op union : NeSet{X} Set{X} -> NeSet{X} .

op union : Set{X} NeSet{X} -> NeSet{X} .

eq union({}, S) = S .

eq union(S, {}) = S .

eq union({P}, {Q}) = {P, Q} .

The intersection and set difference operations for generalized sets have a specification very
similar to the one seen in Section 7.13.2, including the use of tail-recursive auxiliary operations
on “presets”.

op intersection : Set{X} Set{X} -> Set{X} .

eq intersection({}, S) = {} .

192 CHAPTER 7. PREDEFINED DATA MODULES

eq intersection(S, {}) = {} .

eq intersection({P}, N) = $intersect(P, N, {}) .

op $intersect : PreSet{X} Set{X} Set{X} -> Set{X} .

eq $intersect(E, S, A) = if E in S then insert(E, A) else A fi .

eq $intersect((E, P), S, A)

= $intersect(P, S, $intersect(E, S, A)) .

op __ : Set{X} Set{X} -> Set{X} [gather (E e)] .

eq {} \ S = {} .

eq S \ {} = S .

eq {P} \ N = $diff(P, N, {}) .

op $diff : PreSet{X} Set{X} Set{X} -> Set{X} .

eq $diff(E, S, A) = if E in S then A else insert(E, A) fi .

eq $diff((E, P), S, A) = $diff(P, S, $diff(E, S, A)) .

The powerset 2^ X of a set X is computed by case analysis on the set X: it is either the empty
set {} or a singleton set {E}, or it has two or more items {E, P}. In the last case we compute
the total powerset 2^ X by computing first the powerset 2^{P} of the set without item E and
then the union of this powerset 2^{P} with the result of inserting the distinguished item E into
all the items in the same powerset 2^{P}. The last process is done by means of an auxiliary
operation $augment.

op 2^_ : Set{X} -> Set{X} .

eq 2^{} = {{}} .

eq 2^{E} = {{}, {E}} .

eq 2^{E, P} = union(2^{P}, $augment(2^{P}, E, {})) .

op $augment : NeSet{X} Element{X} Set{X} -> Set{X} .

eq $augment({S}, E, A) = insert(insert(E, S), A) .

eq $augment({S, P}, E, A)

= $augment({P}, E, $augment({S}, E, A)) .

The specification of the subset predicates that check whether a set is included in another is
completely analogous to the specification of the corresponding operations in Section 7.13.2.

op _subset_ : Set{X} Set{X} -> Bool .

eq {} subset S = true .

eq {E} subset S = E in S .

eq {E, P} subset S = E in S and-then {P} subset S .

op _psubset_ : Set{X} Set{X} -> Bool .

eq A psubset S = A =/= S and-then A subset S .

dfm

We consider the following instantiation and sample reductions:

fmod QID-SET* is

pr SET*{Qid} .

endfm

Maude> red in QID-SET* : {’a} in {{’a}, {’b}, {’a, ’b}} .

result Bool: true

Maude> red | {{’a}, {’b}, {’a, ’b}} | .

result NzNat: 3

7.13. CONTAINERS: LISTS AND SETS 193

Maude> red union({{’a}, {’b}}, {{’a, ’b}}) .

result NeSet{Qid}: {{’a}, {’b}, {’a, ’b}}

Maude> red intersection({{’a}, {’b}}, {{’a, ’b}}) .

result Set{Qid}: {}

Maude> red 2^ {’a, ’b, ’c, ’d} .

result NeSet{Qid}:

{{}, {’a}, {’b}, {’c}, {’d}, {’a, ’b}, {’a, ’c}, {’a, ’d},

{’b, ’c}, {’b, ’d}, {’c, ’d}, {’a, ’b, ’c}, {’a, ’b, ’d},

{’a, ’c, ’d}, {’b, ’c, ’d}, {’a, ’b, ’c, ’d}}

7.13.6 Sortable lists

In Section 6.3.6 we defined the notion of sorted list requiring a totally ordered set of elements,
but this requirement can be relaxed. In principle, it is enough to have a transitive and anti-
symmetric order < on a set E of elements (which are the requirements in the theory TAOSET

from Section 6.3.1) to be able to define a sorted list L over E as a list such that for every pair
(u, v) of members in L with u occurring before v and with u 6= v, it is the case that v < u is
false. However, in what follows we are not interested in defining sorted lists, but in specifying
a sorting algorithm (more specifically, the mergesort algorithm) in a deterministic way. We
require the sorting algorithm to be stable, so that incomparable elements remain in the same
relative order as in the list provided as argument. For this notion to be well defined, we need
to require either a strict weak order or a total preorder.

Sorting lists with respect to a strict weak order

Assume first that < is a strict weak order over a set E, that is, a strict partial order with
a transitive incomparability relation, which are precisely the requirements in the predefined
theory STRICT-WEAK-ORDER of Section 7.12.3.

In order to define a stable sorting of a list L of elements over E, we consider each element of
the list L as a pair (x, i), where x is the value of the element in E and i is the number indicating
the position of x in L. We define an ordering � on such pairs as follows: (x, i) � (y, j) iff
either x < y or (x ∼ y and i < j). Then, it follows from the properties of < and ∼ that � is a
strict total order, i.e., it is irreflexive, transitive, and total.

We can now define the stable sorting under < of a list e1, e2, . . . , en of elements from E as fol-
lows: Take the list (e1, 1), (e2, 2), . . . , (en, n), find its unique ordering (es1 , s1), (es2 , s2), . . . , (esn , sn)
under �, and output es1 , es2 , . . . , esn .

The parameterized module WEAKLY-SORTABLE-LIST, that specifies a stable version of merge-
sort on lists, imports “standard” lists (from Section 7.13.1), but first it is necessary to match the
parameter theory TRIV of lists with the parameter theory STRICT-WEAK-ORDER. This is accom-
plished by means of the predefined view STRICT-WEAK-ORDER from TRIV to STRICT-WEAK-ORDER

that forgets the order and its properties (see Section 7.12.3). A renaming is also applied to
this instantiation in order to have more convenient sort names. This process is illustrated
in the diagram of Figure 7.3, where STRICT-WEAK-ORDER has been abbreviated to S-W-O, the
sort renaming has been abbreviated to α, and where the different types of arrows represent
the different relationships between modules: importation (triple arrow), views between theo-
ries (dashed arrow named S-W-O), instantiation (dashed arrow), and renaming (dotted arrow
named *(α), meaning the renaming whose second argument is α and whose first argument is
still unknown).

194 CHAPTER 7. PREDEFINED DATA MODULES

X :: TRIV X :: S-W-O X :: S-W-O

LIST LIST{S-W-O} LIST{S-W-O}*(α)

WEAKLY-SORTABLE-LIST

S-W-O

_*(α)

Figure 7.3: From lists to weakly sortable lists

fmod WEAKLY-SORTABLE-LIST{X :: STRICT-WEAK-ORDER} is

pr LIST{STRICT-WEAK-ORDER}{X}

* (sort NeList{STRICT-WEAK-ORDER}{X} to NeList{X},

sort List{STRICT-WEAK-ORDER}{X} to List{X}) .

sort $Split{X} .

vars E E’ : X$Elt .

vars A A’ L L’ : List{X} .

var N : NeList{X} .

The main operation in this module is sort, that sorts a given list.5 It is defined by case
analysis on the list: if it is either the empty list or a singleton list, then it is already sorted;
otherwise, we split the given list into two sublists, recursively sort both of them, and then merge
the sorted results in order to obtain the final sorted list. This process is accomplished by means
of three auxiliary operations, whose names are self-explanatory: $split (for the splitting, with
an auxiliary result sort $Split), $sort (for the recursive sorting calls), and $merge (for the
final merging).

op sort : List{X} -> List{X} .

op sort : NeList{X} -> NeList{X} .

eq sort(nil) = nil .

eq sort(E) = E .

eq sort(E N) = $sort($split(E N, nil, nil)) .

op $sort : $Split{X} -> List{X} .

eq $sort($split(nil, L, L’)) = $merge(sort(L), sort(L’), nil) .

The auxiliary operation $split has three arguments: the first one is the list to be split and
the other two are accumulators (initially both empty) that keep the elements as they are moved
from the main list into the appropriate sublists. In this way, we have an efficient tail-recursive
definition.

op $split : List{X} List{X} List{X} -> $Split{X} [ctor] .

eq $split(E, A, A’) = $split(nil, A E, A’) .

eq $split(E L E’, A, A’) = $split(L, A E, E’ A’) .

5We realize that terminology here can be a bit confusing, because in Maude sort is also a keyword for types.

7.13. CONTAINERS: LISTS AND SETS 195

The auxiliary operation $merge also has three arguments, but now the first two are the lists
to be merged and the third one is the accumulator where the result is incrementally computed
by means of another efficient tail-recursive definition.

The module also provides an operation merge that simply calls the previous operation with
the empty accumulator. Notice that if both lists are sorted then the result of calling merge on
them is a sorted list, but in general merge is a total function that can be called on any two lists
whatsoever.

op merge : List{X} List{X} -> List{X} .

op merge : NeList{X} List{X} -> NeList{X} .

op merge : List{X} NeList{X} -> NeList{X} .

eq merge(L, L’) = $merge(L, L’, nil) .

op $merge : List{X} List{X} List{X} -> List{X} .

eq $merge(L, nil, A) = A L .

eq $merge(nil, L, A) = A L .

eq $merge(E L, E’ L’, A)

= if E’ < E

then $merge(E L, L’, A E’)

else $merge(L, E’ L’, A E)

fi .

endfm

The Maude prelude also provides another predefined module for sorting lists, namely,
SORTABLE-LIST, where the required order is strict and total, as specified in the predefined
theory STRICT-TOTAL-ORDER of Section 7.12.3. Since the theory STRICT-TOTAL-ORDER is a
strengthening of STRICT-WEAK-ORDER with the additional requirement of totality, we can use
it as a parameter theory to specialize our WEAKLY-SORTABLE-LIST module to strict total or-
ders, thus getting the SORTABLE-LIST module. For this we need a view from the theory
STRICT-WEAK-ORDER into the theory STRICT-TOTAL-ORDER, which is precisely the predefined
inclusion view STRICT-TOTAL-ORDER in Section 7.12.3.

Moreover, since we also use another renaming to have more convenient sort names, the
construction of the parameterized module SORTABLE-LIST on top of WEAKLY-SORTABLE-LIST

mirrors the process of constructing WEAKLY-SORTABLE-LIST on top of LIST, as described in
Figure 7.4, where the sort renaming has been abbreviated to α′, WEAKLY-SORTABLE-LIST

to W-S-LIST, STRICT-WEAK-ORDER to S-W-O, and STRICT-TOTAL-ORDER to S-T-O. The reader
should compare this figure with Figure 7.3 to appreciate the similarity between both.

fmod SORTABLE-LIST{X :: STRICT-TOTAL-ORDER} is

pr WEAKLY-SORTABLE-LIST{STRICT-TOTAL-ORDER}{X}

* (sort NeList{STRICT-TOTAL-ORDER}{X} to NeList{X},

sort List{STRICT-TOTAL-ORDER}{X} to List{X}) .

endfm

We can use the predefined view String< from STRICT-TOTAL-ORDER to String (where < is
the lexicographic order on strings) to instantiate the previous module before doing some sample
reductions.

fmod STRING-SORTABLE-LIST is

pr SORTABLE-LIST{String<} .

endfm

Maude> red in STRING-SORTABLE-LIST :

$split("a" "quick" "brown" "fox" "jumps"

196 CHAPTER 7. PREDEFINED DATA MODULES

X :: S-W-O X :: S-T-O X :: S-T-O

WEAKLY-SORTABLE-LIST W-S-LIST{S-T-O} W-S-LIST{S-T-O}*(α′)

SORTABLE-LIST

S-T-O

_*(α′)

Figure 7.4: From weakly sortable lists to sortable lists

"over" "the" "lazy" "dog", nil, nil) .

result $Split{STRICT-TOTAL-ORDER}{String<}:
$split(nil,

"a" "quick" "brown" "fox" "jumps",

"over" "the" "lazy" "dog")

Maude> red merge("a" "quick" "brown" "fox" "jumps",

"over" "the" "lazy" "dog") .

result NeList{String<}:

"a" "over" "quick" "brown" "fox" "jumps" "the" "lazy" "dog"

Maude> red sort("a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<}:

"a" "brown" "dog" "fox" "jumps" "lazy" "over" "quick" "the"

Maude> red sort("a" "quick" "brown" "fox" "jumps" "over" "the"

"lazy" "dog" "a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<}: "a" "a" "brown" "brown" "dog" "dog" "fox"

"fox" "jumps" "jumps" "lazy" "lazy" "over" "over" "quick" "quick"

"the" "the"

Sorting lists with respect to a total preorder

Assume now that ≤ is a total preorder over a set E, that is, a binary relation satisfying the
requirements in the predefined theory TOTAL-PREORDER of Section 7.12.4.

To define a stable sorting of a list L of elements over E, we consider again each element
of the list L as a pair (x, i), where x is the value of the element in E and i is the number
indicating the position of x in L. We define an ordering � on such pairs as follows, where
now the definition of � is slightly different given the non-strict nature of total preorders:
(x, i) � (y, j) iff either y 6≤ x or (x ≤ y and i ≤ j). Then, the properties of ≤ imply that
� is a (non-strict) total order, i.e., it is reflexive, antisymmetric, transitive, and total. From
this, the definition of a stable sorting under ≤ of a list e1, e2, . . . , en of elements from E follows
exactly the same steps as before: Take the list (e1, 1), (e2, 2), . . . , (en, n), find its unique ordering
(es1 , s1), (es2 , s2), . . . , (esn , sn) under �, and output es1 , es2 , . . . , esn .

7.13. CONTAINERS: LISTS AND SETS 197

X :: TRIV X :: T-PREORDER X :: T-PREORDER

LIST LIST{T-PREORDER} LIST{T-PREORDER}*(γ)

WEAKLY-SORTABLE-LIST'

T-PREODER

_*(γ)

X :: T-PREORDER X :: T-ORDER X :: T-ORDER

WEAKLY-SORTABLE-LIST' W-S-LIST'{T-ORDER} W-S-LIST'{T-ORDER}*(γ′)

SORTABLE-LIST'

T-ORDER

_*(γ′)

Figure 7.5: Another version of sortable lists

The following modules WEAKLY-SORTABLE-LIST’ and SORTABLE-LIST’ specify the merge-
sort algorithm with respect to a total preorder and a (non-strict) total order, respectively. Their
structure is completely analogous to the structure of WEAKLY-SORTABLE-LIST and SORTABLE-LIST

already explained above. It is described in the two diagrams of Figure 7.5, where the sort re-
namings have been abbreviated to γ and γ′, TOTAL-PREORDER to T-PREORDER, TOTAL-ORDER to
T-ORDER, and WEAKLY-SORTABLE-LIST’ W-S-LIST’.

fmod WEAKLY-SORTABLE-LIST’{X :: TOTAL-PREORDER} is

pr LIST{TOTAL-PREORDER}{X}

* (sort NeList{TOTAL-PREORDER}{X} to NeList{X},

sort List{TOTAL-PREORDER}{X} to List{X}) .

sort $Split{X} .

vars E E’ : X$Elt .

vars A A’ L L’ : List{X} .

var N : NeList{X} .

op sort : List{X} -> List{X} .

op sort : NeList{X} -> NeList{X} .

eq sort(nil) = nil .

eq sort(E) = E .

eq sort(E N) = $sort($split(E N, nil, nil)) .

198 CHAPTER 7. PREDEFINED DATA MODULES

op $sort : $Split{X} -> List{X} .

eq $sort($split(nil, L, L’)) = $merge(sort(L), sort(L’), nil) .

op $split : List{X} List{X} List{X} -> $Split{X} [ctor] .

eq $split(E, A, A’) = $split(nil, A E, A’) .

eq $split(E L E’, A, A’) = $split(L, A E, E’ A’) .

op merge : List{X} List{X} -> List{X} .

op merge : NeList{X} List{X} -> NeList{X} .

op merge : List{X} NeList{X} -> NeList{X} .

eq merge(L, L’) = $merge(L, L’, nil) .

op $merge : List{X} List{X} List{X} -> List{X} .

eq $merge(L, nil, A) = A L .

eq $merge(nil, L, A) = A L .

eq $merge(E L, E’ L’, A)

= if E <= E’

then $merge(L, E’ L’, A E)

else $merge(E L, L’, A E’)

fi .

endfm

fmod SORTABLE-LIST’{X :: TOTAL-ORDER} is

pr WEAKLY-SORTABLE-LIST’{TOTAL-ORDER}{X}

* (sort NeList{TOTAL-ORDER}{X} to NeList{X},

sort List{TOTAL-ORDER}{X} to List{X}) .

endfm

Apart from the changes in the requirement theories and the module names, the main differ-
ence bewteen both approaches appears in the third $merge equation. In the WEAKLY-SORTABLE-LIST
module we have

eq $merge(E L, E’ L’, A)

= if E’ < E

then $merge(E L, L’, A E’)

else $merge(L, E’ L’, A E)

fi .

Here we are dealing with a strict weak order. We test E’ < E. If it is true, then by irreflexivity
we know that E < E’ is false, and the element E’ from the second list is appended to the
merged list. Whereas if E’ < E is false, we know that either E < E’ holds or E and E’ are
incomparable. Either way, the element E from the first list is appended to the merged list,
either because it is smaller or because it is incomparable and we are preserving the original
relative positions in the list (stability).

On the other hand, in the WEAKLY-SORTABLE-LIST’ module we have

eq $merge(E L, E’ L’, A)

= if E <= E’

then $merge(L, E’ L’, A E)

else $merge(E L, L’, A E’)

fi .

In this case we are dealing with a total preorder. We test E <= E’. If it is true, then either
E’ <= E is false or E and E’ are equivalent. Either way, the element E from the first list is

7.13. CONTAINERS: LISTS AND SETS 199

appended to the merged list, either because it is smaller or because it is equivalent and we are
preserving the original relative positions in the list (stability). If E <= E’ is false, then E’ <= E

holds by totality and therefore E’ is appended to the merged list.
We can redo with these modules the same instantiation we considered above, but using

now the predefined view String<= from TOTAL-ORDER to String, where <= is the non-strict
lexicographic order on strings.

fmod STRING-SORTABLE-LIST’ is

pr SORTABLE-LIST’{String<=} .

endfm

Maude> red in STRING-SORTABLE-LIST’ :

sort("a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<=}:

"a" "brown" "dog" "fox" "jumps" "lazy" "over" "quick" "the"

Maude> red sort("a" "quick" "brown" "fox" "jumps" "over" "the"

"lazy" "dog" "a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<=}: "a" "a" "brown" "brown" "dog" "dog" "fox"

"fox" "jumps" "jumps" "lazy" "lazy" "over" "over" "quick" "quick"

"the" "the"

7.13.7 Making lists out of sets

In Section 7.13.3 we have seen an operation makeSet that transforms a list into a set with the
same elements. On the other hand, transforming a set into a list imposes some order on the
given elements, which can be done in many different ways, and therefore only makes sense as
a function when we have additional information over those elements that allows us to choose
a unique sequence. The solution adopted here is to require either a strict or a non-strict total
order on the elements, so that the resulting list is the corresponding sorted list. For this we
use the sort operation defined either in the SORTABLE-LIST module or in the SORTABLE-LIST’

module described in the previous section. In both versions the main operation makeList is
defined in terms of an auxiliary operation $makeList with an accumulator in order to have a
more efficient definition.

In both versions the LIST-AND-SET module is imported with a double renaming (different in
each case), which is needed for correct sharing of a renamed copy of the LIST module, because
Core Maude does not evaluate the composition of renamings but applies them sequentially. If
we computed manually and used this simpler renaming, we would get a different renaming of
LIST imported by each protecting declaration; then, while these renamings would have the
same effect, we would import two renamed copies of LIST rather than a shared copy.

This is the first version, using a strict total order.

fmod SORTABLE-LIST-AND-SET{X :: STRICT-TOTAL-ORDER} is

pr SORTABLE-LIST{X} .

pr LIST-AND-SET{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

* (sort NeList{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to NeList{STRICT-TOTAL-ORDER}{X},

sort List{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to List{STRICT-TOTAL-ORDER}{X})

* (sort NeList{STRICT-TOTAL-ORDER}{X} to NeList{X},

200 CHAPTER 7. PREDEFINED DATA MODULES

sort List{STRICT-TOTAL-ORDER}{X} to List{X},

sort NeSet{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to NeSet{X},

sort Set{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to Set{X}) .

var E : X$Elt .

var L : List{X} .

var S : Set{X} .

op makeList : Set{X} -> List{X} .

op makeList : NeSet{X} -> NeList{X} .

eq makeList(S) = $makeList(S, nil) .

op $makeList : Set{X} List{X} -> List{X} .

op $makeList : NeSet{X} List{X} -> NeList{X} .

op $makeList : Set{X} NeList{X} -> NeList{X} .

eq $makeList((E, E, S), L) = $makeList((E, S), L) .

eq $makeList((E, S), L) = $makeList(S, E L) [owise] .

endfm

Notice that makeList is only a partial inverse to makeSet, not only because of sorting the
elements, but also because in a set repetitions do not matter. In general, for a set S and a list
L we have makeSet(makeList(S)) = S, but in general makeList(makeSet(L)) 6= L.

We consider an instantiation with the predefined view Int< and some sample reductions.

fmod INT-SORTABLE-LIST-AND-SET is

pr SORTABLE-LIST-AND-SET{Int<} .

endfm

Notice that in the following first reduction we get a list different from the original one,
while in the second reduction we get a different representation (where repetitions have been
eliminated) of the same set. Those possible repetitions are already eliminated before producing
the corresponding list, as shown in the third reduction.

Maude> red in INT-SORTABLE-LIST-AND-SET :

makeList(makeSet(1 -1 1 -2 1 0)) .

result NeList{Int<}: -2 -1 0 1

Maude> red makeSet(makeList((5, 4, 3, 4, 5))) .

result NeSet{Int<}: 3, 4, 5

Maude> red makeList((5, 4, 3, 4, 5)) .

result NeList{Int<}: 3 4 5

This is the second version, using a non-strict total order.

fmod SORTABLE-LIST-AND-SET’{X :: TOTAL-ORDER} is

pr SORTABLE-LIST’{X} .

pr LIST-AND-SET{TOTAL-PREORDER}{TOTAL-ORDER}{X}

* (sort NeList{TOTAL-PREORDER}{TOTAL-ORDER}{X}

to NeList{TOTAL-ORDER}{X},

sort List{TOTAL-PREORDER}{TOTAL-ORDER}{X}

to List{TOTAL-ORDER}{X})

* (sort NeList{TOTAL-ORDER}{X} to NeList{X},

sort List{TOTAL-ORDER}{X} to List{X},

7.14. MAPS AND ARRAYS 201

sort NeSet{TOTAL-PREORDER}{TOTAL-ORDER}{X} to NeSet{X},

sort Set{TOTAL-PREORDER}{TOTAL-ORDER}{X} to Set{X}) .

var E : X$Elt .

var L : List{X} .

var S : Set{X} .

op makeList : Set{X} -> List{X} .

op makeList : NeSet{X} -> NeList{X} .

eq makeList(S) = $makeList(S, nil) .

op $makeList : Set{X} List{X} -> List{X} .

op $makeList : NeSet{X} List{X} -> NeList{X} .

op $makeList : Set{X} NeList{X} -> NeList{X} .

eq $makeList(empty, L) = sort(L) .

eq $makeList((E, E, S), L) = $makeList((E, S), L) .

eq $makeList((E, S), L) = $makeList(S, E L) [owise] .

endfm

We redo the same instantiation, now with the non-strict total order on integers.

fmod INT-SORTABLE-LIST-AND-SET’ is

pr SORTABLE-LIST-AND-SET’{Int<=} .

endfm

Maude> red in INT-SORTABLE-LIST-AND-SET’ :

makeList(makeSet(1 -1 1 -2 1 0)) .

result NeList{Int<=}: -2 -1 0 1

Maude> red makeSet(makeList((5, 4, 3, 4, 5))) .

result NeSet{Int<=}: 3, 4, 5

Maude> red makeList((5, 4, 3, 4, 5)) .

result NeList{Int<=}: 3 4 5

7.14 Maps and arrays

Both maps and arrays represent a function f between two sets as a set of pairs of the form

{(a1, f(a1)), (a2, f(a2)), . . . , (an, f(an))}

in the graph of the function; each pair (ai, f(ai)) is called an entry in both cases.
The difference between maps and arrays is that the former leave undefined the result of f

over those values not present in the set above, while the latter assign a “default” value result
in that case.

However, notice that the modules below do not check, for efficiency reasons, that all values
ai in the first components of a set of pairs like the previous one are different (although the
operations for insertion and look up make sure that the corresponding result is well defined).
The situation of having a set of entries with repeated first components never arises if such a
map or array is initially the empty one and then it is only modified by means of the insert

operation. See Section 6.3.7 for a more careful specification of (finite) partial functions checking
these requirements.

202 CHAPTER 7. PREDEFINED DATA MODULES

7.14.1 Maps

As explained above, a map is defined as a “set” (built with the associative and commutative
operator _,_) of entries. Notice that Entry, whose only constructor is the operator _|->_, is a
subsort of Map.

The domain and codomain values of the map come from the parameters of the parameterized
data type, both of them satisfying the theory TRIV and thus providing a set of elements.

The module MAP provides a constant undefined of the kind [Y$Elt] corresponding to the
sort Y$Elt and representing the undefined result.

fmod MAP{X :: TRIV, Y :: TRIV} is

protecting BOOL .

sorts Entry{X,Y} Map{X,Y} .

subsort Entry{X,Y} < Map{X,Y} .

op _|->_ : X$Elt Y$Elt -> Entry{X,Y} [ctor] .

op empty : -> Map{X,Y} [ctor] .

op _,_ : Map{X,Y} Map{X,Y} -> Map{X,Y}

[ctor assoc comm id: empty prec 121 format (d r os d)] .

op undefined : -> [Y$Elt] [ctor] .

var D : X$Elt .

vars R R’ : Y$Elt .

var M : Map{X,Y} .

The operator insert adds a new entry to a map, but when the first argument already
appears in the domain of definition of the map, the second argument is used to update the
map. Notice the use of matching and of the otherwise attribute to distinguish these two cases
in a simple way. Furthermore, in the first case, an auxiliary operation $hasMapping is used to
make sure that in the resulting map only one entry is associated with the given value. The
operation $hasMapping checks whether a domain value actually has an associated entry in a
map.

op insert : X$Elt Y$Elt Map{X,Y} -> Map{X,Y} .

eq insert(D, R, (M, D |-> R’))

= if $hasMapping(M, D)

then insert(D, R, M)

else (M, D |-> R)

fi .

eq insert(D, R, M) = (M, D |-> R) [owise] .

op $hasMapping : Map{X,Y} X$Elt -> Bool .

eq $hasMapping((M, D |-> R), D) = true .

eq $hasMapping(M, D) = false [owise] .

The lookup operator is represented with the notation _[_]. Again, matching and owise are
used to distinguish whether or not the second argument appears in the domain of definition
of the map provided as first argument. When the answer is affirmative an the map contains
exactly one entry associated with such argument (as checked with the auxiliary operation
$hasMapping), the result is the value provided in that entry. When the answer is negative or
the map is not well defined because there is more than one entry associated with the same
argument, the result is the constant undefined in the kind, with the self-explanatory meaning
that in those cases the map is undefined on the given argument.

op _[_] : Map{X,Y} X$Elt -> [Y$Elt] [prec 23] .

7.14. MAPS AND ARRAYS 203

eq (M, D |-> R)[D]

= if $hasMapping(M, D) then undefined else R fi .

eq M[D] = undefined [owise] .

endfm

We use the predefined views String and Nat (see Section 7.12.1) to define maps from strings
to natural numbers, and do some sample reductions.

fmod STRING-NAT-MAP is

pr MAP{String, Nat} .

endfm

Maude> red in STRING-NAT-MAP :

insert("one", 1,

insert("two", 2, insert("three", 3, empty))) .

result Map{String,Nat}: "one" |-> 1, "three" |-> 3, "two" |-> 2

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["two"] .

result NzNat: 2

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["four"] .

result [FindResult]: undefined

Maude> red ("a" |-> 3, "a" |-> 2)["a"] .

result [FindResult]: undefined

The last reduction shows that the undesired repetition of a domain value in two entries of
the same map also produces the undefined constant as result.

7.14.2 Arrays

As explained above, arrays work like maps, with the difference that an attempt to look up
an unmapped value always returns the default value, i.e., arrays have a sparse array behavior
(hence the name). In the same spirit, mappings to the default value are never inserted.

The main difference between maps and arrays is already made explicit in the parameters
of the parameterized data type: while the first one satisfies the theory TRIV, the second one
satisfies the theory DEFAULT that in addition to a set of data provides a default value 0 (see
Section 7.12.2).

The constructor for entries is named _|->_, as for maps, while the set constructor is denoted
here _;_.

fmod ARRAY{X :: TRIV, Y :: DEFAULT} is

protecting BOOL .

sorts Entry{X,Y} Array{X,Y} .

subsort Entry{X,Y} < Array{X,Y} .

op _|->_ : X$Elt Y$Elt -> Entry{X,Y} [ctor] .

op empty : -> Array{X,Y} [ctor] .

op _;_ : Array{X,Y} Array{X,Y} -> Array{X,Y}

[ctor assoc comm id: empty prec 71 format (d r os d)] .

204 CHAPTER 7. PREDEFINED DATA MODULES

var D : X$Elt .

vars R R’ : Y$Elt .

var A : Array{X,Y} .

The definition of the operator insert for arrays adds a check to the definition of the same
operator for maps so that, as mentioned above, entries whose second value is the default value
0 are never inserted. Note, however, that mappings to the default value 0 that are created with
the constructors _|->_ and _;_, rather than the insert operator, are not removed as doing
this check each time a new array is formed would be excessively inefficient. Furthermore, as
we have already seen for maps, in the first case, an auxiliary operation $hasMapping is used to
make sure that in the resulting array only one entry is associated with the given value.

op insert : X$Elt Y$Elt Array{X,Y} -> Array{X,Y} .

eq insert(D, R, (A ; D |-> R’))

= if $hasMapping(A, D)

then insert(D, R, A)

else if R == 0 then A else (A ; D |-> R) fi

fi .

eq insert(D, R, A)

= if R == 0 then A else (A ; D |-> R) fi [owise] .

op $hasMapping : Array{X,Y} X$Elt -> Bool .

eq $hasMapping((A ; D |-> R), D) = true .

eq $hasMapping(A, D) = false [owise] .

The definition of the lookup operator for arrays only differs from the one for maps in the
occurrence of the default value 0 instead of the constant undefined. Now, if an argument has
more than one associated entry (as checked with the auxiliar operation $hasMapping), it is
considered to be “unmapped” and the result is also the default value.

op _[_] : Array{X,Y} X$Elt -> Y$Elt [prec 23] .

eq (A ; D |-> R)[D]

= if $hasMapping(A, D) then 0 else R fi .

eq A[D] = 0 [owise] .

endfm

We do the same instantiation for arrays as for maps, with the predefined views String from
Section 7.12.1 and Nat0 from Section 7.12.2).

fmod STRING-NAT-ARRAY is

pr ARRAY{String, Nat0} .

endfm

Maude> red in STRING-NAT-ARRAY :

insert("one", 1,

insert("two", 2, insert("three", 3, empty))) .

result Array{String,Nat0}: "one" |-> 1 ; "three" |-> 3 ; "two" |-> 2

Maude> red insert("one", 0,

insert("two", 2, insert("three", 3, empty))) .

result Array{String,Nat0}: "three" |-> 3 ; "two" |-> 2

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["two"] .

result NzNat: 2

7.15. A LINEAR DIOPHANTINE EQUATION SOLVER 205

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["four"] .

result Zero: 0

7.15 A linear Diophantine equation solver

The Maude system includes a built-in linear Diophantine equation solver. The interface to the
solver is defined in the file linear.maude which contains the functional module DIOPHANTINE.
The current solver finds non-negative solutions of a system S of n simultaneous linear equations
in m variables having the form Mv = c, where M is an n×m integer coefficient matrix, v is a
column vector of m variables and c is a column vector of n integer constants.

Both matrices and vectors are represented as sparse arrays with their dimensions implicit
and their indices starting from 0. For this we make heavy use of the parameterized module
ARRAY, described in Section 7.14.2.

First, a data type of pairs of natural numbers to be used as indices for matrices is created.

fmod INDEX-PAIR is

pr NAT .

sort IndexPair .

op _,_ : Nat Nat -> IndexPair [ctor] .

endfm

Then, we instantiate (and rename as desired) the parameterized module ARRAY to obtain
matrices of integers. Notice that Int0 is the view from DEFAULT to INT given in Section 7.12.2

view IndexPair from TRIV to INDEX-PAIR is

sort Elt to IndexPair .

endv

fmod MATRIX{X :: DEFAULT} is

pr (ARRAY * (sort Entry{X,Y} to Entry{Y},

sort Array{X,Y} to Matrix{Y}))

{IndexPair, X} .

endfm

fmod INT-MATRIX is

pr MATRIX{Int0} * (sort Entry{Int0} to IntMatrixEntry,

sort Matrix{Int0} to IntMatrix,

op empty to zeroMatrix) .

endfm

For example, the matrices(
1 2
0 −1

)  1 2 0
0 −1 0
0 0 0


are both represented by the same term

(0,0) |-> 1 ; (0,1) |-> 2 ; (1,1) |-> -1

Vectors are represented in a similar way as sparse arrays with natural numbers as indices.
We use here the view Int0 already mentioned above and also the view Nat from TRIV to NAT

given in Section 7.12.1. The view IntVector defined below will be used to construct sets of
vectors later on.

206 CHAPTER 7. PREDEFINED DATA MODULES

fmod VECTOR{X :: DEFAULT} is

pr (ARRAY * (sort Entry{X,Y} to Entry{Y},

sort Array{X,Y} to Vector{Y}))

{Nat, X} .

endfm

fmod INT-VECTOR is

pr VECTOR{Int0} * (sort Entry{Int0} to IntVectorEntry,

sort Vector{Int0} to IntVector,

op empty to zeroVector) .

endfm

view IntVector from TRIV to INT-VECTOR is

sort Elt to IntVector .

endv

No distinction is made between row and column vectors, so, for example, both the row vector(
−2 0 0 3

)
and its transpose

(
−2 0 0 3

)t
are represented by the same term

0 |-> -2 ; 3 |-> 3

The constants zeroMatrix and zeroVector denote the all zero matrix and vector, respec-
tively.

The main module DIOPHANTINE begins defining pairs of sets of integer vectors, as follows:

fmod DIOPHANTINE is

pr STRING .

pr INT-MATRIX .

pr SET{IntVector}

* (sort NeSet{IntVector} to NeIntVectorSet,

sort Set{IntVector} to IntVectorSet,

op _,_ : Set{IntVector} Set{IntVector} -> Set{IntVector}

to (_,_) [prec 121 format (d d ni d)]) .

sort IntVectorSetPair .

op [_|_] : IntVectorSet IntVectorSet -> IntVectorSetPair

[format (d n++i n ni n-- d)] .

Then, the solver is invoked with the built-in operator

op natSystemSolve : IntMatrix IntVector String -> IntVectorSetPair

[special (...)] .

which takes as arguments the coefficient matrix, the constant vector, and a string naming the
algorithm to be used (see below), and returns the complete set of solutions encoded as a pair
of sets of vectors [A | B]. The non-negative solutions of the linear Diophantine system
correspond exactly to those vectors that can be formed as the sum of a vector from A and a
non-negative linear combination of vectors from B.

In particular, if the system S is homogeneous (i.e., c = zeroVector) then A contains just
the constant zeroVector and B is the Diophantine basis of S (which will be empty if S only
admits the trivial solution). A homogeneous system either has just the trivial solution or
infinitely many solutions.

If S is inhomogeneous (i.e., c 6= zeroVector) then, if S has no solution, both A and B
will be empty; otherwise, B will consist of the Diophantine basis of S′, the system formed by
setting c = zeroVector, while A contains all solutions of S that are not strictly larger than

7.15. A LINEAR DIOPHANTINE EQUATION SOLVER 207

any element of B. An inhomogeneous system may have no solution (in this case A and B are
both empty), a finite number of solutions (in this case A is non-empty and B is empty), or
infinitely many solutions (in this case A and B are both non-empty).

In either case, the solution encoding [A | B] is unique.
Deciding whether a linear Diophantine system admits a non-negative, nontrivial solution is

NP-complete (stated as known in [135]). Furthermore the size of the Diophantine basis of a
homogeneous system can be very large. For example the equation: x+ y−kz = 0, for constant
k > 0, has a Diophantine basis (i.e., set of minimal, nontrivial solutions) of size k + 1.

There are currently two algorithms implemented.
The string "cd" specifies a version of the classical Contejean-Devie algorithm [37] with

various improvements. The algorithm is based on incrementing a vector of counters, one for
each variable, and so it can only solve systems where the answers involve fairly small numbers.
It is fairly insensitive to the number of degrees of freedom in the problem. The improvements
in this implementation take effect when an equation has zero or one unfrozen variables with
nonzero coefficients and result in either forced assignments or early pruning of a branch of the
search. It performs well on the following homogeneous system from [43], 1 2 −1 0 −2 −1

0 −1 −2 2 0 1
2 0 1 −1 −2 0

 n1

n2

n3

 =

 0
0
0


which has a basis of size 13.

Maude> red in DIOPHANTINE :

natSystemSolve(

(0,0) |-> 1 ; (0,1) |-> 2 ; (0,2) |-> -1 ;

(0,3) |-> 0 ; (0,4) |-> -2 ; (0,5) |-> -1 ;

(1,0) |-> 0 ; (1,1) |-> -1 ; (1,2) |-> -2 ;

(1,3) |-> 2 ; (1,4) |-> 0 ; (1,5) |-> 1 ;

(2,0) |-> 2 ; (2,1) |-> 0 ; (2,2) |-> 1 ;

(2,3) |-> -1 ; (2,4) |-> -2 ; (2,5) |-> 0,

zeroVector,

"cd") .

rewrites: 1 in 10ms cpu (46ms real) (100 rews/sec)

result IntVectorSetPair:

[

zeroVector

|

0 |-> 1 ; 1 |-> 1 ; 4 |-> 1 ; 5 |-> 1,

0 |-> 1 ; 1 |-> 4 ; 2 |-> 9 ; 3 |-> 11,

0 |-> 10 ; 1 |-> 4 ; 3 |-> 2 ; 4 |-> 9,

1 |-> 1 ; 2 |-> 1 ; 3 |-> 1 ; 5 |-> 1,

1 |-> 8 ; 2 |-> 2 ; 4 |-> 1 ; 5 |-> 12,

0 |-> 2 ; 1 |-> 4 ; 2 |-> 8 ; 3 |-> 10 ; 4 |-> 1,

0 |-> 3 ; 1 |-> 4 ; 2 |-> 7 ; 3 |-> 9 ; 4 |-> 2,

0 |-> 4 ; 1 |-> 4 ; 2 |-> 6 ; 3 |-> 8 ; 4 |-> 3,

0 |-> 5 ; 1 |-> 4 ; 2 |-> 5 ; 3 |-> 7 ; 4 |-> 4,

0 |-> 6 ; 1 |-> 4 ; 2 |-> 4 ; 3 |-> 6 ; 4 |-> 5,

0 |-> 7 ; 1 |-> 4 ; 2 |-> 3 ; 3 |-> 5 ; 4 |-> 6,

0 |-> 8 ; 1 |-> 4 ; 2 |-> 2 ; 3 |-> 4 ; 4 |-> 7,

0 |-> 9 ; 1 |-> 4 ; 2 |-> 1 ; 3 |-> 3 ; 4 |-> 8

]

208 CHAPTER 7. PREDEFINED DATA MODULES

The string "gcd" specifies an original algorithm based on integer Gaussian elimination
followed by a sequence of extended greatest common divisor (gcd) computations. It can “home
in” quickly on solutions involving large numbers but it is very sensitive to the number of degrees
of freedom and can easily degenerate into a brute force search. Furthermore, termination
depends on the bound on the sum of minimal solutions established in [125], which can cause
a huge amount of fruitless search after the last minimal solution has been found. It performs
well on the “sailors and monkey” problem from [37]:

red in DIOPHANTINE :

natSystemSolve(

(0,0) |-> 1 ; (0,1) |-> -5 ; (1,1) |-> 4 ; (1,2) |-> -5 ;

(2,2) |-> 4 ; (2,3) |-> -5 ; (3,3) |-> 4 ; (3,4) |-> -5 ;

(4,4) |-> 4 ; (4,5) |-> -5 ; (5,5) |-> 4 ; (5,6) |-> -5,

0 |-> 1 ; 1 |-> 1 ; 2 |-> 1 ; 3 |-> 1 ; 4 |-> 1 ; 5 |-> 1,

"gcd") .

result IntVectorSetPair:

[

0 |-> 15621 ; 1 |-> 3124 ; 2 |-> 2499 ; 3 |-> 1999 ;

4 |-> 1599 ; 5 |-> 1279 ; 6 |-> 1023

|

0 |-> 15625 ; 1 |-> 3125 ; 2 |-> 2500 ; 3 |-> 2000 ;

4 |-> 1600 ; 5 |-> 1280 ; 6 |-> 1024

]

Finally, the string "" can be passed as third argument of natSystemSolve, thus allowing
the system to choose which algorithm to use. For convenience, the operator

op natSystemSolve : IntMatrix IntVector -> IntVectorSetPair .

is equationally defined to invoke the built-in operator with ""

eq natSystemSolve(M:IntMatrix, V:IntVector)

= natSystemSolve(M:IntMatrix, V:IntVector, "") .

endfm

7.16 Predefined Parameterized Views

Section 7.12 introduces several predefined theories and corresponding default views. Maude’s
prelude also contains several parameterized views, from TRIV to the corresponding predefined
parameterized modules:

view List{X :: TRIV}

view WeaklySortableList{X :: STRICT-WEAK-ORDER}

view SortableList{X :: STRICT-TOTAL-ORDER}

view WeaklySortableList’{X :: TOTAL-PREORDER}

view SortableList’{X :: TOTAL-ORDER}

view Set{X :: TRIV}

view List*{X :: TRIV}

view Set*{X :: TRIV}

view Map{X :: TRIV, Y :: TRIV}

view Array{X :: TRIV, Y :: DEFAULT}

With these views you can now import module expressions such as LIST{Set{Nat}} and
SET{List{String}}. Alternatively, as explained in Section 6.3.7, you can also keep the argu-
ments abstract:

7.16. PREDEFINED PARAMETERIZED VIEWS 209

fmod LIST-TO-SET-MAP{X :: TRIV, Y :: TRIV} is

inc MAP{List{X}, Set{Y}} .

endfm

210 CHAPTER 7. PREDEFINED DATA MODULES

Chapter 8

Object-Based Programming

Distributed systems can be naturally modeled in Maude as multisets of entities, loosely coupled
by some suitable communication mechanism. An important example is object-based distributed
systems in which the entities are objects, each with a unique identity, and the communication
mechanism is message passing.

Core Maude supports the modeling of object-based systems by providing a predefined mod-
ule CONFIGURATION that declares sorts representing the essential concepts of object, message,
and configuration, along with a notation for object syntax that serves as a common language for
specifying object-based systems. In addition, there is an object-message fair rewriting strategy
that is well suited for executing object system configurations. To specify an object-based sys-
tem, the user can import CONFIGURATION and then define the particular objects, messages, and
rules for interaction that are of interest. In addition to simple asynchronous message passing,
Maude also supports complex patterns of synchronous interaction that can be used to model
higher-level communication abstractions. The user is also free to define his/her own notation
for configurations and objects, and can still take advantage of the object-message rewriting
strategy, simply by making the appropriate declarations. All this is explained in detail below.

Furthermore, Maude also supports external objects, so that objects inside a Maude config-
uration can interact with different kinds of objects outside it. At present, the external objects
directly supported are internet sockets; but through them it is possible to interact with other
external objects. In addition, sockets make possible distributed programming with rewrite
rules. External objects are discussed in Section 9.

As discussed in Chapter 22, Full Maude provides additional support for object-oriented
programming with classes, subclassing, and convenient abbreviations for rule syntax.

8.1 Configurations

The predefined module CONFIGURATION in the file prelude.maude provides basic sorts and
constructors for modeling object-based systems.

mod CONFIGURATION is

*** basic object system sorts

sorts Object Msg Configuration .

*** construction of configurations

subsort Object Msg < Configuration .

op none : -> Configuration [ctor] .

211

212 CHAPTER 8. OBJECT-BASED PROGRAMMING

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

The basic sorts needed to describe an object system are: Object, Msg (messages), and
Configuration. A configuration is a multiset of objects and messages that represents (a snap-
shot of) a possible system state. Configurations are formed by multiset union (represented
by empty syntax, __) starting from singleton objects and messages. The empty configuration
is represented by the constant none. The attribute config declares that configurations con-
structed with __ support the special object-message fair rewriting behavior (see Section 8.2).

A typical configuration will have the form

〈Ob-1 〉 ... 〈Ob-k〉 〈Mes-1 〉 ... 〈Mes-n〉

where 〈Ob-1 〉, . . . , 〈Ob-k 〉 are objects, 〈Mes-1 〉, . . . , 〈Mes-n 〉 are messages, and the order is
immaterial.

In general, a rewrite rule for an object system has the form

rl 〈Ob-1 〉 ... 〈Ob-k〉 〈Mes-1 〉 ... 〈Mes-n〉
=> 〈Ob’-1 〉 ... 〈Ob’-j 〉 〈Ob-k+1 〉 ... 〈Ob-m〉 〈Mes’-1 〉 ... 〈Mes’-p〉 .

where 〈Ob’-1 〉, . . . , 〈Ob’-j 〉 are updated versions of 〈Ob-1 〉, . . . , 〈Ob-j 〉 for j ≤ k, 〈Ob-k+1 〉,
. . . , 〈Ob-m 〉 are newly created objects, and 〈Mes’-1 〉, . . . , 〈Mes’-p 〉 are new messages. An
important special case are rules with a single object and at most one message on the lefthand
side. These are called asynchronous rules. They directly model asynchronous distributed
interactions. Rules involving multiple objects are called synchronous; they are used to model
higher-level communication abstractions.

The user is free to define any object or message syntax that is convenient. However, for
uniformity in identifying objects and message receivers, the adopted convention is that the
first argument of an object or message constructor should be an object’s name. This facilitates
defining object system rewriting strategies independently of the particular choice of syntax and
is essential for using Maude’s object-message fair rewriting strategy.

The remainder of the CONFIGURATION module provides an object syntax that serves as a
common notation that can be used by developers of object-based system specifications. This
syntax is also used by Full Maude (see Chapter 22). For this purpose four new sorts are
introduced: Oid (object identifiers), Cid (class identifiers), Attribute (a named element of
an object’s state), and AttributeSet (multisets of attributes). Further details about the
CONFIGURATION module are discussed later in Section 9.

*** Maude object syntax

sorts Oid Cid .

sorts Attribute AttributeSet .

subsort Attribute < AttributeSet .

op none : -> AttributeSet [ctor] .

op _,_ : AttributeSet AttributeSet -> AttributeSet

[ctor assoc comm id: none] .

op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .

endm

In this syntax, objects have the general form

< O : C | 〈att-1 〉, ..., 〈att-k〉 >

where O is an object identifier, C is a class identifier, and 〈att-1 〉, . . . , 〈att-k 〉 are the object’s
attributes. Attribute sets are formed from singleton attributes by a multiset union operator
, with identity none (the empty multiset). The object attribute in the <_:_|_> operator

8.1. CONFIGURATIONS 213

declares that objects made with this constructor have object-message fair rewriting behavior
(see Section 8.2).

Although the user is free to define the syntax of elements of sort Attribute according
to taste, we will follow the standard Maude notation in most of our examples. The module
BANK-ACCOUNT illustrates the use of the Maude object syntax to define simple bank account
objects. Note that by defining the attribute bal with syntax bal :_ we are able to write
account objects as < A : Account | bal : N >.

mod BANK-ACCOUNT is

protecting INT .

inc CONFIGURATION .

op Account : -> Cid [ctor] .

op bal :_ : Int -> Attribute [ctor gather (&)] .

ops credit debit : Oid Nat -> Msg [ctor] .

vars A B : Oid .

vars M N N’ : Nat .

rl [credit] :

< A : Account | bal : N >

credit(A, M)

=> < A : Account | bal : N + M > .

crl [debit] :

< A : Account | bal : N >

debit(A, M)

=> < A : Account | bal : N - M >

if N >= M .

endm

The class identifier for bank account objects is Account. Each account object has a single
attribute named bal of sort Nat (the account balance). There are two message constructors
credit and debit, each taking an object identifier (the receiver) and a number (the amount to
credit or debit). The rule labeled credit describes the processing of a credit message and the
rule labeled debit describes the processing of a debit message. Suppose that constants A-001,
A-002, and A-003 of sort Oid have been declared. Then, the following is an example of a bank
account configuration.

< A-001 : Account | bal : 300 >

< A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 >

debit(A-001, 200)

debit(A-002, 400)

debit(A-003, 300)

credit(A-002, 300)

Note that the messages debit(A-001, 200) and debit(A-003, 300) can be delivered con-
currently, either before or after the other messages. However, the message debit(A-002, 400)

cannot be delivered until after credit(A-002, 300) has been delivered, due to the balance
condition for the debit rule.

The credit and debit rules are examples of asynchronous message passing rules involving
one object and one message on the lefthand side. In these examples no new objects are created
and no new messages are sent.

In order to combine the debit(A-003, 300) and credit(A-002, 300) messages so that
the delivery of these two messages becomes a single atomic transaction, we could define a new

214 CHAPTER 8. OBJECT-BASED PROGRAMMING

message constructor from_to_transfer_. The rule for handling a transfer message involves
the joint participation of two bank accounts in the transfer, as well as the transfer message.
This is an example of a synchronous rule.

op from_to_transfer_ : Oid Oid Nat -> Msg [ctor] .

crl [transfer] :

(from A to B transfer M)

< A : Account | bal : N >

< B : Account | bal : N’ >

=> < A : Account | bal : N - M >

< B : Account | bal : N’ + M >

if N >= M .

Now we could replace

debit(A-003, 300) credit(A-002,300)

by

from A-003 to A-002 transfer 300

in the example configuration. The module BANK-ACCOUNT-TEST declares the object identifiers
introduced above and defines a configuration constant bankConf.

mod BANK-ACCOUNT-TEST is

ex BANK-ACCOUNT .

ops A-001 A-002 A-003 : -> Oid .

op bankConf : -> Configuration .

eq bankConf

= < A-001 : Account | bal : 300 >

debit(A-001, 200)

debit(A-001, 150)

< A-002 : Account | bal : 250 >

debit(A-002, 400)

< A-003 : Account | bal : 1250 >

(from A-003 to A-002 transfer 300) .

endm

From the specification we see that only one of the debit messages for A-001 can be pro-
cessed. Using the default rewriting strategy we find that the message debit(A-001, 150) is
processed first in this strategy.

Maude> rew in BANK-ACCOUNT-TEST : bankConf .

result Configuration:

debit(A-001, 200)

< A-001 : Account | bal : 150 >

< A-002 : Account | bal : 150 >

< A-003 : Account | bal : 950 >

We use the search command to confirm that it is possible to process the message debit(A-001, 200)

as well, where the =>! symbol indicates that we are searching for states reachable from bankConf

that cannot be further rewritten (see Sections 5.4.3 and 23.4).

Maude> search bankConf =>! C:Configuration debit(A-001, 150) .

search in BANK-ACCOUNT-TEST : bankConf

=>! C:Configuration debit(A-001, 150) .

Solution 1 (state 8)

8.1. CONFIGURATIONS 215

states: 9 rewrites: 49 in 0ms cpu (0ms real) (~ rews/sec)

C:Configuration --> < A-001 : Account | bal : 100 >

< A-002 : Account | bal : 150 >

< A-003 : Account | bal : 950 >

No more solutions.

states: 9 rewrites: 49 in 0ms cpu (0ms real) (~ rews/sec)

The BANK-MANAGER module below illustrates asynchronous message passing with object cre-
ation.

mod BANK-MANAGER is

inc BANK-ACCOUNT .

op Manager : -> Cid [ctor] .

op new-account : Oid Oid Nat -> Msg [ctor] .

vars O C : Oid .

var N : Nat .

rl [new] :

< O : Manager | none >

new-account(O, C, N)

=> < O : Manager | none >

< C : Account | bal : N > .

endm

To open a new account, one sends a message to the bank manager with the account name and
initial balance, for example, new-account(A-000, A-004, 100). Of course, in a real system
more care would be needed to assure unique account identities. To see the bank manager in
action, we define the following module.

mod BANK-MANAGER-TEST is

ex BANK-MANAGER .

ops A-001 A-002 A-003 A-004 : -> Oid .

op mgrConf : -> Configuration .

eq mgrConf

= < A-001 : Account | bal : 300 >

< A-004 : Manager | none >

new-account(A-004, A-002, 250)

new-account(A-004, A-003, 1250) .

endm

Then, we rewrite the configuration mgrConf:

Maude> rew in BANK-MANAGER-TEST : mgrConf .

result Configuration:

< A-001 : Account | bal : 300 >

< A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 >

< A-004 : Manager | none >

The relationships between all the modules involved in this example are illustrated in Fig-
ure 8.1, where the different types of arrows correspond to the different modes of importation:
single arrow for including, double arrow for extending, and triple arrow for protecting.

The examples above illustrate object-based programming in Maude using the common ob-
ject syntax. Notice that message constructors obey the “first argument is an object identifier”
convention. Alternative object syntax is also possible, by defining an associative and commu-
tative configuration constructor and suitable object and message syntax. It is of course also

216 CHAPTER 8. OBJECT-BASED PROGRAMMING

BANK-MANAGER-TEST

BANK-ACCOUNT-TEST BANK-MANAGER

BANK-ACCOUNT

CONFIGURATIONINT

Figure 8.1: Importation graph of bank modules

possible not to use the config attribute when defining the multiset union operator, but this
will prevent taking advantage of object-message fair rewriting (see Section 8.2). As an exam-
ple (not using for the moment the config attribute, to illustrate different forms of rewriting
with objects), we model a ticker, the classic example of an actor [1, 134]. First we specify
the configurations, objects, and messages of the actor world in the module ACTOR-CONF. Actor
configurations (of sort AConf) are multisets of actors (of sort Actor) and messages (of sort
Msg). Messages are constructed uniformly from an actor identifier and a message body. Thus
we introduce sorts Aid (actor identifier) and MsgBody, and a message constructor _<|_.

mod ACTOR-CONF is

sorts Actor Msg AConf .

subsorts Actor Msg < AConf .

op none : -> AConf [ctor] .

op __ : AConf AConf -> AConf [ctor assoc comm id: none] .

*** actor messages

sorts Aid MsgBody .

op _<|_ : Aid MsgBody -> Msg [ctor] .

endm

A ticker maintains a counter that it updates in response to a tick message. Ticker(T:Aid, N:Nat)

is an actor with identifier T:Aid and counter value N:Nat. The ticker sends the current value
of its counter in response to a timeReq message.

mod TICKER is

including ACTOR-CONF .

protecting NAT .

op Ticker : Aid Nat -> Actor [ctor] .

op tick : -> MsgBody [ctor] .

op timeReq : Aid -> MsgBody [ctor] .

op timeReply : Nat -> MsgBody [ctor] .

vars T C : Aid .

8.1. CONFIGURATIONS 217

var N : Nat .

rl Ticker(T, N) (T <| tick)

=> Ticker(T, s N) (T <| tick) .

rl Ticker(T, N) (T <| timeReq(C))

=> Ticker(T, N) (C <| timeReply(N)) .

endm

To test the ticker we define actor identifiers for the ticker, myticker, a customer, me, and
an initial configuration with one ticker, one tick message, and a timeReq message from me.

mod TICKER-TEST is

extending TICKER .

ops myticker me : -> Aid [ctor] .

op tConf : -> AConf .

eq tConf

= Ticker(myticker, 0)

(myticker <| tick)

(myticker <| timeReq(me)) .

endm

If we ask Maude to rewrite the configuration tConf without placing an upper bound on
the number of rewrites, Maude will go on forever. This is because there will always be a tick

message in the configuration, and the ticker can always process this message. Thus we rewrite
with an upper bound of, say, 10 rewrites.

Maude> rew [10] tConf .

rewrite [10] in TICKER-TEST : tConf myticker <| timeReq(me) .

result AConf:

(myticker <| tick) (me <| timeReply(1)) Ticker(myticker, 9)

We see that the timeReq message was processed after just one tick was processed.
An interesting property of this configuration is that the reply to the timeReq message can

contain an arbitrarily large natural number, since any number of ticks could be processed
before the timeReq. For particular numbers this can be checked using the search command.

Maude> search [1] tConf =>+ tc:AConf me <| timeReply(100) .

search [1] in TICKER-TEST :

tConf =>+ tc:AConf me <| timeReply(100) .

Solution 1 (state 5152)

states: 5153 rews: 5153 in 0ms cpu (285ms real)(~ rews/sec)

tc:AConf --> (myticker <| tick) Ticker(myticker, 100)

Notice that we used the search relation =>+ (one or more steps) rather than =>! (terminating
rewrites) since there are no terminal configurations starting from tConf. Moreover, we have
searched only for the first ([1]) solution.

There are two important considerations regarding object systems that are not illustrated
by the preceding examples: uniqueness of object names and fairness of message delivery. To
illustrate some of the issues we elaborate the ticker example by defining a ticker factory that
creates tickers, and a ticker-customer. The ticker factory accepts requests for new tickers
newReq(c) where c is the customer’s name. When such a request is received, a ticker is created
and its name is sent to the requesting customer (newReply(o(a, i))). To make sure that each
ticker has a fresh (unused) name, the ticker factory keeps a counter. It generates ticker names
of the form o(a, i), where a is the factory name and i is the counter value. The counter is

218 CHAPTER 8. OBJECT-BASED PROGRAMMING

incremented each time a ticker is created. This is just one possible method for assuring unique
names for dynamically created objects. If objects are only created by factories that use the
above method for generating names, then starting from a configuration of objects with unique
names (not of the form o(a, i)) the unique name property will be preserved.

mod TICKER-FACTORY is

inc TICKER .

op TickerFactory : Aid Nat -> Actor [ctor] .

ops newReq newReply : Aid -> MsgBody [ctor] .

op o : Aid Nat -> Aid [ctor] .

vars A C : Aid .

vars I J : Nat .

rl [newReq] :

TickerFactory(A, I) (A <| newReq(C))

=> TickerFactory(A, s I) (C <| newReply(o(A, I)))

Ticker(o(A, I), 0) (o(A, I) <| tick) .

endm

A ticker customer knows the name of a ticker factory. It asks for a ticker, waits for a reply,
asks the ticker for the time, waits for a reply, increments its reply counter (used just for the
user to monitor customer service) and repeats this process.

mod TICKER-CUSTOMER is

inc TICKER-FACTORY .

ops Cust Cust1 Cust2 : Aid Aid Nat -> Actor [ctor] .

vars C TF T : Aid .

vars N M : Nat .

rl [req] :

Cust(C, TF, N)

=> Cust1(C, TF, N) (TF <| newReq(C)) .

rl [newReply] :

Cust1(C, TF, N) (C <| newReply(T))

=> Cust2(C, TF, N) (T <| timeReq(C)) .

rl [timeReply] :

Cust2(C, TF, N) (C <| timeReply(M))

=> Cust(C, TF, s N) .

endm

Now we define a test configuration with a ticker factory and two customers. The importation
graph of all the modules involved at this point is shown in Figure 8.2.

mod TICKER-FACTORY-TEST is

ex TICKER-CUSTOMER .

ops tf c1 c2 : -> Aid [ctor] .

ops ic1 ic2 : -> AConf .

eq ic1 = TickerFactory(tf, 0) Cust(c1, tf, 0) .

eq ic2 = ic1 Cust(c2, tf, 0) .

endm

Rewriting this configuration using the rewrite command with a bound of 40 results in one
ticker being created, and ticking away, while customer c2 is not given an opportunity to execute
at all.

8.1. CONFIGURATIONS 219

TICKER-FACTORY-TEST

TICKER-CUSTOMER

TICKER-TEST TICKER-FACTORY

TICKER

ACTOR-CONFNAT

Figure 8.2: Importation graph of ticker modules

Maude> rew [40] ic2 .

rewrite [40] in TICKER-FACTORY-TEST : ic2 .

rewrites: 42 in 0ms cpu (0ms real) (~ rewrites/second)

result AConf:

(o(tf, 0) <| tick)

Ticker(o(tf, 0), 35) TickerFactory(tf, 1)

Cust(c1, tf, 1) Cust(c2, tf, 0)

In contrast, rewriting using the frewrite strategy with the same bound of 40, several tickers
are created, however only the first one gets tick messages delivered.

Maude> frew [40] ic2 .

frewrite [40] in TICKER-FACTORY-TEST : ic2 .

rewrites: 42 in 0ms cpu (1ms real) (~ rewrites/second)

result (sort not calculated):

(o(tf, 0) <| tick) (o(tf, 1) <| tick)

(o(tf, 2) <| tick) (o(tf, 3) <| tick)

(o(tf, 4) <| tick) (o(tf, 5) <| tick)

(o(tf, 6) <| tick)

(o(tf, 6) <| timeReq(c1))

Ticker(o(tf, 0), 6) Ticker(o(tf, 1), 0)

Ticker(o(tf, 2), 0) Ticker(o(tf, 3), 0)

Ticker(o(tf, 4), 0) Ticker(o(tf, 5), 0)

Ticker(o(tf, 6), 0)

TickerFactory(tf, 7)

((tf <| newReq(c2))

Cust1(c2, tf, 3)) Cust2(c1, tf, 3)

220 CHAPTER 8. OBJECT-BASED PROGRAMMING

The number of rewrites reported by Maude includes both equational and rule rewrites.
In the examples above there were 2 equational rewrites (the two equations defining the ini-
tial configuration ic2 and its subconfiguration ic1) and 40 rule rewrites. If you execute the
command

Maude> set profile on .

(see Section 20.1.5) before rewriting and then execute

Maude> show profile .

you will discover that executing the rewrite command the rule delivering the tick message is
used 35 times and the other rules are each used once, while executing the frewrite command
the tick rule is executed only 6 times and each of the other rules are executed between 6 and
8 times.

Turning profiling on substantially reduces performance, so you will want to turn it off

Maude> set profile off .

when you have found out what you want to know.

Note that frewrite uses a fair rewriting strategy, but since it does not know about objects,
messages, and configurations, it can only follow a position-fair strategy. As we will explain in
the next section, in order to enable the object-message fair rewriting we need only do three
things:

• give to the constructor of object and message configurations the config attribute,

• give to the message constructor the message attribute, and

• give to each object constructor the object attribute.

To maintain the separate rewriting semantics we also modify the name of each module by
putting an O at the front (except for ACTOR-CONF which we rename ACTOR-O-CONF). Thus we
modify the configuration, actor, and message constructor declarations as follows.

mod ACTOR-O-CONF is

...

op __ : AConf AConf -> AConf [ctor config assoc comm id: none] .

op _<|_ : Aid MsgBody -> Msg [ctor message] .

...

endm

mod O-TICKER is

...

op Ticker : Aid Nat -> Actor [ctor object] .

...

endm

mod O-TICKER-FACTORY is

...

op TickerFactory : Aid Nat -> Actor [ctor object] .

...

endm

8.2. OBJECT-MESSAGE FAIR REWRITING 221

mod O-TICKER-CUSTOMER is

...

ops Cust Cust1 Cust2 : Aid Aid Nat -> Actor [ctor object] .

...

endm

Now the frewrite command will use object-message fair rewriting, as explained in detail
in the next section. The counting of object-message rewrites has two aspects: for the purposes
of the rewrite argument given to frewrite, a visit to a configuration that results in one or
more rewrites counts as a single rewrite; though for other accounting purposes all rewrites are
counted. For example, with an upper bound of 40 as above, thirteen tickers are created. To
simplify the output we show the results for rewriting with a bound of 20.

Maude> frew [20] ic2 .

frewrite [20] in O-TICKER-FACTORY-TEST : ic2 .

rewrites: 76 in 0ms cpu (1ms real) (~ rewrites/second)

result (sort not calculated):

(o(tf, 0) <| tick) (o(tf, 1) <| tick)

(o(tf, 2) <| tick) (o(tf, 3) <| tick)

(o(tf, 4) <| tick) (o(tf, 5) <| tick)

Ticker(o(tf, 0), 11) Ticker(o(tf, 1), 11)

Ticker(o(tf, 2), 7) Ticker(o(tf, 3), 7)

Ticker(o(tf, 4), 3) Ticker(o(tf, 5), 3)

TickerFactory(tf, 6)

((tf <| newReq(c1)) Cust1(c1, tf, 3))

(tf <| newReq(c2)) Cust1(c2, tf, 3)

Notice that each ticker gets a chance to tick (tickers created later will show less time passed),
and each customer is treated fairly. In fact using profiling we find that the tick rule is used
42 times (which is the total of the counts for the six tickers created), while the other rules are
used 6-8 times and there are 2 equational rewrites as before.

Suppose that we try to violate the unique name condition, for example by adding a copy of
customer c1 to the test configuration. When Maude discovers this (it may take a few rewrites),
a warning is issued.

Maude> frew [4] ic2 Cust(c1, tf, 0) .

Warning: saw duplicate object: Cust1(c1, tf, 0)

frewrite [4] in O-TICKER-FACTORY-TEST : ic2 Cust(c1, tf, 0) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result AConf:

(c1 <| newReply(o(tf, 0))) (c1 <| newReply(o(tf, 1)))

(c2 <| newReply(o(tf, 2)))

(o(tf, 0) <| tick) (o(tf, 1) <| tick) (o(tf, 2) <| tick)

Ticker(o(tf, 0), 0) Ticker(o(tf, 1), 0) Ticker(o(tf, 2), 0)

TickerFactory(tf, 3)

Cust1(c1, tf, 0) Cust1(c1, tf, 0) Cust1(c2, tf, 0)

8.2 Object-message fair rewriting

Object-message fair rewriting is a special rewriting strategy associated with configuration con-
structors which are declared with the config attribute. Configuration constructors must be
associative and commutative, and may optionally have an identity element. The empty syntax
constructors in the CONFIGURATION and ACTOR-O-CONF modules above (which have been given

222 CHAPTER 8. OBJECT-BASED PROGRAMMING

the config attribute) are examples of valid configuration constructors, but such default syntax
can easily be changed by renaming the __ operator (see Section 6.2.2). Configurations only
have their special behavior with respect to arguments that are constructed using operators
that are object or message constructors, that is, they are declared with the object or message
attribute. Such object and message constructors must have at least one argument. Exam-
ples include the Maude object constructor in CONFIGURATION, the various actor constructors
imported into O-TICKER-FACTORY-TEST, all of which have been given the object attribute,
and the actor message constructor which has been given the message attribute (which can be
abbreviated as msg).

An operator can have at most one of the three attributes: config, object, and message.
For object constructors, the first argument is considered to be the object’s name. For message
constructors, the first argument is considered to be the message’s target or addressee. There
may be multiple configuration, object and message constructors. A rule is considered to be an
object-message rule if the following requirements hold:

1. Its lefthand side has a configuration constructor on top with two arguments A and B,

2. A and B are stable (that is, they cannot change their top symbol under a substitution),

3. A has a message constructor on top,

4. B has an object constructor on top, and

5. The first arguments of A and B are identical.

For example, the rules newReply and timeReply in the O-TICKER-CUSTOMER module are
object-message rules (because configurations are associative and commutative A and B can
appear in the rule in either order) while the rule labeled req is not, because there is no message
term, only an object, in its lefthand side. This rule will be applied in the rewriting that happens
after all the enabled object-message rules have been applied, as discussed below.

The object-message fair behavior appears with the command frewrite (and at the metalevel
with the descent function metaFrewrite—see Section 17.6.3). When the fair traversal attempts
to perform a single rewrite on a term headed by a configuration constructor, the following
happens:

1. Arguments headed by object constructors are collected. It is a runtime error for more
than one object to have the same name.

2. For each object, messages with its name as first argument are collected and placed in a
queue.

3. Any remaining arguments are placed on a remainder list.

4. For each object, and for each message in its queue, an attempt is made to deliver the
message by performing a rewrite with an object-message rule. If all applicable rules fail,
the message is placed on the remainder list. If a rule succeeds, the righthand side is
constructed, reduced, and the result is searched for the object. Any other arguments in
the result configuration go onto the remainder list. If the object cannot be found, any
messages left in its queue go onto the remainder list. Once its message queue is exhausted,
the object itself is placed on the remainder list.

5. A new term is constructed using the configuration constructor on top of the arguments
in the remainder list. This is reduced, and a single rewrite using the non-object-message
rules is attempted.

8.3. EXAMPLE: DATA AGENTS 223

There is no restriction on object names, other than uniqueness. An object may change its
object constructor during the course of a rewrite and delivery of any remaining message will
still be attempted.1 If the configuration constructor changes during the course of a rewrite, the
resulting term is considered alien, and does not participate any further in the object-message
rewriting for the original term. The order in which objects are considered and messages are
delivered is system-dependent, but note that newly created messages are not delivered until
some future visit to the configuration (though all arguments including new messages and alien
configurations could potentially participate in the single non-object-message rewrite attempt).
Message delivery is “just” rather than “fair”: in order for message delivery to be guaranteed, an
object must always be willing to accept the message.2 If multiple object-message rules contain
the same message constructor, they are tried in a round-robin fashion. Non-object-message
rules are also tried in a round-robin fashion for the single non-object-message rewrite attempt.

The counting of object-message rewrites is nonstandard: for the purposes of the rewrite
argument given to frewrite, a visit to a configuration that results in one or more rewrites counts
as a single rewrite, though for other accounting purposes all rewrites are counted. Finally, for
tracing, profiling, and breakpoints only, there is a fake rewrite at the top of the configuration
in the case that object-message rewriting takes place but the single non-object-message rewrite
attempt fails. It is not included in the reported rewrite total, but it is inserted to keep tracing
consistent.

8.3 Example: data agents

In this section we give an example of a simple distributed dataset in which each agent in a
collection of data agents manages a local version of a global data dictionary that maps keys to
values. An agent may only have part of the data locally, and must contact other agents to get
the value of a key that is not in its local version. To simplify the presentation, we assume that
data agents work in pairs.

This example illustrates one way of representing request-reply style of object-based pro-
gramming in Maude, and also a way of representing information about the state of the task
an object is working on when it needs to make one or more requests to other objects in order
to answer a request itself. As in the ticker example, we define a uniform syntax for mes-
sages. Here, messages have both a receiver and a sender in addition to a message body, and
are constructed with the msg constructor. The technique for maintaining task information is
to define a sort Request and a requests attribute that holds the set of pending requests.
The constant empty indicates that an object has no pending request. The request w4(O:Oid,

C:Oid, MB:MsgBody) indicates that the object is processing a message from C:Oid with body
MB:MsgBody and is waiting for a message from O:Oid.

The module DATA-AGENTS-CONF extends CONFIGURATION with the uniform message syntax
and the specification of the sort Request.

mod DATA-AGENTS-CONF is

ex CONFIGURATION .

*** my msg syntax

sort MsgBody .

op msg : Oid Oid MsgBody -> Msg [ctor message] .

*** agents may be pending on requests

1Assuming, as it should be the case, that both object constructors have been declared with the object

attribute.
2There are program transformations that internalize conditions on message delivery to ensure a stronger

fairness condition [101].

224 CHAPTER 8. OBJECT-BASED PROGRAMMING

sort Request .

op w4 : Oid Oid MsgBody -> Request [ctor] .

endm

A data agent stores a dictionary, mapping keys to data elements. To specify such dictio-
naries, we use the predefined parameterized module MAP (see Section 7.14), renaming the main
sort as well as the lookup and update operators as follows:

MAP{K, V} * (sort Map{K, V} to Dict{K, V},

op _[_] to lookup,

op insert to update) .

Remember that the constant undefined is the result returned by the lookup operators when
the map is not defined on the given key.

We split the specification of data agents into two modules: the parameterized functional
module DATA-AGENTS-INTERFACE, which defines the interface, and the parameterized system
module DATA-AGENTS , which gives the rules for agent behavior. This illustrates a technique
for modularizing object-based system specifications in order to allow the same interface to be
shared by more than one “implementation” (rule set). We already applied this technique in
the specification of a vending machine as a system module in Section 5.1. Notice also that
DATA-AGENTS-CONF is imported in extending mode, because we add data to the old sorts, but
without making further identifications (the interface module has no equation).

mod DATA-AGENTS-INTERFACE{K :: TRIV, V :: TRIV} is

ex DATA-AGENTS-CONF .

*** messages

op getReq : K$Elt -> MsgBody [ctor] .

op getReply : K$Elt [V$Elt] -> MsgBody [ctor] .

op setReq : K$Elt V$Elt -> MsgBody [ctor] .

op setReply : K$Elt [V$Elt] -> MsgBody [ctor] .

op tellReq : K$Elt V$Elt -> MsgBody [ctor] .

op tellReply : K$Elt V$Elt -> MsgBody [ctor] .

op lookupReq : K$Elt -> MsgBody [ctor] .

op lookupReply : K$Elt [V$Elt] -> MsgBody [ctor] .

endm

In a request-reply style of interaction, message body constructors come in pairs. For exam-
ple, (lookupReq, lookupReply) and (tellReq, tellReply) are the message body pairs used
when a customer interacts with a data agent in order to access and set data values. Similarly,
(getReq, getReply) and (setReq, setReply) constitute the message body pairs for an agent
to access and set data values from a pal.

A data agent has class identifier DataAgent. In addition to the requests attribute, each
data agent has a data attribute holding the agent’s local version of the data dictionary, and a
pal attribute holding the identifier of the other agent. If sam and joe are collaborating data
agents, then their initial state might look like

< sam : DataAgent | data : empty, pal : joe, requests : empty >

< joe : DataAgent | data : empty, pal : sam, requests : empty >

The module DATA-AGENTS specifies a data agent’s behavior by giving a rule for handling
each type of message it expects to receive (other messages will simply be ignored).

Since we are adding rules acting on the sort Configuration, coming from the CONFIGURATION
module via DATA-AGENTS-CONF, we need to make explicit that such modules are imported in
including mode. We also import in protecting mode the predefined parameterized module

8.3. EXAMPLE: DATA AGENTS 225

SET, instantiated with the following Request view, to define the sets of requests stored in the
requests attribute.

view Request from TRIV to DATA-AGENTS-CONF is

sort Elt to Request .

endv

mod DATA-AGENTS{K :: TRIV, V :: TRIV} is

inc DATA-AGENTS-INTERFACE{K, V} .

inc DATA-AGENTS-CONF .

inc CONFIGURATION .

pr MAP{K, V} * (sort Map{K, V} to Dict{K, V},

op _[_] to lookup,

op insert to update) .

pr SET{Request} .

vars A O C : Oid .

var D : Dict{K, V} .

var Key : K$Elt .

vars Val Val’ : [V$Elt] .

var Atts : AttributeSet .

var RS : Set{Request} .

*** class structure

op DataAgent : -> Cid [ctor] .

op data :_ : Dict{K, V} -> Attribute [ctor] .

op pal :_ : Oid -> Attribute [ctor] .

op requests :_ : Set{Request} -> Attribute [ctor] .

*** lookup request

rl [lookup] :

< A : DataAgent | data : D, pal : O, requests : RS >

msg(A, C, lookupReq(Key))

=> if lookup(D, Key) == undefined

then < A : DataAgent | data : D, pal : O,

requests : (RS, w4(O, C, lookupReq(Key))) >

msg(O, A, getReq(Key))

else < A : DataAgent | data : D, pal : O, requests : RS >

msg(C, A, lookupReply(Key, lookup(D, Key)))

fi .

*** lookup request missing data from pal

rl [getReq] :

< A : DataAgent | data : D, pal : O, Atts >

msg(A, O, getReq(Key))

=> < A : DataAgent | data : D, pal : O, Atts >

msg(O, A, getReply(Key, lookup(D, Key))) .

*** receive lookup requested missing data from pal

rl [getReply] :

< A : DataAgent | data : D, pal : O,

requests : (RS, w4(O, C, lookupReq(Key))) >

msg(A, O, getReply(Key, Val))

=> < A : DataAgent | pal : O, requests : RS,

226 CHAPTER 8. OBJECT-BASED PROGRAMMING

data : if Val == undefined

then D

else update(Key, Val, D)

fi >

msg(C, A, lookupReply(Key, Val)) .

*** tell request

rl [tell] :

< A : DataAgent | data : D, requests : RS, pal : O >

msg(A, C, tellReq(Key, Val))

=> if lookup(D, Key) == undefined

then < A : DataAgent |

data : D,

requests : (RS, w4(O, C, tellReq(Key, Val))),

pal : O >

msg(O, A, setReq(Key, Val))

else < A : DataAgent | data : update(Key, Val, D),

requests : RS, pal : O >

msg(C, A, tellReply(Key, Val))

fi .

*** request update for missing data from pal

rl [setReq] :

< A : DataAgent | data : D, pal : O, Atts >

msg(A, O, setReq(Key, Val))

=> if lookup(D, Key) == undefined

then < A : DataAgent | data : D, pal : O, Atts >

msg(O, A, setReply(Key, undefined))

else < A : DataAgent | data : update(Key, Val, D),

pal : O, Atts >

msg(O, A, setReply(Key, Val))

fi .

*** receive requested update for missing data from pal

rl [setReply] :

< A : DataAgent | data : D, pal : O,

requests : (RS, w4(O, C, tellReq(Key, Val))) >

msg(A, O, setReply(Key, Val’))

=> < A : DataAgent | pal : O, requests : RS,

data : if Val’ == undefined

then update(Key, Val, D)

else D

fi >

msg(C, A, tellReply(Key, Val)) .

endm

The rule labeled lookup specifies how an agent handles a lookupReq message. The agent
first looks to see if its local dictionary contains the requested entry. If lookup(D, Key) ==

undefined, then a getReq is sent to the pal and the agent waits for a reply, remembering the
pending lookup request (w4(O, C, lookupReq(Key))). If the agent has the requested entry,
then it is returned in a lookupReply message.

The rules labeled getReq and getReply specify how agents exchange dictionary entries.
An agent can always answer a getReq message, since the Atts variable will match any status
attribute. The agent simply replies with the result, possibly undefined, of looking up the
requested key in its local dictionary. An agent only expects a getReply message if it has made

8.3. EXAMPLE: DATA AGENTS 227

a request, and this only happens if the agent is trying to handle a lookupReq message. Thus
the rule only matches if the agent has the appropriate request w4(O, C, lookupReq(Key)) in
its requests attribute. The agent records the received reply with update(Key, Val, D) when
this reply is not undefined, and in any case sends it on to the customer with the message
msg(C, A, lookupReply(Key, Val)).

The rules labeled tell, setReq, and setReply specify how an agent handles a tellReq

message, following a protocol similar to the one described for the lookup request.

Note that in the case of agents with just these three attributes, using the Atts variable of
sort AttributeSet or the requests : RS expression, with RS a variable of sort Set{Request},
are equivalent ways of saying that the rule matches any set of requests. The first way is more
extensible, in that the rule would still work for agents belonging to a subclass of DataAgent

that uses additional attributes.

To test the data agent specification, we define a module AGENT-TEST. This module defines
object identifiers sam and joe for data agents, and me to name an external customer. It also
defines an initial configuration containing two agents named sam and joe with empty data
dictionaries, and two initial tellReq messages for each agent. We take both keys and data
elements to be quoted identifiers, by instantiating the parameterized DATA-AGENTS module
with the predefined Qid view.

mod AGENT-TEST is

ex DATA-AGENTS{Qid, Qid} .

ops sam joe me : -> Oid [ctor] .

op iconf : -> Configuration .

eq iconf

= < sam : DataAgent | data : empty,

pal : joe, requests : empty >

msg(sam, me, tellReq(’a, ’bc))

msg(sam, me, tellReq(’d, ’ef))

< joe : DataAgent | data : empty,

pal : sam, requests : empty >

msg(joe, me, tellReq(’g, ’hi))

msg(joe, me, tellReq(’j, ’kl)) .

endm

The importation graph of all the modules involved in this example is shown in Figure 8.3,
where the three different types of arrows correspond to the three different modes of importation.

The following are results from test runs. First we rewrite the initial configuration iconf,
resulting in a configuration in which the agents have updated appropriately their data, and
there is one reply for each tellReq message.

Maude> rew iconf .

result Configuration:

< sam : DataAgent | data : (’a |-> ’bc, ’d |-> ’ef),

pal : joe, requests : empty >

< joe : DataAgent | data : (’g |-> ’hi, ’j |-> ’kl),

pal : sam, requests : empty >

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

Next we try adding a lookup request and discover that, using Maude’s default rewriting
strategy, the lookup request is delivered before the tell requests, so the reply is undefined.

228 CHAPTER 8. OBJECT-BASED PROGRAMMING

AGENT-TEST

DATA-AGENTS{Qid, Qid}

MAP{Qid, Qid} * (γ) SET{Request}DATA-AGENTS-INTERFACE{Qid, Qid}

DATA-AGENTS-CONF

CONFIGURATIONQID

Figure 8.3: Importation graph of data-agents modules

Maude> rew iconf msg(sam, me, lookupReq(’a)) .

result Configuration:

< sam : DataAgent | data : (’a |-> ’bc, ’d |-> ’ef),

pal : joe, requests : empty >

< joe : DataAgent | data : (’g |-> ’hi, ’j |-> ’kl),

pal : sam, requests : empty >

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, sam, lookupReply(’a, undefined))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

To see if a good answer can be obtained, we use the search command to look for a state in
which there is a lookupReply with data entry different from undefined.

Maude> search iconf msg(sam, me, lookupReq(’a))

=>! msg(me, sam, lookupReply(’a, Q:Qid)) C:Configuration .

Solution 1 (state 1081)

C:Configuration -->

< sam : DataAgent | data : (’a |-> ’bc, ’d |-> ’ef),

pal : joe, requests : empty >

< joe : DataAgent | data : (’g |-> ’hi, ’j |-> ’kl),

pal : sam, requests : empty >

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

Q:Qid --> ’bc

No more solutions.

8.3. EXAMPLE: DATA AGENTS 229

Indeed, there is just one such reply.
Notice that two collaborating agents may get inconsistent data, that is, different values for

the same key, if they receive simultaneously tell requests for the same key. We may use the
search command to illustrate how this may happen.

Maude> search iconf

msg(sam, me, tellReq(’m, ’no))

msg(joe, me, tellReq(’m, ’pq))

=>! C:Configuration

< sam : DataAgent |

data : (’m |-> Q:Qid, R:Dict{Qid, Qid}),

Atts:AttributeSet >

< joe : DataAgent |

data : (’m |-> Q’:Qid, R’:Dict{Qid, Qid}),

Atts’:AttributeSet >

such that Q:Qid =/= Q’:Qid .

Solution 1 (state 5117)

C:Configuration -->

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, sam, tellReply(’m, ’no))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

msg(me, joe, tellReply(’m, ’pq))

Atts:AttributeSet --> pal : joe, requests : empty

R:Dict{Qid,Qid} --> ’a |-> ’bc, ’d |-> ’ef

Q:Qid --> ’no

Atts’:AttributeSet --> pal : sam, requests : empty

R’:Dict{Qid,Qid} --> ’g |-> ’hi, ’j |-> ’kl

Q’:Qid --> ’pq

No more solutions.

Note the use of the such that condition to filter search solutions (see Section 5.4.3 and 23.4).

230 CHAPTER 8. OBJECT-BASED PROGRAMMING

Chapter 9

External Objects and IO

We use the object-message system to allow interactions with external objects that represent ex-
ternal entities with state. This section explains Maude’s support for rewriting with external ob-
jects and an implementation of sockets, standard streams, files, processes, and meta-interpreters
as the first such external objects.

Configurations that want to communicate with external objects must contain at least one
portal, where

sort Portal .

subsort Portal < Configuration .

op <> : -> Portal [ctor] .

is part of the predefined module CONFIGURATION in the file prelude.maude. From an imple-
mentation point of view, the main purpose of having a portal term in a configuration is to
avoid the degenerate case of a configuration that consists just of an object waiting for a mes-
sage from outside of the configuration. This would be problematic because the special behavior
for object-message rewriting and exchanging messages with external objects is attached to the
configuration constructor.

Rewriting with external objects is started by the external rewrite command erewrite (ab-
breviated erew) which is like frewrite (see Sections 5.4 and 8.2) except that it allows messages
to be exchanged with external objects that do not reside in the configuration. Currently the
command erewrite has some severe limitations, which might be fixed in future releases:

1. Maude will check for external events after every fair traversal of the term. When there are
no internal rewrites available but there are requests pending on external objects (such as
reading on a socket or waiting for a process to exit), rather than finishing and returning
to the command line, Maude will suspend on external events. An external event may
result in a message injected into a configuration that enables more internal rewrites.

2. Rewrites that involve messages entering or leaving the configuration do not show up in
tracing, profiling, or rewrite counts.

Note that, even if there are no more rewrites possible, erewrite may not terminate; if there
are requests made to external objects that have not yet been fulfilled because of waiting for
external events from the operating system, the Maude interpreter will suspend until at least one
of those events occurs, at which time rewriting will resume. While the interpreter is suspended,
the command erewrite may be aborted with ^C. External objects created by an erewrite

command do not survive to the next erewrite. If a message to an external object is ill-formed

231

232 CHAPTER 9. EXTERNAL OBJECTS AND IO

or inappropriate, or the external object is not ready for it, it just stays in the configuration for
future acceptance or for debugging purposes.

Certain predefined external objects are available and some of them are object managers that
can create more ephemeral external objects that represent entities such as files and sockets, and
as we will see in Chapter 19, virtual copies of the Maude interpreter itself.

Access to external objects represents a potential threat. It is difficult for a user to tell
just by looking at it, if an arbitrary Maude program contains malware. Furthermore, a Maude
program can assemble meta-malware using innocent looking code and then execute it in a meta-
interpreter. File handling and process execution are now disabled by default. These features
need to be enabled with the command line flags -allow-files and -allow-processes. To
run completely trusted code, the command line flag -trust enables all dangerous features. See
Section 23.1.

9.1 Standard streams

Each Unix process has three I/O channels, called standard streams: standard input (stdin),
standard output (stdout), and standard error (stderr). In Maude, these are represented
as three unique external objects, that are defined in a predefined module STD-STREAM in the
file.maude file included in the Maude distribution. Because some of the messages that are
useful for streams are also useful for file I/O, these messages are pulled out into a module
COMMON-MESSAGES.

mod COMMON-MESSAGES is

protecting STRING .

including CONFIGURATION .

op gotLine : Oid Oid String -> Msg [ctor msg format (m o)] .

op write : Oid Oid String -> Msg [ctor msg format (b o)] .

op wrote : Oid Oid -> Msg [ctor msg format (m o)] .

endm

mod STD-STREAM is

including COMMON-MESSAGES .

op getLine : Oid Oid String -> Msg [ctor msg ...] .

op stdin : -> Oid [special (...)] .

op stdout : -> Oid [special (...)] .

op stderr : -> Oid [special (...)] .

endm

I/O on standard streams is always line-oriented and in text mode. stdout and stderr

accept the write() message just like file handlers. They are automatically flushed so this is
the only message they can accept. They always return a wrote() message.

The stdin object accepts a three-argument getLine() message:

getLine(stdin, ME, PROMPT)

ME is the identifier of the sender object, to which the answer will be sent. PROMPT is a string that
will be shown to inform the user that some input is expected. Once the message is processed,
when the user hits the return key, stdin replies with a message

gotLine(ME, stdin, TEXT)

where TEXT contains just a "\n" character in the case of an empty line, and is empty in the
case of an error or end-of-file (^D).

9.1. STANDARD STREAMS 233

9.1.1 The Hello Word! example

The module HELLO below shows a very simple program implementing an interaction with the
user, which is asked to introduce his/her name to be properly greeted. The equation for run

produces a starting configuration, containing the portal, a user object to receive messages, and
a message to stdin to read a line of text from the keyboard. When stdin has a line of text,
it sends the text to the requesting object in a gotLine message.

mod HELLO is

including STD-STREAM .

op myClass : -> Cid .

op myObj : -> Oid .

op run : -> Configuration .

var O : Oid .

var A : AttributeSet .

var S : String .

var C : Char .

eq run

= <>

< myObj : myClass | none >

getLine(stdin, myObj, "What is your name? ") .

rl < myObj : myClass | A >

gotLine(myObj, O, S)

=> < myObj : myClass | A >

if S =/= ""

then write(stdout, myObj, "Hello " + S)

else none

fi .

endm

Maude> erew run .

What is your name? Joe

Hello Joe

result Configuration: <> wrote(myObj, stdout) < myObj : myClass | none >

9.1.2 A ROT13 cypher example

As a second example of the use of standard streams, let us consider the specification in the
module ROT13 below. The example prints out a banner and then reads lines from the keyboard,
encrypts each line using the ROT13 cypher, and finally prints out the result.

mod ROT13 is

including STD-STREAM .

protecting INT .

op myClass : -> Cid .

op myObj : -> Oid .

op run : -> Configuration .

op rot13 : String -> String .

234 CHAPTER 9. EXTERNAL OBJECTS AND IO

vars O O2 : Oid .

var A : AttributeSet .

vars S T : String .

var C : Char .

eq rot13(C)

= if C >= "A" and C <= "Z"

then char(ascii("A") + ((13 + (ascii(C) - ascii("A"))) rem 26))

else if C >= "a" and C <= "z"

then char(ascii("a") + ((13 + (ascii(C) - ascii("a"))) rem 26))

else C

fi

fi .

eq rot13(S)

= rot13(substr(S, 0, 1)) + rot13(substr(S, 1, length(S)))

[owise] .

eq run

= <>

< myObj : myClass | none >

write(stdout, myObj, "\nROT13 Encryption\n----------------\n") .

rl < O : myClass | A >

wrote(O, O2)

=> < O : myClass | A >

getLine(stdin, O, "Enter plain text> ") .

rl < O : myClass | A >

gotLine(O, O2, T)

=> < O : myClass | A >

if T =/= ""

then write(stdout, O, "Cypher text: " + rot13(T) + "\n")

else none

fi .

endm

The equation for run produces a starting configuration, containing the portal, a user object
to receive messages, and an initial message to stdout to print out the banner. Each time
stdout prints out some text, it sends a wrote reply to the requesting object; this is matched
in the first rule which then sends a getLine message to stdin to read a line of text from the
keyboard. When stdin has a line of text, it sends the text to the requesting object in a gotLine

message; the second rule matches this message, calls the equationally defined rot13 function to
encrypt the text, and sends a message to stdout to print the encrypted text. When the wrote

reply comes back, the sequence repeats.

We can have the following interaction:

Maude> erewrite run .

erewrite in ROT13 : run .

ROT13 Encryption

Enter plain text> Maude

Cypher text: Znhqr

Enter plain text>

rewrites: 107 in 0ms cpu (3364ms real) (149025 rewrites/second)

9.1. STANDARD STREAMS 235

result Configuration: <> < myObj : myClass | none >

9.1.3 A calculator example

The following program illustrates the use of functions metaReduce and metaParse (from module
META-LEVEL, described later in Chapter 17) and functions tokenize and printTokens (from
module LEXICAL in Section 7.11) to read Maude arithmetic expressions from the terminal and
evaluate them.

mod CALCULATOR is

including STD-STREAM .

protecting LEXICAL .

protecting META-LEVEL .

op myClass : -> Cid .

op myObj : -> Oid .

op run : -> Configuration .

vars O O2 : Oid .

var A : AttributeSet .

vars S T : String .

op compute : String -> String .

eq compute(S) = compute2(metaParse([’CONVERSION], tokenize(S), anyType)) .

op compute2 : ResultPair? -> String .

eq compute2({T:Term, Q:Qid}) = compute3(metaReduce([’CONVERSION], T:Term)) .

eq compute2(noParse(N:Nat)) = printTokens(’\r) + "syntax error" + printTokens(’\o) .

op compute3 : ResultPair? -> String .

eq compute3({T:Term, Q:Qid}) = printTokens(metaPrettyPrint([’CONVERSION], T:Term)) .

eq run

= <>

< myObj : myClass | none >

write(stdout, myObj, "\nCalculator\n------------\n") .

rl < O : myClass | A >

wrote(O, O2)

=> < O : myClass | A >

getLine(stdin, O, "Expression> ") .

rl < O : myClass | A >

gotLine(O, O2, T)

=> < O : myClass | A >

if T == ""

then none

else write(stdout, O, "Answer: " + compute(T) + "\n")

fi .

endm

Then we can execute, for example:

Maude> erew run .

erewrite in CALCULATOR : run .

236 CHAPTER 9. EXTERNAL OBJECTS AND IO

Calculator

Expression> 3/6 + 12/32

Answer: 7/8

Expression>

9.2 File I/O

As pointed out in the introduction of the chapter, access to external objects represents a
potential threat. File handling is disabled by default. The feature may be enabled with the
command line flags -allow-files or -trust. See Section 23.1.

Unlike standard streams, of which there are exactly three, a Unix process may have many
different files open at any one time. Thus, in order to create new file handle objects as needed,
we have a unique external object called fileManager. To open a file, the fileManager is sent
a message openFile. On success, an openedFile message is returned, with the name of an
external object that is a handle on the open file as one of its arguments. Messages to read and
write the file can be directed to the handle object. On failure, a fileError message is returned,
with a text explanation of why the file could not be opened as one of its arguments. These
messages are defined in the module FILE, which is distributed as part of the Maude system in
the file.maude file.

mod FILE is

including COMMON-MESSAGES .

protecting INT .

sort Base .

ops start current end : -> Base [ctor] .

op file : Nat -> Oid [ctor] .

op openFile : Oid Oid String String -> Msg [ctor msg format (b o)] .

op openedFile : Oid Oid Oid -> Msg [ctor msg format (m o)] .

op getLine : Oid Oid -> Msg [ctor msg format (b o)] .

op getChars : Oid Oid Nat -> Msg [ctor msg format (b o)] .

op gotChars : Oid Oid String -> Msg [ctor msg format (m o)] .

op flush : Oid Oid -> Msg [ctor msg format (b o)] .

op flushed : Oid Oid -> Msg [ctor msg format (m o)] .

op setPosition : Oid Oid Int Base -> Msg [ctor msg format (b o)] .

op positionSet : Oid Oid -> Msg [ctor msg format (m o)] .

op getPosition : Oid Oid -> Msg [ctor msg format (b o)] .

op positionGot : Oid Oid Nat -> Msg [ctor msg format (m o)] .

op closeFile : Oid Oid -> Msg [ctor msg format (b o)] .

op closedFile : Oid Oid -> Msg [ctor msg format (m o)] .

op fileError : Oid Oid String -> Msg [ctor msg format (m o)] .

9.2. FILE I/O 237

op fileManager : -> Oid [special (...)] .

endm

This API basically wraps the C stdio library. To open a file you send fileManager a
message

openFile(fileManager, ME, PATH, MODE)

where ME is the name of the object the reply should be sent to, PATH is the path of the file you
want to open, and MODE is one of: r, r+, w, w+, a, a+.1

The reply is either

openedFile(ME, fileManager, FILE-HANDLE)

or

fileError(ME, fileManager, REASON)

where FILE-HANDLE is the name of the object used to access the file, and REASON is a textual
explanation from the operating system of what went wrong.

If the file was opened for writing you can send

write(FILE-HANDLE, ME, DATA)

to write data to the file, and receive a reply

wrote(ME, FILE-HANDLE)

or

fileError(ME, FILE-HANDLE, REASON)

A file that is opened for writing can also be sent

flush(FILE-HANDLE, ME)

to flush any buffered data and receive a reply

flushed(ME, FILE-HANDLE)

or

fileError(ME, FILE-HANDLE, REASON)

A file that is opened for reading can be read on a line-by-line basis using the message:

getLine(FILE-HANDLE, ME)

where the reply is either

gotLine(ME, FILE-HANDLE, TEXT)

1The opening modes are exactly the same as those for the C standard library function fopen(). The following
text in provided by the BSD fopen manpage (see https://www.freebsd.org/):

The argument mode points to a string beginning with one of the following letters:

“r” Open for reading. The stream is positioned at the beginning of the file. Fail if the file does
not exist.

“w” Open for writing. The stream is positioned at the beginning of the file. Truncate the file to
zero length if it exists or create the file if it does not exist.

“a” Open for writing. The stream is positioned at the end of the file. Subsequent writes to the
file will always end up at the then current end of file [...]. Create the file if it does not exist.

An optional “+” following “r”, “w”, or “a” opens the file for both reading and writing.

https://www.freebsd.org/

238 CHAPTER 9. EXTERNAL OBJECTS AND IO

or

fileError(ME, FILE-HANDLE, REASON)

Here TEXT includes the newline character (if present, since end-of-file also ends the current
line). TEXT is empty to indicate end-of-file with no more characters to read.

A file that is opened for reading can also be read on a character basis (which is more
appropriate for binary files) using the message

getChars(FILE-HANDLE, ME, #CHARS-TO-GET)

where the reply is either

gotChars(ME, FILE-HANDLE, DATA)

or

fileError(ME, FILE-HANDLE, REASON)

Here if DATA is shorter than requested, it indicates the end-of-file was reached.

Reading and writing share a common position into the file where the next read or write
takes place. This position in bytes from the start of the file can be obtained by sending the
message

getPosition(FILE-HANDLE, ME)

where the reply is either

positionGot(ME, FILE-HANDLE, OFFSET)

or

fileError(ME, FILE-HANDLE, REASON)

The position may be changed with the message

setPosition(FILE-HANDLE, ME, OFFSET, BASE)

Here the OFFSET is relative to BASE, where BASE can take one of three values: start, the start
of the file, current, the current position, or end, the end of the file. In the current and end

cases, negative values of OFFSET are allowed. The reply is either

positionSet(ME, FILE-HANDLE)

or

fileError(ME, FILE-HANDLE, REASON)

Finally, an open file can be closed with the message

closeFile(FILE-HANDLE, ME)

Since it is always OK to close an open file, the response is always

closedFile(ME, FILE-HANDLE)

Note that messages that are not recognized or that are sent to nonexistent objects will
be silently ignored and left in the configuration. Messages that are recognized but are not
appropriate for the object they are sent to or which have bad arguments will similarly be
ignored but will generate a “message declined” advisory.

9.2. FILE I/O 239

9.2.1 A file copy example

The COPY-FILE module below illustrates the basic use of files. It specifies a simple algorithm
to copy files. In this case, the run operator takes two arguments, namely the name of the file to
be copied and the name of the new file. The equation for run produces a starting configuration,
containing the portal, a user object to receive messages, and an initial message to open the
original file. Once it is opened, the new file is created. Notice the "w" argument of the openFile
message. Once both files are opened, a loop in which a line is read from the original file and
written in the copy file is initiated. This loop ends when the end of the file is reached. Both
files are then closed.

view Oid from TRIV to CONFIGURATION is

sort Elt to Oid .

endv

fmod MAYBE{X :: TRIV} is

sort Maybe{X} .

subsort X$Elt < Maybe{X} .

op maybe : -> Maybe{X} [ctor] .

endfm

mod COPY-FILE is

including FILE .

protecting (MAYBE * (op maybe to null)){Oid} .

op myClass : -> Cid .

op myObj : -> Oid .

ops in:_ out:_ : Maybe{Oid} -> Attribute .

ops inFile:_ outFile:_ : String -> Attribute .

op run : String String -> Configuration .

vars Text Original Copy : String .

vars FHIn FHOut : Oid .

var Attrs : AttributeSet .

eq run(Original, Copy)

= <>

< myObj : myClass | in: null, inFile: Original,

out: null, outFile: Copy >

openFile(fileManager, myObj, Original, "r") .

rl < myObj : myClass | in: null, outFile: Copy, Attrs >

openedFile(myObj, fileManager, FHIn)

=> < myObj : myClass | in: FHIn, outFile: Copy, Attrs >

openFile(fileManager, myObj, Copy, "w") .

rl < myObj : myClass | in: FHIn, out: null, Attrs >

openedFile(myObj, fileManager, FHOut)

=> < myObj : myClass | in: FHIn, out: FHOut, Attrs >

getLine(FHIn, myObj) .

rl < myObj : myClass | in: FHIn, out: FHOut, Attrs >

gotLine(myObj, FHIn, Text)

=> < myObj : myClass | in: FHIn, out: FHOut, Attrs >

if Text == ""

then closeFile(FHIn, myObj)

240 CHAPTER 9. EXTERNAL OBJECTS AND IO

closeFile(FHOut, myObj)

else write(FHOut, myObj, Text)

fi .

rl < myObj : myClass | in: FHIn, out: FHOut, Attrs >

wrote(myObj, FHOut)

=> < myObj : myClass | in: FHIn, out: FHOut, Attrs >

getLine(FHIn, myObj) .

rl < myObj : myClass | in: FHIn, out: FHOut, Attrs >

closedFile(myObj, FHIn)

closedFile(myObj, FHOut)

=> none .

endm

You can then execute the program to copy a file "in.txt" with the following command:

Maude> erew run("in.txt", "out.txt") .

9.3 Sockets

The sockets external objects are accessed using the messages declared in the following SOCKET

module, included in the file socket.maude which is part of the Maude distribution.

mod SOCKET is

protecting STRING .

including CONFIGURATION .

op socket : Nat -> Oid [ctor] .

op createClientTcpSocket : Oid Oid String Nat -> Msg

[ctor msg format (b o)] .

op createServerTcpSocket : Oid Oid Nat Nat -> Msg

[ctor msg format (b o)] .

op createdSocket : Oid Oid Oid -> Msg [ctor msg format (m o)] .

op acceptClient : Oid Oid -> Msg [ctor msg format (b o)] .

op acceptedClient : Oid Oid String Oid -> Msg

[ctor msg format (m o)] .

op send : Oid Oid String -> Msg [ctor msg format (b o)] .

op sent : Oid Oid -> Msg [ctor msg format (m o)] .

op receive : Oid Oid -> Msg [ctor msg format (b o)] .

op received : Oid Oid String -> Msg [ctor msg format (m o)] .

op closeSocket : Oid Oid -> Msg [ctor msg format (b o)] .

op closedSocket : Oid Oid String -> Msg [ctor msg format (m o)] .

op socketError : Oid Oid String -> Msg [ctor msg format (r o)] .

op socketManager : -> Oid [special (...)] .

endm

Currently only IPv4 TCP sockets are supported; other protocol families and socket types
may be added in the future. The external object named by the constant socketManager is a
factory for socket objects.

9.3. SOCKETS 241

To create a client socket, you send socketManager a message

createClientTcpSocket(socketManager, ME, ADDRESS, PORT)

where ME is the name of the object the reply should be sent to, ADDRESS is the name of the server
you want to connect to (say “www.google.com”), and PORT is the port you want to connect to
(say 80 for HTTP connections). You may also specify the name of the server as an IPv4 dotted
address or as “localhost” for the same machine where the Maude system is running on.

The reply will be either

createdSocket(ME, socketManager, NEW-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

where NEW-SOCKET-NAME is the name of the newly created socket and REASON is the operating
system’s terse explanation of what went wrong.

You can then send data to the server with a message

send(SOCKET-NAME, ME, DATA)

which elicits either

sent(ME, SOCKET-NAME)

or

closedSocket(ME, SOCKET-NAME, REASON)

Notice that all errors on a client socket are handled by closing the socket.

Similarly, you can receive data from the server with a message

receive(SOCKET-NAME, ME)

which elicits either

received(ME, SOCKET-NAME, DATA)

or

closedSocket(ME, SOCKET-NAME, REASON)

When you are done with the socket, you can close it with a message

closeSocket(SOCKET-NAME, ME)

with reply

closedSocket(ME, SOCKET-NAME, "")

Once a socket has been closed, its name may be reused, so sending messages to a closed
socket can cause confusion and should be avoided.

Notice that TCP does not preserve message boundaries, so sending "one" and "two" might
be received as "on" and "etwo". Delimiting message boundaries is the responsibility of the next
higher-level protocol, such as HTTP. We will present an implementation of buffered sockets in
Section 9.3.2 which solves this problem.

242 CHAPTER 9. EXTERNAL OBJECTS AND IO

9.3.1 An HTTP/1.0 client example

The following modules implement an updated version of the five rule HTTP/1.0 client from
the paper “Towards Maude 2.0” [27] that is now executable. The first module defines some
auxiliary operations on strings.

fmod STRING-OPS is

protecting STRING .

var S : String .

op extractHostName : String -> String .

op extractPath : String -> String .

op extractHeader : String -> String .

op extractBody : String -> String .

eq extractHostName(S)

= if find(S, "/", 0) == notFound

then S

else substr(S, 0, find(S, "/", 0))

fi .

eq extractPath(S)

= if find(S, "/", 0) == notFound

then "/"

else substr(S, find(S, "/", 0), length(S))

fi .

eq extractHeader(S)

= substr(S, 0, find(S, "\r\n\r\n", 0) + 4) .

eq extractBody(S)

= substr(S, find(S, "\r\n\r\n", 0) + 4, length(S)) .

endfm

The second module requests one web page from an HTTP server.

mod HTTP/1.0-CLIENT is

protecting STRING-OPS .

including SOCKET .

sort State .

ops idle connecting sending receiving closing : -> State [ctor] .

op state:_ : State -> Attribute [ctor] .

op requester:_ : Oid -> Attribute [ctor] .

op url:_ : String -> Attribute [ctor] .

op stored:_ : String -> Attribute [ctor] .

op HttpClient : -> Cid .

op httpClient : -> Oid .

op dummy : -> Oid .

op getPage : Oid Oid String -> Msg [msg ctor] .

op gotPage : Oid Oid String String -> Msg [msg ctor] .

vars H R R’ TS : Oid .

vars U S ST : String .

First, we try to connect to the server using port 80, updating the state and the requester

attribute with the new server.

9.3. SOCKETS 243

rl [getPage] :

getPage(H, R, U)

< H : HttpClient |

state: idle, requester: R’, url: S, stored: "" >

=> < H : HttpClient |

state: connecting, requester: R, url: U, stored: "" >

createClientTcpSocket(socketManager, H,

extractHostName(U), 80) .

Once we are connected to the server (we have received a createdSocket message), we send
a GET message (from the HTTP protocol) requesting the page. When the message is sent, we
wait for a response.

rl [createdSocket] :

createdSocket(H, socketManager, TS)

< H : HttpClient |

state: connecting, requester: R, url: U, stored: "" >

=> < H : HttpClient |

state: sending, requester: R, url: U, stored: "" >

send(TS, H, "GET " + extractPath(U) + " HTTP/1.0\r\nHost: " +

extractHostName(U) + "\r\n\r\n") .

rl [sent] :

sent(H, TS)

< H : HttpClient |

state: sending, requester: R, url: U, stored: "" >

=> < H : HttpClient |

state: receiving, requester: R, url: U, stored: "" >

receive(TS, H) .

While the page is not complete, we receive data and append it to the string on the stored

attribute. When the page is completed, the server closes the socket, and then we show the page
information by means of the gotPage message.

rl [received] :

received(H, TS, S)

< H : HttpClient |

state: receiving, requester: R, url: U, stored: ST >

=> receive(TS, H)

< H : HttpClient | state: receiving,

requester: R, url: U, stored: (ST + S) > .

rl [closedSocket] :

closedSocket(H, TS, S)

< H : HttpClient |

state: receiving, requester: R, url: U, stored: ST >

=> gotPage(R, H, extractHeader(ST), extractBody(ST)) .

We use a special operator start to represent the initial configuration. It receives the server
URL we want to connect to. Notice the occurrence of the portal <> in such initial configuration.

op start : String -> Configuration .

eq start(S)

= <>

getPage(httpClient, dummy, S)

< httpClient : HttpClient | state: idle, requester: dummy,

244 CHAPTER 9. EXTERNAL OBJECTS AND IO

url: "", stored: "" > .

endm

Now we can get pages from servers, say “www.google.com”, by using the following Maude
command (note the ellipsis in the output):

Maude> erew start("www.google.com") .

result Configuration: <> gotPage(dummy, httpClient, "HTTP/1.0 ... </html>")

It is also possible to have optional bounds on the erewrite command, and then use the
continuation commands to get more results, like, for example,

Maude> erew [1, 2] start("www.google.com") .

result Configuration:

<>

< httpClient : HttpClient |

state: connecting,

requester: dummy,

url: "www.google.com",

stored: "" >

createClientTcpSocket(socketManager, httpClient, "www.google.com", 80)

Maude> cont 1 .

result Configuration:

<>

< httpClient : HttpClient |

state: connecting,

requester: dummy,

url: "www.google.com",

stored: "" >

To have communication between two Maude interpreter instances, one of them must take
the server role and offer a service on a given port; generally ports below 1024 are protected.
You cannot in general assume that a given port is available for use. To create a server socket,
you send socketManager a message

createServerTcpSocket(socketManager, ME, PORT, BACKLOG)

where PORT is the port number and BACKLOG is the number of queue requests for connection
that you will allow (5 seems to be a good choice). The response is either

createdSocket(ME, socketManager, SERVER-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

Here SERVER-SOCKET-NAME refers to a server socket. The only thing you can do with a server
socket (other than close it) is to accept clients, by means of the following message:

acceptClient(SERVER-SOCKET-NAME, ME)

which elicits either

acceptedClient(ME, SERVER-SOCKET-NAME, ADDRESS, NEW-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

9.3. SOCKETS 245

Here ADDRESS is the originating address of the client and NEW-SOCKET-NAME is the name of the
socket you use to communicate with that client. This new socket behaves just like a client
socket for sending and receiving. Note that an error in accepting a client does not close the
server socket. You can always reuse the server socket to accept new clients until you explicitly
close it.

The following modules illustrate a very naive two-way communication between two Maude
interpreter instances. The issues of port availability and message boundaries are deliberately
ignored for the sake of illustration (and thus if you are unlucky this example could fail).

The first module describes the behavior of the server.

mod FACTORIAL-SERVER is

inc SOCKET .

pr CONVERSION .

op _! : Nat -> NzNat .

eq 0 ! = 1 .

eq (s N) ! = (s N) * (N !) .

op Server : -> Cid .

op aServer : -> Oid .

vars O LISTENER CLIENT : Oid .

var A : AttributeSet .

var N : Nat .

vars IP DATA S : String .

Using the following rules, the server waits for clients. If one client is accepted, the server
waits for messages from it. When the message arrives, the server converts the received data to
a natural number, computes its factorial, converts it into a string, and finally sends this string
to the client. Once the message is sent, the server closes the socket with the client.

rl [createdSocket] :

< O : Server | A > createdSocket(O, socketManager, LISTENER)

=> < O : Server | A > acceptClient(LISTENER, O) .

rl [acceptedClient] :

< O : Server | A > acceptedClient(O, LISTENER, IP, CLIENT)

=> < O : Server | A > receive(CLIENT, O)

acceptClient(LISTENER, O) .

rl [received] :

< O : Server | A > received(O, CLIENT, DATA)

=> < O : Server | A >

send(CLIENT, O, string(rat(DATA, 10)!, 10)) .

rl [sent] :

< O : Server | A > sent(O, CLIENT)

=> < O : Server | A > closeSocket(CLIENT, O) .

rl [closedSocket] :

< O : Server | A > closedSocket(O, CLIENT, S)

=> < O : Server | A > .

endm

The Maude command that initializes the server is as follows, where the configuration in-
cludes the portal <>.

246 CHAPTER 9. EXTERNAL OBJECTS AND IO

Maude> erew <>

< aServer : Server | none >

createServerTcpSocket(socketManager, aServer, 8811, 5) .

The second module describes the behavior of the clients.

mod FACTORIAL-CLIENT is

inc SOCKET .

op Client : -> Cid .

op aClient : -> Oid .

vars O CLIENT : Oid .

var A : AttributeSet .

Using the following rules, the client connects to the server (clients must be created after the
server), sends a message representing a number,2 and then waits for the response. When the
response arrives, there are no blocking messages and rewriting ends.

rl [createdSocket] :

< O : Client | A > createdSocket(O, socketManager, CLIENT)

=> < O : Client | A > send(CLIENT, O, "6") .

rl [sent] :

< O : Client | A > sent(O, CLIENT)

=> < O : Client | A > receive(CLIENT, O) .

endm

The initial configuration for the client will be as follows, again with portal <>.

Maude> erew <>

< aClient : Client | none >

createClientTcpSocket(socketManager,

aClient, "localhost", 8811) .

Almost everything in the socket implementation is done in a nonblocking way; so, for ex-
ample, if you try to open a connection to some webserver and that webserver takes 5 min-
utes to respond, other rewriting and transactions happen in the meanwhile as part of the
same command erewrite. The one exception is DNS resolution, which is done as part of the
createClientTcpSocket message handling and which cannot be nonblocking without special
tricks.

9.3.2 Buffered sockets

As we said before, TCP does not preserve message boundaries; to guarantee it we may use a
filter class BufferedSocket, defined in the module BUFFERED-SOCKET, which is described here.
We interact with buffered sockets in the same way we interact with sockets, with the only
difference that all messages in the module SOCKET have been capitalized to avoid confusion.
Thus, to create a client with a buffered socket, you send socketManager a message

CreateClientTcpSocket(socketManager, ME, ADDRESS, PORT)

instead of a message

createClientTcpSocket(socketManager, ME, ADDRESS, PORT).

2In this quite simple example, it is always "6".

9.3. SOCKETS 247

All the messages have exactly the same declarations, the only difference being their initial
capitalization:

op CreateClientTcpSocket : Oid Oid String Nat -> Msg

[ctor msg format (b o)] .

op CreateServerTcpSocket : Oid Oid Nat Nat -> Msg

[ctor msg format (b o)] .

op CreatedSocket : Oid Oid Oid -> Msg [ctor msg format (m o)] .

op AcceptClient : Oid Oid -> Msg [ctor msg format (b o)] .

op AcceptedClient : Oid Oid String Oid -> Msg

[ctor msg format (m o)] .

op Send : Oid Oid String -> Msg [ctor msg format (b o)] .

op Sent : Oid Oid -> Msg [ctor msg format (m o)] .

op Receive : Oid Oid -> Msg [ctor msg format (b o)] .

op Received : Oid Oid String -> Msg [ctor msg format (m o)] .

op CloseSocket : Oid Oid -> Msg [ctor msg format (b o)] .

op ClosedSocket : Oid Oid String -> Msg [ctor msg format (m o)] .

op SocketError : Oid Oid String -> Msg [ctor msg format (r o)] .

Thus, apart from this small difference, we interact with buffered sockets in exactly the same
way we do with sockets, the boundary control being completely transparent to the user.

When a buffered socket is created, in addition to the socket object through which the
information will be sent, a BufferedSocket object is also created on each side of the socket
(one in each one of the configurations between which the communication is established). All
messages sent through a buffered socket are manipulated before they are sent through the socket
underneath. When a message is sent through a buffered socket, a mark is placed at the end of
it; the BufferedSocket object at the other side of the socket stores all messages received on a
buffer, in such a way that when a message is requested the marks placed indicate which part
of the information received must be given as the next message.

An object of class BufferedSocket has two attributes: read, of sort String, which stores
the messages read, and bState, which indicates whether the filter is idle or active.

op BufferedSocket : -> Cid [ctor] .

op read :_ : String -> Attribute [ctor gather(&)] .

op bState :_ : BState -> Attribute [ctor gather(&)] .

sort BState .

ops idle active : -> BState [ctor] .

The identifiers of the BufferedSocket objects are marked with a b operator, i.e., the buffers
associated with a socket SOCKET have identifier b(SOCKET). Note that there is a BufferedSocket

object on each side of the socket, that is, there are two objects with the same identifier, but in
different configurations.

op b : Oid -> Oid [ctor] .

A buffered socket object understands capitalized versions of the messages a socket object
understands. For most of them, it just converts them into the corresponding uncapitalized
message. There are messages AcceptClient, CloseSocket, CreateServerTcpSocket, and
CreateClientTcpSocket with the same arities as the corresponding socket messages, with the
following rules.

248 CHAPTER 9. EXTERNAL OBJECTS AND IO

vars SOCKET NEW-SOCKET SOCKET-MANAGER O : Oid .

vars ADDRESS IP IP’ DATA S S’ REASON : String .

var Atts : AttributeSet .

vars PORT BACKLOG N : Nat .

rl [createServerTcpSocket] :

CreateServerTcpSocket(SOCKET-MANAGER, O, PORT, BACKLOG)

=> createServerTcpSocket(SOCKET-MANAGER, O, PORT, BACKLOG) .

rl [acceptClient] :

AcceptClient(SOCKET, O)

=> acceptClient(SOCKET, O) .

rl [closeSocket] :

CloseSocket(b(SOCKET), SOCKET-MANAGER)

=> closeSocket(SOCKET, SOCKET-MANAGER) .

rl [createClientTcpSocket] :

CreateClientTcpSocket(SOCKET-MANAGER, O, ADDRESS, PORT)

=> createClientTcpSocket(SOCKET-MANAGER, O, ADDRESS, PORT) .

Note that in these cases the buffered-socket versions of the messages are just translated into
the corresponding socket messages.

A BufferedSocket object can also convert an uncapitalized message into the capitalized
one. The rule socketError shows this:

rl [socketError] :

socketError(O, SOCKET-MANAGER, REASON)

=> SocketError(O, SOCKET-MANAGER, REASON) .

BufferedSocket objects are created and destroyed when the corresponding sockets are.
Thus, we have rules

rl [acceptedclient] :

acceptedClient(O, SOCKET, IP’, NEW-SOCKET)

=> AcceptedClient(O, b(SOCKET), IP’, b(NEW-SOCKET))

< b(NEW-SOCKET) : BufferedSocket |

bState : idle, read : "" > .

rl [createdSocket] :

createdSocket(O, SOCKET-MANAGER, SOCKET)

=> < b(SOCKET) : BufferedSocket | bState : idle, read : "" >

CreatedSocket(O, SOCKET-MANAGER, b(SOCKET)) .

rl [closedSocket] :

< b(SOCKET) : BufferedSocket | Atts >

closedSocket(SOCKET, SOCKET-MANAGER, DATA)

=> ClosedSocket(b(SOCKET), SOCKET-MANAGER, DATA) .

Once a connection has been established, and a BufferedSocket object has been created on
each side, messages can be sent and received. When a Send message is received, the buffered
socket sends a send message with the same data plus a mark3 to indicate the end of the message.

3We use the character ‘#’ as mark; therefore, the user data sent through the sockets should not contain such
a character.

9.4. PROCESSES 249

rl [send] :

< b(SOCKET) : BufferedSocket | bState : active, Atts >

Send(b(SOCKET), O, DATA)

=> < b(SOCKET) : BufferedSocket | bState : active, Atts >

send(SOCKET, O, DATA + "#") .

rl [sent] :

< b(SOCKET) : BufferedSocket | bState : active, Atts >

sent(O, SOCKET)

=> < b(SOCKET) : BufferedSocket | bState : active, Atts >

Sent(O, b(SOCKET)) .

The key is then in the reception of messages. A BufferedSocket object is always listening
to the socket. It sends a receive message at start up and puts all the received messages in its
buffer. Notice that a buffered socket goes from idle to active in the buffer-start-up rule.
A Receive message is then handled if there is a complete message in the buffer, that is, if there
is a mark on it, and results in the reception of the first message in the buffer, which is removed
from it.

rl [buffer-start-up] :

< b(SOCKET) : BufferedSocket | bState : idle, Atts >

=> < b(SOCKET) : BufferedSocket | bState : active, Atts >

receive(SOCKET, b(SOCKET)) .

rl [received] :

< b(SOCKET) : BufferedSocket |

bState : active, read : S, Atts >

received(b(SOCKET), O, DATA)

=> < b(SOCKET) : BufferedSocket |

bState : active, read : (S + DATA), Atts >

receive(SOCKET, b(SOCKET)) .

crl [Received] :

< b(SOCKET) : BufferedSocket |

bState : active, read : S, Atts >

Receive(b(SOCKET), O)

=> < b(SOCKET) : BufferedSocket |

bState : active, read : S’, Atts >

Received(O, b(SOCKET), DATA)

if N := find(S, "#", 0)

/\ DATA := substr(S, 0, N)

/\ S’ := substr(S, N + 1, length(S)) .

The BUFFERED-SOCKET module is used in the specification of Mobile Maude, a mobile agent
language based on Maude, which is discussed in detail in [29, Chapter 16].

9.4 Processes

Unix processes can be handled as Maude external objects through the API contained in the
process.maude file. As pointed out in the introduction of the chapter, access to external
objects represents a potential threat. Process execution is disabled by default. The feature
may be enabled with the command line flags -allow-processes or -trust. See Section 23.1.

The external object processManager allows us to create new processes (with the createProcess
message), with which we may directly interact.

250 CHAPTER 9. EXTERNAL OBJECTS AND IO

fmod STRING-LIST is

protecting LIST{String} *

(sort NeList{String} to NeStringList, sort List{String} to StringList) .

endfm

mod PROCESS is

including SOCKET .

protecting STRING-LIST .

sorts ProcessOption ProcessOptionSet .

subsort ProcessOption < ProcessOptionSet .

op none : -> ProcessOptionSet [ctor] .

sort ExitStatus .

op normalExit : Nat -> ExitStatus [ctor] .

op terminatedBySignal : String -> ExitStatus [ctor] .

op process : Nat -> Oid [ctor] .

op createProcess : Oid Oid String StringList ProcessOptionSet -> Msg [ctor msg format (b o)] .

op createdProcess : Oid Oid Oid Oid Oid -> Msg [ctor msg format (m o)] .

op signalProcess : Oid Oid String -> Msg [ctor msg format (b o)] .

op signaledProcess : Oid Oid -> Msg [ctor msg format (m o)] .

op waitForExit : Oid Oid -> Msg [ctor msg format (b o)] .

op exited : Oid Oid ExitStatus -> Msg [ctor msg format (m o)] .

op processError : Oid Oid String -> Msg [ctor msg format (r o)] .

op processManager : -> Oid [special (...)] .

endm

New processes are created with the createProcess message, which has five arguments:

• As usual, the first argument is the addressee of the message, in this case the special builtin
object processManager, a constant of sort Oid;

• the second argument is the Oid of the requesting object, to which the response will be
sent;

• the third argument is a String with the system command that executes the new process;

• the fourth argument is a StringList with the arguments to the command; and

• the fifth argument is a ProcessOptionSet, which is reserved for future use (currently we
will use none).

On success, the reply to a createProcess message is a message createdProcess, which
also carries five arguments, all of type Oid:

• the requesting object,

• the sender object (the processManager object),

• the identifier of the new process object, which uses the process constructor,

9.4. PROCESSES 251

• the identifier of the new socket object for stdin/stdout, and

• the identifier of the new socket object for stderr.

One can communicate with the new process using its stdin/stdout socket and the normal
socket interface defined in socket.maude (see Section 9.3). Error messages can be read on the
stderr socket. It is probably good practice to always have receives pending on both sockets so
the process is not stalled due to socket buffers filling. The stderr socket ignores send messages.

Maude will stop rewriting and return to the command line as soon as there are no rewrites
possible and no external events pending that could change the rewrite state, even if the newly
created process is still running. It is therefore good practice to wait for a process to exit,
if only to avoid filling the process table with zombies. This may be done by sending the
process a waitForExit message. If such a message is sent, Maude will not return to the
command line until the process actually exits, which is what happens when there are no further
pending external events. When the process finally exits, the reply message is exited, with
the last argument being either normalExit with an 8-bit exit code for a normal exit or a
terminatedBySignal with the name of the signal in the case of termination by signal. The
waitForExit message is nonblocking, so it can be sent any time after the createdProcess

message is received. A second waitForExit message to the same process will not be accepted.
When a process has been waited for, its stdin/stdout and stderr are closed. If processes are

not waited to be closed, it is the user’s responsibility to close the sockets to avoid leaking file
descriptors. One way to do this is to keep receiving any final characters from the process until an
end-of-file or error condition arises and Maude returns a closedSocket message. Alternatively,
sockets can be closed by explicitly sending them closeSocket messages.

Different executables have different conventions for telling them to quit. You can send a
process the empty string to cause an EOF condition on its stdin (see below). You can also send
a signal to a process using the signalProcess message, whose third argument is a string with
the name of the Unix signal.4 The process responds with a signaledProcess message.

The message processError is used as the reply for errors coming from the operating system.
In particular a processError reply is generated if the child process cannot execute the specified
executable.

We provide simple examples illustrating these features in the following sections.

9.4.1 A desk calculator process

Our first example invokes the dc (desk calculator) program to do some calculations and then
kills it with a SIGTERM signal. To interact with the external objects we use an object of class
User with attributes state (to keep track of the state the object is in), process (to keep the
Oid of the external object), io and err (to keep the socket objects’ identifiers), and result (to
store the response). Please, see inlined comments explaining the rules.

mod PROCESS-DC is

inc PROCESS .

inc MAYBE{Oid} * (op maybe to null).

op me : -> Oid .

op User : -> Cid .

op state:_ : Nat -> Attribute .

ops process:_ io:_ err:_ : Maybe{Oid} -> Attribute .

4Not every signal is supported by every platform and not every signal makes sense to send to a child process.
The following POSIX signals are supported on all Unix platforms: SIGHUP, SIGINT, SIGQUIT, SIGKILL, SIGALRM,
SIGTERM, SIGSTOP, and SIGCONT; everything else should be considered platform dependent.

252 CHAPTER 9. EXTERNAL OBJECTS AND IO

op result:_ : String -> Attribute .

vars X P ERR IO : Oid .

vars Result Str : String .

var Atts : AttributeSet .

---- once the process is created, a request to the dc and a waitForExit are sent

rl < X : User | state: 1, process: null, io: null, err: null, Atts >

createdProcess(X, processManager, P, IO, ERR)

=> < X : User | state: 2, process: P, io: IO, err: ERR, Atts >

send(IO, X, "10 16 + p\n") ---- dc keeps the result in p

waitForExit(P, X) .

---- once the message has been sent, a response is requested

rl < X : User | state: 2, io: IO, Atts >

sent(X, IO)

=> < X : User | state: 3, io: IO, Atts >

receive(IO, X) .

---- upon reception of the response, a new request is sent

---- the useful part of the response is stored in the result attribute

rl < X : User | state: 3, io: IO, result: "", Atts >

received(X, IO, Result) ---- Result --> "26\n"

=> < X : User | state: 4, io: IO,

result: substr(Result, 0, sd(length(Result), 1)), Atts >

send(IO, X, "4 * p\n") .

---- once the message has been sent, a new response is requested

rl < X : User | state: 4, io: IO, Atts >

sent(X, IO)

=> < X : User | state: 5, io: IO, Atts >

receive(IO, X) .

---- once this response is received, the process is terminated with a SIGTERM signal

rl < X : User | state: 5, process: P, io: IO, result: Str, Atts >

received(X, IO, Result) ---- Result --> "104\n"

=> < X : User | state: 6, process: P, io: IO,

result: substr(Result, 0, sd(length(Result), 1)), Atts >

signalProcess(P, X, "SIGTERM") .

---- signaledProcess and exited messages are received to confirm the operation

rl < X : User | state: 6, process: P, Atts >

signaledProcess(X, P)

exited(X, P, terminatedBySignal("SIGTERM"))

=> < X : User | state: 7, process: P, Atts > .

endm

We can run the above program with the following erewrite command:

Maude> erew <>

< me : User | state: 1, process: null, io: null, err: null, result: "" >

createProcess(processManager, me, "dc", nil, none) .

result Configuration:

<>

< me : User | state: 7,

process: process(66941), io: socket(3), err: socket(5),

result: "104" >

The execution terminates with the User object in its final state, with "104" as final result
of the operations carried out by the dc process. Notice that when the current erewrite context

9.4. PROCESSES 253

is destroyed (say, by running a new rewrite command), Maude will kill any processes and close
any sockets that correspond to Maude external objects in that context.

9.4.2 Python and Maude processes

Each application has its own form of interaction. In this section we present a Maude program
that interacts with a second Maude process, and, to analyze its output, it uses a Python
program that is run on the Python 3 interpreter. Specifically, the program runs an external
Maude process in which it loads the process-dc.maude file presented in the previous section.
As shown there, the program uses the dc to do a calculation. Since the output is rather complex,
we use a Python program to process the given output and extract the part we are interested
in. The output is processed in a Python interpreter process using the function select_text.
The string "104" is returned as result.

Although just for illustration purposes in this case, the use of other languages applications
may be convenient in some of our programs. In this case, the use of regular expressions for the
manipulation of strings comes quite handy. Our Python function select_text is very simple;
it uses the functionality provided in the re module for searching a string s, passed as first
argument, for a regular expression with the exact pattern we are interested in, which is given
as second argument p:

def select_text(s, p):

result = re.compile(p).search(s)

if result:

return result.group(1)

else:

raise Exception("not found")

As for the example in Section 9.4.1, we use an object to keep track of the process and
information of the different sockets. Since we are going to have two of these processes, we can
introduce the appropriate definitions as a generic class.

mod PROCESS-PROXY is

inc PROCESS .

inc MAYBE{Oid} * (op maybe to null) .

---- class Proxy | state: Nat, process: Maybe{Oid}, io: Maybe{Oid}, err: Maybe{Oid} .

sort Proxy .

subsort Proxy < Cid .

op Proxy : -> Proxy .

op state:_ : Nat -> Attribute .

ops process:_ io:_ err:_ : Maybe{Oid} -> Attribute . ---- process and channels

endm

In this program, we assume that both the Maude system (maude.darwin64) and the Python
interpreter (python3) are in your path, and that the process-dc.maude file from the previous
section is in your working directory. If this is not the case, please change the code below
appropriately. A PATH constant is given for the location of Maude’s executable, which should
be changed depending on your setting.

The functionality provided by the select_text Python function may be useful in different
contexts. To make it available as an auxiliary function, we show below the PROCESS-PYTHON

module, which provides a function string-extract that extracts a substring from a given
string that matches a given pattern. Specifically, given a string-extract(X, Y, Str, Pat)

message, it returns either string-extracted(Y, X, Result), with the matched substring, or
string-extract-error(Y, X, Result), if any error happens.

254 CHAPTER 9. EXTERNAL OBJECTS AND IO

mod PROCESS-PYTHON is

inc PROCESS-PROXY .

---- class Python | string: String, pattern: String, requester: Maybe{Oid} .

---- subclass Python < Proxy .

ops string:_ pattern:_ : String -> Attribute [ctor] .

op requester:_ : Maybe{Oid} -> Attribute [ctor] .

sort Python .

subsort Python < Proxy .

op Python : -> Python .

op string-extract : Oid Oid String String -> Msg .

ops string-extracted string-extract-error : Oid Oid String -> Msg .

vars X Y P ERR IO : Oid .

vars Result Str Pat : String .

var Atts : AttributeSet .

rl string-extract(X, Y, Str, Pat)

=> < X : Python | state: 1, process: null, io: null, err: null,

requester: Y, string: Str, pattern: Pat >

createProcess(processManager, X, "python3", "-iu" "string_extract.py", none) .

rl < X : Python | state: 1, process: null, io: null, err: null,

string: Str, pattern: Pat, Atts >

createdProcess(X, processManager, P, IO, ERR)

=> < X : Python | state: 2, process: P, io: IO, err: ERR, Atts >

send(IO, X, "select_text(’’’" + Str + "’’’, ’" + Pat + "’)\n")

waitForExit(P, X) .

rl < X : Python | state: 2, io: IO, err: ERR, Atts >

sent(X, IO)

=> < X : Python | state: 3, io: IO, err: ERR, Atts >

receive(IO, X)

receive(ERR, X) .

rl < X : Python | state: 3, io: IO, requester: Y, Atts > ---- output received

received(X, IO, Result) ---- Result --> "’104’\n"

=> < X : Python | state: 4, io: IO, requester: Y, Atts >

string-extracted(Y, X, substr(Result, 1, sd(length(Result), 3)))

send(IO, X, "quit()\n") .

rl < X : Python | state: 4, io: IO, Atts > ---- quit sent

sent(X, IO)

=> < X : Python | state: 5, io: IO, Atts > .

rl < X : Python | err: ERR, requester: Y, Atts > ---- error

received(X, ERR, Result)

=> < X : Python | err: ERR, requester: Y, Atts > ---- error msg might be empty

if Result == ">>> >>> " then none

else string-extract-error(Y, X, Result) fi .

rl < X : Python | state: 5, process: P, Atts > ---- process terminated

exited(X, P, normalExit(0))

=> none .

endm

The rules are explained in inline comments, but several issues are worth pointing out:

• Although string-extract is declared as a message, notice that its first argument is the
identifier used to create the proxy.

9.4. PROCESSES 255

• The string and the pattern need to be kept by the wrapper until the reception of the
createdProcess message.

• The Python process is started in interactive mode (using the -i flag), and the file
string_extract.py with the above select_text function is also passed as a command
argument.

• In Python, strings may use either single quotes (’), quotes ("), or triple quotes ("""
or ’’’). Since the output from the Maude process may contain quotes and new line
characters, the string to search in is passed using triple single quotes. The pattern is
passed using single quotes, assuming that it does not contain new line characters. Quotes
could also be used in both cases, but then the string on which the search is performed
should have to be manipulated before it is sent as an argument of the Python command.
Remember that quotes inside strings must be double quoted, i.e., a string like "\"hi\""

must be sent as argument of the function as "select_text(\"\\\"hi\\\"\")". Notice
that, since to put a quote inside a string you use \", and to put a backslash inside a string
you use \\, then, to put \" inside a string you must use \\\".

• The process is terminated using its quit command. Once the process is terminated, the
wrapper is removed.

The following module uses the above string-extract function to extract the result from
the execution of the process-dc.maude program.

Although the rules are explained in inlined comments below, there are a couple of issues
worth pointing out:

• The process-dc.maude file is passed as an argument of the maude.darwin64 command
when the createProcess is sent. Notice also that Maude has to be invoked with the
-trust flag to run external processes.

• Maude gives a welcome header when started, and when a command is sent to it, it first
acknowledges the command being executed, and then gives the actual output when it
finishes.

• In this case, we use a constant init to initiate the execution. The output and potential
error messages are given with respective operators result and error.

mod PROCESS-MAUDE is

---- Maude’s path, empty string if in the system path or in the same directory

op PATH : -> String .

eq PATH = "" . ---- E.g., "/Users/duran/maude/maude-3.1"

inc PROCESS-PYTHON .

ops result error : String -> Msg .

op init : -> Configuration .

ops me python : -> Oid .

vars X Y P ERR IO : Oid .

vars Result Str Pat : String .

var Atts : AttributeSet .

256 CHAPTER 9. EXTERNAL OBJECTS AND IO

---- the program begins by creating the Maude process

rl init

=> < me : Proxy | state: 1, process: null, io: null, err: null >

createProcess(processManager, me,

PATH + "maude.darwin64", "-trust" "process-dc.maude", none) .

---- Upon creation of the Maude process, it requests its banner

rl < X : Proxy | state: 1, process: null, io: null, err: null, Atts >

createdProcess(X, processManager, P, IO, ERR)

=> < X : Proxy | state: 2, process: P, io: IO, err: ERR, Atts >

receive(IO, X)

waitForExit(P, X) .

---- When the banner is received, the command is sent

---- This is the same command used in the previous section

rl < X : Proxy | state: 2, io: IO, Atts >

received(X, IO, Result) ---- Maude’s header

=> < X : Proxy | state: 3, io: IO, Atts >

send(IO, X,

"erew <> " +

"< me : User | state: 1, process: null, io: null, err: null, result: \"\" >"

+ " createProcess(processManager, me, \"dc\", nil, none) .\n") .

---- When the sending is confirmed, a request for input is sent

rl < X : Proxy | state: 3, io: IO, Atts >

sent(X, IO)

=> < X : Proxy | state: 4, io: IO, Atts >

receive(IO, X) .

---- Maude first sends the command being executed

---- In this case we send a receive message on both channels

rl < X : Proxy | state: 4, io: IO, err: ERR, Atts >

received(X, IO, Result) ---- command being executed

=> < X : Proxy | state: 5, io: IO, err: ERR, Atts >

receive(IO, X) ---- request output

receive(ERR, X) . ---- and potential error message

---- Once an answer is received, a quit command is sent to the Maude

---- process to terminate it, and a string-extract message is delivered

rl < X : Proxy | state: 5, io: IO, Atts > ---- result from ok execution

received(X, IO, Result)

=> < X : Proxy | state: 6, io: IO, Atts >

send(IO, X, "q\n")

string-extract(python, X, Result, "result: \"([^\"]*)\"") .

---- the response from the string-extract message is handled

rl < X : Proxy | state: 6, io: IO, Atts > ---- result from ok execution

string-extracted(X, Y, Result)

=> < X : Proxy | state: 7, io: IO, Atts > ---- result from ok execution

result(Result) .

rl < X : Proxy | Atts > ---- error execution

string-extract-error(X, Y, Result)

=> < X : Proxy | Atts >

error(Result) .

---- non-empty error messages are forwarded

rl < X : Proxy | err: ERR, Atts > ---- error

received(X, ERR, Result)

=> < X : Proxy | Atts >

if Result == "" then none else error(Result) fi . ---- no error message

---- sent and exited messages are consumed

9.5. CONTROL-C ON EXTERNAL EVENTS 257

rl < X : Proxy | state: 7, io: IO, process: P, Atts >

sent(X, IO)

exited(X, P, normalExit(0))

=> none .

endm

The execution of the program is then as follows.

Maude> erew <> init .

result Configuration: <> result("104")

9.5 Control-C on external events

When a control-C is typed during regular rewriting, execution is suspended and Maude gets
into its debugger. However, when Maude is suspended on an external event, because no internal
rewrites are possible, and it receives a control-C, it prints a message rather than immediately
aborting. A second control-C without intervening rewrites will cause an abort to the command
line without any attempt to print the current state.

The reason for this is to leave open the possibility of recovering from potential problems
happening on external objects. Following the conventions of the underlying operative systems,
“Interrupt signals generated in the terminal are delivered to the active process group, which
here includes both parent and child.” In other words, when a control-C is typed, the signal is not
only received by the Maude process, but also by all other active external processes depending
on it. Each of these processes may respond to a control-C in different ways, but there might
be cases in which we can make it recover once interrupted. If we do not want to try to recover
the execution, and it remains suspended on the same event, we may type a second control-C
to abort.

Let us illustrate some of these ideas in concrete examples. Specifically, let us revisit the
examples presented in Section 9.4. To get the execution to suspend on an external event,
let us introduce a little change in the specification of the desk calculator process example
(module PROCESS-DC in Section 9.4.1). The file process-dc-faulty.maude includes exactly
the same code as the one used in Section 9.4.1, but when submitting the second expression to
be evaluated, instead of the message

send(IO, X, "4 * p\n")

it is being sent

send(IO, X, "4 * p")

Notice that without \n, the dc does not process the input, and therefore it does not respond to
our subsequent receive message. The process gets suspended waiting for an answer that will
never arrive. By typing a control-C while the process is suspended, we observe the following
behavior:

Maude> erew <>

> < me : User | state: 1, process: null, io: null, err: null, result: "" >

> createProcess(processManager, me, "dc", nil, none) .

erewrite in PROCESS-DC :

<>

< me : User | state: 1, process: null, io: null, err: null, result: "" >

createProcess(processManager, me, "dc", nil, none) .

^C

Control-C while suspended on external event(s).

258 CHAPTER 9. EXTERNAL OBJECTS AND IO

A second control-C on the same suspension will abort execution and return to command

line.

rewrites: 11 in 1ms cpu (4721ms real) (8560 rewrites/second)

result Configuration:

<>

< me : User |

state: 6, process: process(58212), io: socket(3), err: socket(5), result: "" >

signalProcess(process(58212), me, "SIGTERM")

exited(me, process(58212), terminatedBySignal("SIGINT"))

Maude>

The control-C does not kill the Maude run. It shows the message

Control-C while suspended on external event(s).

A second control-C on the same suspension will abort execution and return to command

line.

indicating what the situation was when the control-C was typed, and that a second control-C
might be needed to abort. However, since an interrupt signal is sent to the dc process, it gets
killed. This is the behavior of the dc application. As we will see below, other applications
may respond differently to this kind of signals. But, since the external process terminates, the
execution is no longer suspended. Indeed, as we can see in the final output provided, we are
informed that the process exited due to the reception of a SIGINT signal.

Let us now consider our second example, the PROCESS-MAUDE specification in Section 9.4.2.
We do not change anything on this example, just make it use the PROCESS-DC specification
modified as above (available in file process-maude-faulty.maude). The question is that if we
load the specification and run it with the corresponding erew command, we observe that the
execution gets suspended. Notice that the program is creating a Maude process which loads the
process-dc-faulty.maude file. The execution of the erew command gets suspended, as we saw
above. The interesting thing is that we have just learnt how Maude handles an interrupt signal,
and then, we know that if we type control-C, the external process also receives a control-C (an
interrupt signal). Upon reception of this interrupt signal, the external Maude process produces
some output, which is received by the main Maude process. It however does not receive a valid
output, which leads to another suspension, although in this case it is the Python process that
suspends, because it is unable to handle the text that receives. If a new control-C is typed,
since it is a different suspension, the execution does not abort. Instead, we get a new message
informing us about the situation, and telling us that, if the execution remains suspended in
the same place, a second control-C will abort the execution. Since the interrupt signal received
by the Python process does not get the execution to advance, a third control-C (second on
this suspension event), forces the execution to abort. The following shows the interaction just
explained:

erewrite in PROCESS-MAUDE : <> init .

^C

Control-C while suspended on external event(s).

A second control-C on the same suspension will abort execution and return to command line.

^C

Control-C while suspended on external event(s).

Note that this is a different suspension than the one that received a control-C 63 rewrites ago.

A second control-C on the same suspension will abort execution and return to command line.

^C

Second control-C while suspended on external event(s).

Aborting execution and returning to command line.

9.5. CONTROL-C ON EXTERNAL EVENTS 259

Advisory: closing open files.

Maude>

Note that no final output is presented. As we have seen above, if a control-C triggers some
behavior in the external process that exits the suspension, Maude can complete its execution
to a final state or end up suspended on some other external event which again requires two
control-C events to abort. However, aborting execution is inherently a messy procedure that
never has a printable final state.

260 CHAPTER 9. EXTERNAL OBJECTS AND IO

Chapter 10

Strategy Language

Rule rewriting is a highly nondeterministic process: at every step, many rules could be applied
at various positions. A finer control on rule application is sometimes desirable, and even
required, when rules are not terminating or not convergent. Maude programmers already had
resources to restrain rewriting, from adding more information to the data representation to
applying rules explicitly at the metalevel, as described in Section 17.7. However, these methods
make specifications harder to understand and programming at the metalevel is a cumbersome
task for novice users. For these reasons, a strategy language has been proposed [97, 61, 99] as a
specification layer above those of equations and rules. This provides a cleaner way to control the
rewriting process respecting the separation of concerns principle. That is, the rewrite theory is
not modified in any way: strategies provide an additional specification level above that of rules,
so that the same system module may be executed according to different strategy specifications.
The design of Maude’s strategy language has been influenced, among others, by ELAN [13] and
Stratego [18].

Of course, the most basic action of the strategy language is rule application, which is invoked
by mentioning the rule label. More complex strategies, involving several, or unboundedly
many, rule applications, can be built by means of various strategy combinators. The language
is described in detail in Section 10.1. Moreover, strategy expressions can be given a name
to be later invoked with arguments, even recursively. Strategy modules, the modular way
in which strategies are declared, are explained in Section 10.2. Like functional and system
modules, strategy modules can be parameterized, with specific features that are described in
Section 10.3. A discussion about the strategy search commands follows in Section 10.4, and the
chapter concludes with a case study on logic programming in Section 10.5. Some other aspects
are covered in specific chapters, like the metarepresentation of strategies in Section 17.3 and
how strategy executions can be traced and debugged in Section 20.

Let us start with a simple example. The HANOI module below specifies the Tower of Hanoi
puzzle, invented by the French mathematician Éduard Lucas in 1883 [92]. His story tells about
an Asian temple where there are three diamond posts. The first one is surrounded by sixty-four
golden disks of increasing size from the top to the bottom. The monks are committed to move
them from one post to another respecting two rules: only a disk can be moved at a time, and
they can only be laid either on a bigger disk or on the floor. Their objective is to move all of
them to the third post, and then the world will end.

mod HANOI is

protecting NAT-LIST .

sorts Post Hanoi Game .

261

262 CHAPTER 10. STRATEGY LANGUAGE

subsort Post < Hanoi .

op (_) [_] : Nat NatList -> Post [ctor] .

op empty : -> Hanoi [ctor] .

op __ : Hanoi Hanoi -> Hanoi [ctor assoc comm id: empty] .

vars S T D1 D2 N : Nat .

vars L1 L2 : NatList .

vars H H’ : Hanoi .

crl [move] : (S) [L1 D1] (T) [L2 D2] => (S) [L1] (T) [L2 D2 D1] if D2 > D1 .

rl [move] : (S) [L1 D1] (T) [nil] => (S) [L1] (T) [D1] .

endm

Here, the golden disks are modeled as natural numbers describing their size, and the posts are
represented as lists of disks in bottom up order. We try to rewrite the initial puzzle setting

rew (0)[3 2 1] (1)[nil] (2)[nil] .

but the command does not terminate: the disks are being moved in a loop. To prevent such a
situation, strategies can be useful. The Maude command for rewriting with strategies is:

srewrite [n] in 〈ModId〉 : 〈Term〉 by 〈StrategyExpression〉 .

It rewrites the term according to the given strategy expression and prints all the results.
Since strategies need not be deterministic, many results may be obtained. Like in the standard
rewriting commands, we can optionally specify the module where to rewrite after in, and a
bound n on the number of solutions to be shown just after the command keyword, which can
be shortened to srew. For example,

Maude> srew [3] in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] using move .

Solution 1

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Hanoi: (0)[3 2] (1)[1] (2)[nil]

Solution 2

rewrites: 2 in 0ms cpu (1ms real) (~ rewrites/second)

result Hanoi: (0)[3 2] (1)[nil] (2)[1]

No more solutions.

rewrites: 2 in 0ms cpu (1ms real) (~ rewrites/second)

The two results of applying the move rule to the initial term are shown. Every time we request
all solutions or more solutions than possible, the interpreter indicates that there are no more
solutions when the search finishes. The order in which solutions appear is implementation-
dependent. Following the output of the srewrite command, we can view a strategy expression
α as a transformation TΣ → P(TΣ) from an initial term t to a set of terms being the results
of α in t. To elaborate more complex strategies, we need to introduce the complete strategy
language.

10.1 The strategy language

As we have anticipated, rule application is the essential building block of the strategy language.
Besides the rule label, further restrictions can be imposed. Its most general syntax has the form:

10.1. THE STRATEGY LANGUAGE 263

label[X1 <- t1, . . ., Xn <- tn]{α1, . . ., αm}

Between square brackets, we can optionally set an initial ground substitution for the variables
X1, . . . , Xn appearing in the rule. And when invoking a conditional rule with rewriting con-
ditions we must provide between curly brackets the strategies α1, . . . , αm to control rewriting
each of them. Only rules with exactly m condition fragments will be tried, so all rewriting
fragments must be given a strategy. For example, we can select to which Hanoi tower the disk
is moved by giving the command:

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using move[T <- 2] .

Solution 1

rewrites: 1

result Hanoi: (0)[3 2] (1)[nil] (2)[1]

No more solutions.

rewrites: 1

Constrained by the substitution, the rewriting engine tries to match with extension (see Sec-
tion 4.8) against the lefthand sides (S)[L1 D1] (2)[L2 D2] for the first move rule, and (S)[L1

D1] (2)[nil] for the second move rule, but only the second succeeds and the term is rewritten
to solution 1.

An additional combinator all triggers a single rewriting step with all rules available in
the module, even those which are not given a label, but excluding those marked with nonexec,
external objects and implicit rules. Rewriting condition fragments are executed like in the usual
rewriting engine, without any restriction. To illustrate all and how strategies can control rule
conditions, the following module HANOI-COUNT introduces a pair operator of Game for keeping
track of the number of moves used to reach a solution.

mod HANOI-COUNT is

protecting HANOI .

op <_,_> : Hanoi Nat -> Game [ctor] .

vars H H’ : Hanoi .

var N : Nat .

crl [step] : < H, N > => < H’, s N > if H => H’ .

rl [cancel] : N => 0 [nonexec] .

rl [inc] : N => s N [nonexec] .

endm

By controlling the H => H’ condition of step with all, we indicate that only one rule appli-
cation has to be performed in each game step, so that the count is calculated correctly. The
other rules cancel and inc will be used later to count moves in a different way.

Maude> srew < (0)[3 2 1] (1)[nil] (2)[nil], 0 > using step{all} .

Solution 1

result Game: < (0)[3 2] (1)[1] (2)[nil],1 >

Solution 2

result Game: < (0)[3 2] (1)[nil] (2)[1],1 >

No more solutions

264 CHAPTER 10. STRATEGY LANGUAGE

By default, rule applications are tried anywhere within the subject term. However, they
can be limited to the topmost position using the top restriction. For example, if we apply the
cancel rule, which rewrites any natural number1 to zero, we obtain multiple solutions:

Maude> srew 1 using cancel .

Solution 1

result Zero: 0

Solution 2

result NzNat: 1

No more solutions.

In this case, the rule can be applied both on 1 = s 0, producing 0, and on its subterm 0,
producing s 0. Instead, using top the rule is only applied at the top position s 0:

Maude> srew 1 using top(cancel) .

Solution 1

result Zero: 0

No more solutions.

Combining top with the matchrew operator described in Section 10.1.2, rules can be applied
to any specified subterm in the subject term.

The other basic component of the language are the tests. They can be used for testing a
condition on the subject term. Their syntax has the form:

match P s.t. C

where P is a pattern and C is an equational condition, as described in Section 4.3. Their
syntax and behavior are similar to those of the match commands in Section 4.9: the such-that
clause can be omitted if no condition is imposed, and the starting keyword indicates where
the matching is done: on top (match), on any fragment of the flattened top modulo axioms
(xmatch), or anywhere within the subject term (amatch). The condition may refer to variables
in the pattern, whose value will be obtained from the matching. On a successful match and
condition check, the result is the initial term. Otherwise, the test does not provide any solution.
For example, we can check whether the towers of Hanoi puzzle is solved with tests:

Maude> srew (0)[nil] (1)[nil] (2)[3 2 1] using match (N)[3 2 1] H s.t. N =/= 0 .

Solution 1

result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

Maude> srew (0)[nil] (1)[nil] (2)[3 2 1] using xmatch (0)[nil] (2)[3 2 1] .

Solution 1

result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

1The decimal representation of natural numbers is just syntactic sugar for their Peano notation, whose
constructors are 0 and the successor s, as explained in Section 7.2. Hence, a natural number is a tower of s

symbols followed by a 0, which are efficiently supported using the iter attribute (see Section 4.4.2).

10.1. THE STRATEGY LANGUAGE 265

Strategy ζ Results JζK(θ, t)

idle {t}
fail ∅

rlabel [ρ] { t′ ∈ TΣ | t→ρ(l)→ρ(r) t′ for any l→rlabel r ∈ R }
α;β

⋃
t′∈JαK(θ,t)

JβK(θ, t′)

α|β JαK(θ, t) ∪ JβK(θ, t)
α*

⋃∞
n=0JαKn(θ, t)

match P s.t. C

{
{t} if matches(P, t, C, θ) 6= ∅
∅ otherwise

α ? β : γ

{
Jα;βK(θ, t) if JαK(θ, t) 6= ∅
JγK(θ, t) if JαK(θ, t) = ∅

matchrew P s.t. C by

X1 using α1, . . .,
Xn using αn

⋃
σ∈matches(P,t,C,θ)

(⋃
t1∈Jα1K(σ,σ(X1)) · · ·⋃

tn∈JαnK(σ,σ(Xn)) σ[x1/t1, . . . , xn/tn](P)
)

slabel(t1, . . . , tn)
⋃

(lhs,δ,C)∈Defs

⋃
σ∈matches(slabel(t1,...,tn),lhs,C,id) JδK(σ, t)

Table 10.1: Main strategy combinators and their informal semantics

Since the xmatch tests matches inside the top symbol with extension, and the two posts in the
pattern form a fragment of the associative and commutative symbol on the subject term, the
second command succeeds. The same command match will fail the match, because the pattern
is not the whole term.

Maude> srew (0)[nil] (1)[nil] (2)[3 2 1] using match (0)[nil] (2)[3 2 1] .

No solution.

With the amatch variant, we can check whether the disks of radius 3 and 1 are the same post
with the following command:

Maude> srew in HANOI : (0)[nil] (1)[nil] (2)[3 2 1] using amatch 3 L1 1 .

Solution 1

result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

Once we have rule application and tests, the basic actions and control of the language, we can
combine them to build more complex strategies. Table 10.1 summarizes all primitive strategy
constructors and informally describes their semantics2.

10.1.1 Basic control combinators

To control the flow of rule execution some combinators are defined. Let α, β and γ represent
arbitrary strategy expressions.

2We denote by JζK(θ, t) the results of evaluating the strategy expression ζ in the term t with a variable context
substitution θ, by matches(P, t, C, θ) the matches of the term t into the pattern P satisfying the condition C
and extending the bindings of the previous substitution θ, and by Defs the set of strategy definitions. In the
remainder of this section, we will explain in detail all these combinators.

266 CHAPTER 10. STRATEGY LANGUAGE

1. The concatenation α;β executes the strategy α and then the strategy β on each α result.
In our example, we can move twice using the strategy move ; move.

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using move ; move .

Solution 1

result Hanoi: (0)[3 2 1] (1)[nil] (2)[nil]

Solution 2

result Hanoi: (0)[3] (1)[1] (2)[2]

Solution 3

result Hanoi: (0)[3 2] (1)[nil] (2)[1]

Solution 4

result Hanoi: (0)[3] (1)[2] (2)[1]

Solution 5

result Hanoi: (0)[3 2] (1)[1] (2)[nil]

No more solutions.

Notice that the initial state appears first in the solutions. This suggest why the initial
rewrite command did not terminate.

2. The disjunction or alternative α|β executes α or β. In other words, the results of α|β
are both those of α and those of β.

Maude> srew (0)[3 2] (1)[1] (2)[nil] using move[S <- 0] | move[T <- 0] .

Solution 1

result Hanoi: (0)[3 2 1] (1)[nil] (2)[nil]

Solution 2

result Hanoi: (0)[3] (1)[1] (2)[2]

No more solutions.

3. The iteration α* runs α zero or more times consecutively. If we issue the command

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using move * .

Solution 1

result Hanoi: (0)[3 2 1] (1)[nil] (2)[nil]

...

Solution 27

result Hanoi: (0)[nil] (1)[1] (2)[3 2]

No more solutions.

we obtain the 27 admissible states, where the disks in each post are in the correct order.

4. The concatenation, alternative, and iteration combinators resemble the similar construc-
tors for regular expressions. The empty word and empty language constants are here

10.1. THE STRATEGY LANGUAGE 267

represented by the idle and fail operators. The result of applying idle is always the
initial term, while fail generates no solution.

Maude> srew (0)[3 2 1] using idle .

Solution 1

result Post: (0)[3 2 1]

No more solutions.

Maude> srew (0)[3 2 1] using fail .

No solution.

In a wider sense, we say that a strategy fails when no solution is obtained. Failures can
happen in less explicit situations like vacuous rule applications, unsatisfied tests, etc.

5. A conditional strategy is written α ? β : γ. It executes α and then β on its results, but
if α does not produce any, it executes γ on the initial term. That is, α is the condition;
β the positive branch, which applies to the results of α; and γ the negative branch, which
is applied only if α fails.

For example, we can instruct the monks to move disks to the first and second tower only
if no disk can be moved to the target post. In this way, we obtain only 21 results out of
27.

Maude> srew in HANOI : (0)[3 2] (1)[1] (2)[nil] using

(move[T <- 2] ? idle : move) * .

Solution 1

result Hanoi: (0)[3 2] (1)[1] (2)[nil]

...

Solution 21

result Hanoi: (0)[nil] (1)[1] (2)[3 2]

No more solutions.

In the example above, we are giving precedence to one strategy over another, so that the
second is only executed if the first fails. This is a common control pattern, and so it is defined
as a derived operator with its own name, along with some other usual constructions:

• The or-else combinator is defined by

α or-else β ≡ α ? idle : β

As shown in the example above, it executes β only if α has failed.

• The non-void iteration α+ is defined as α+ ≡ α ;α*.

• The negation is defined as:

not(α) ≡ α ? fail : idle

It fails when α succeeds, and succeeds as an idle when α fails.

268 CHAPTER 10. STRATEGY LANGUAGE

• The normalization operator
α! ≡ α* ; not(α)

applies α until it cannot be further applied.

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using move[S <- 0] ! .

Solution 1

result Hanoi: (0)[3] (1)[1] (2)[2]

Solution 2

result Hanoi: (0)[3] (1)[2] (2)[1]

No more solutions.

• The try strategy is defined by try(α) ≡ α ? idle : idle. It applies α, but if it fails, it
returns the initial state.

• The test strategy, defined by test(α) ≡ not(not(α)), fails whenever α fails, but when
α succeeds, it returns the initial term instead of its results.

Maude> srew (0)[3] (1)[1] (2)[2] using test(move[S <- 0]) .

No solution.

Maude> srew (0)[3] (1)[1] (2)[2] using test(move[S <- 1]) .

Solution 1

result Hanoi: (0)[3] (1)[1] (2)[2]

No more solutions.

10.1.2 Rewriting of subterms

The match and rewrite operator matchrew restricts the application of a strategy to a specific
subterm of the subject term. Its syntax is

matchrew P (X1, . . . , Xn) s.t. C by X1 using α1, . . ., Xn using αn

where P is a pattern with variables X1, . . . , Xn among others, and C is an optional equational
condition. The using clauses associate variables in the pattern, which are matched by subterms
of the matched term, with strategies that will be used to rewrite them. These variables must
be distinct and must appear in the pattern. As in the case of tests, there are three flavors for
this operator, depending on the type of matching: matchrew, xmatchrew, and amatchrew.

The semantics of this operator is illustrated in Figure 10.1. All matches of the pattern in
the subject term are tried, checking the condition if any. If none succeeds, the strategy fails.
Otherwise, for each match of the main pattern the subterms matching each Xi are extracted,
rewritten according to αi, and their solutions are put in place of the original subterm. The
rewriting of the subterms happens in parallel, in the sense that the terms evolve in a completely
independent and fair way. Finally, all possible combinations of the subterm results will give
rise to different reassembled solutions.

Another advantage of matchrew is that it let us obtain information about the term and
use it to modify the behavior of the strategies. The scope of the variables in the pattern
and the condition is extended to the substrategies α1, . . . , αn, so that the values they take by

10.1. THE STRATEGY LANGUAGE 269

f(... g(...) ...) → f(... g(...) ...)

g(...t...s...) → g(...t′...s′...)
matching substitution

rewritingαi αj

Figure 10.1: Behavior of the amatchrew combinator

matching and evaluation can be used in nested rule substitutions, strategy calls, and match and
matchrew operators. Conversely, when these variables are bound by outer constructs, they keep
their values and matching is done against a partially instantiated pattern. When a variable in
the condition is not bound either by the outer context or by the matching, the strategy will be
unusable and a warning will be shown by the interpreter.

For example, instead of using the step rule to count the moves in the Tower of Hanoi, we
could have used a matchrew and the increment rule inc. This is written:

Maude> srew [1] in HANOI-COUNT : < (0)[3 2 1] (1) [nil] (2)[nil], 0 >

using (matchrew < H, N > by H using move, N using top(inc)) * ;

amatch (2)[3 2 1] .

Solution 1

rewrites: 523 in 56ms cpu (56ms real) (9339 rewrites/second)

result Game: < (0)[nil] (1)[nil] (2)[3 2 1], 7 >

Notice the use of top in the inc rule application. As we have seen in the previous example
with the cancel rule in page 262, inc could have been applied inside successors if we had
omitted the top modifier. Although in this particular case the result would not have been
affected, unnecessary work would have been done, as we can observe in the rewrites count of
the following execution.

Maude> srew 1 using inc .

Solution 1

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: 2

No more solutions.

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

10.1.3 The one operator

Strategies are nondeterministic due to the different possible matches of the rules and the sub-
term rewriting operator, disjunction, iteration, etc. The various rewriting paths that these
alternatives make possible are explored almost simultaneously by the strategic search engine.
Sometimes, the different options lead to the same result or, the results being different, it may
not matter which of them is selected. For efficiency purposes, the one combinator is introduced
to execute its argument strategy and return only one of its solutions, namely the first one found.
If the strategy does not produce any solutions, neither does one.

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using one(move * ; amatch (2)[3 2 1]) .

270 CHAPTER 10. STRATEGY LANGUAGE

Solution 1

rewrites: 121

result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

rewrites: 121

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using move * ; amatch (2)[3 2 1] .

Solution 1

rewrites: 121

result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

rewrites: 150

The most noticeable performance improvements are obtained the closer one is applied to rules,
because the alternatives are pruned immediately. However, this should be done only when
paths can be discarded safely.

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using one(move) * .

Solution 1

result Hanoi: (0)[3 2 1] (1)[nil] (2)[nil]

Solution 2

result Hanoi: (0)[3 2] (1)[1] (2)[nil]

No more solutions.

In the execution above, one(move) tries only a single move at each iteration, and the resulting
sequence of moves does not lead to the solved game (in fact, it loops after the first move).

10.1.4 Strategy calls

Strategies with their own name and taking parameters can be defined in strategy modules, which
will be explained in Section 10.2. These named strategies can be called as a strategy expression
with a typical prefix operator syntax: a strategy identifier followed by a comma-separated list of
arguments between parentheses. When the strategy does not take any arguments and there is
no rule with the same name, the parentheses can be omitted. Suppose we already have defined
a strategy moveAll to move disks between certain posts indicated by its arguments, with its
third argument being the number of disks to be moved. It can be applied to an initial state
like this:

Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using moveAll(0, 2, 3) .

Solution 1

rewrites: 24 in 4ms cpu (2ms real) (6000 rewrites/second)

result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

rewrites: 24 in 4ms cpu (2ms real) (6000 rewrites/second)

How this and other strategies are defined is explained in the next section.

10.2. STRATEGY MODULES 271

10.2 Strategy modules

Strategy modules let the user give name to strategy expressions. Named strategies facilitate the
use and description of complex strategies, and they extend the expressiveness of the language
by means of recursive and mutually recursive strategies. As for functional and system modules,
a strategy module is declared in Maude using the keywords

smod 〈ModuleName〉 is 〈DeclarationsAndStatements〉 endsm

A typical strategy module would import the system module it will control, declare some strate-
gies, and define them by means of strategy definitions. All statements and declarations that
were available in functional and system modules can also be included in strategy modules, but
we encourage to avoid them as much as possible to emphasize a clean separation between the
rewriting theory and the strategies that control it.

For example, the following strategy module HANOI-SOLVE defines the recursive strategy
moveAll that we have used in Section 10.1.4 to illustrate strategy calls and solve the puzzle.

smod HANOI-SOLVE is

protecting HANOI .

protecting HANOI-AUX .

strat moveAll : Nat Nat Nat @ Hanoi .

vars S T C M : Nat .

sd moveAll(S, S, C) := idle .

sd moveAll(S, T, 0) := idle .

sd moveAll(S, T, s(C)) := moveAll(S, third(S, T), C) ;

move[S <- S, T <- T] ;

moveAll(third(S, T), T, C) .

endsm

The operator third, imported from the following functional module HANOI-AUX, calculates the
third with respect to two given posts. In general, when we require some auxiliary operations
to specify a strategy, we can define them in an auxiliary module that is then imported by the
strategy module.

fmod HANOI-AUX is

protecting SET{Nat} .

op third : Nat Nat ~> Nat .

vars N M K : Nat .

ceq third(N, M) = K if N, M, K := 0, 1, 2 .

endfm

The features making up a strategy module are strategy declarations and definitions. Strategies
are declared as follows:

strat 〈StratName〉+ : 〈Sort-1 〉 ... 〈Sort-k〉 @ 〈Sort〉 [〈StratAttributes〉] .

Strategy names are single word identifiers. The sorts between the colon and the @ sign are
the argument sorts of the strategy. The last argument after the @ sign is the subject sort, i.e.,
the sort of the terms to which the strategy will be applied. The colon can be omitted when a
strategy has no arguments. Multiple strategy names, separated by blank space, can be used to

272 CHAPTER 10. STRATEGY LANGUAGE

define multiple strategies at once, provided that all have the same argument sorts and subject
sort. In this case the plural keyword strats instead of strat is recommended. The only
admitted strategy attribute is metadata (see Section 4.5.2).

Strategy names can be overloaded, i.e., strategies can be defined with the same name but
may have different arities and argument types. Like operators, strategies are defined at the
kind level. Homonymous strategies with the same arity and such that for each argument the
corresponding sorts have the same kind are considered the same. In practice, the concrete
sorts of the strategy signature do not have any effect and should be considered as a declaration
of intent. Repeated declarations of the exact same strategy twice (with the same name and
argument kinds) will generate a warning. For example, when processing the module

smod STRATS is

protecting INT .

strat repeat : Nat @ Nat .

strat repeat : Int @ Nat .

endsm

the interpreter will issue the warning:

Warning: <standard input>, line 5 (smod STRATS): strategy declaration

strat repeat : Int @ Nat . conflicts with

strat repeat : Nat @ Nat . from <standard input>, line 4 (smod STRATS).

For its part, the subject sort is ignored to all effects: it is not checked when calling the strategy
and not used to distinguish strategies.

Without a corresponding definition, named strategies behave like fail. Definition state-
ments should be provided to properly define each named strategy according to the syntax:

sd 〈StrategyCall〉 := 〈StrategyExpression〉 [〈SdAttributes〉] .

The lefthand side of a definition is a strategy call, as seen in the previous section, probably
containing variables, which can be used in the righthand side. In fact, all variables in the
strategy expression, except variables in matching patterns, must appear in the lefthand side.
Like equations and rules, strategy definitions may be conditional:

csd 〈StrategyCall〉 := 〈StrategyExpression〉 if 〈Condition〉 [〈SdAttributes〉] .

The condition of a strategy definition is an equational one, as described in Section 4.3, i.e.,
rewriting conditions t1 => t2 are not allowed. The attributes metadata, label and print

(see Section 4.5) can be attached to sd and csd definitions. When a strategy is invoked, all
available definitions for the name are tried, and all those whose lefthand side matches the calling
arguments are executed. Moreover, conditions may generate different variable assignments, in
which case the strategy will be applied with each one of them. For example, we could have
given the third definition of moveAll in HANOI-SOLVE above as

csd moveAll(S, T, s(C)) := moveAll(S, third(S, T), C) ;

move[S <- S, T <- T] ;

moveAll(third(S, T), T, C) if S =/= T .

since the definition does not make sense when the target and source towers are the same. In
fact, this case always fails because the partial function third(S, T) evaluates to an error term
of sort [Nat] such that the first recursive call does not match any definition.

To conclude this section, let us show another example: the insertion-sort algorithm imple-
mented by means of strategies. The underlying array is represented as a set of pairs containing

10.2. STRATEGY MODULES 273

both a position and a value. It is assumed that there is a single entry for each position between
one and the length of the array. A rule swap is defined to swap the values between two entries.

mod SWAPPING{X :: DEFAULT} is

protecting ARRAY{Nat, X} .

vars I J : Nat .

vars V W : X$Elt .

var AR : Array{Nat, X} .

rl [swap] : J |-> V ; I |-> W => J |-> W ; I |-> V .

op maxIndex : Array{Nat, X} ~> Nat .

eq maxIndex(empty) = 0 .

eq maxIndex(I |-> V ; AR) = if maxIndex(AR) < I then I else maxIndex(AR) fi .

endm

Then, the insertion-sort algorithm is specified as the insort strategy. It visits each position
of the array in increasing order, maintaining the invariant that the entries to the left of the
current index are sorted. At each iteration, it inserts the current value in the sorted fragment
of the array. Insertion is done by the insert strategy, which compares in descending order each
entry with its neighbor and swaps them if they are misplaced. The base case is the insertion
in the first position, which does not require any work.

view DEFAULT+ from DEFAULT to STRICT-TOTAL-ORDER + DEFAULT is

endv

smod INSERTION-SORT{X :: STRICT-TOTAL-ORDER + DEFAULT} is

protecting SWAPPING{DEFAULT+}{X} * (

sort Array{Nat, DEFAULT+}{X} to NatArray{X}

) .

strat swap : Nat Nat @ NatArray{X} .

strats insert insort : Nat @ NatArray{X} .

vars X Y J I : Nat .

vars V W : X$Elt .

var AR : NatArray{X} .

sd insort(Y) := try(match AR s.t. Y <= maxIndex(AR) ;

insert(Y) ;

insort(Y + 1)) .

sd insert(1) := idle [label base-case] .

csd insert(s(X)) := try(xmatch X |-> V ; s(X) |-> W s.t. W < V ;

swap(X, s(X)) ;

insert(X))

if X > 0 [label recursive-case] .

sd swap(X, Y) := swap[J <- X, I <- Y] .

endsm

view Int<0 from STRICT-TOTAL-ORDER + DEFAULT to INT is

sort Elt to Int .

endv

274 CHAPTER 10. STRATEGY LANGUAGE

smod INSERTION-SORT-INT is

protecting INSERTION-SORT{Int<0} .

endsm

Then, we can sort any array using insort with the following srewrite command:

Maude> srewrite 1 |-> 8 ; 2 |-> 3 ; 3 |-> 15 ; 4 |-> 5 ; 5 |-> 2 using insort(2) .

Solution 1

rewrites: 116 in 0ms cpu (0ms real) (~ rewrites/second)

result NatArray{Int<0}: 1 |-> 2 ; 2 |-> 3 ; 3 |-> 5 ; 4 |-> 8 ; 5 |-> 15

No more solutions.

rewrites: 116 in 0ms cpu (1ms real) (~ rewrites/second)

10.2.1 Module importation

Strategy modules can be seen as an additional layer of specification over functional and sys-
tem modules, which are not allowed to import strategy modules. Instead, strategy modules
can import functional, system, or strategy modules using the protecting, extending, and
including modes.

The semantic requirements for each inclusion mode are described in Section 6.1 for func-
tional and system modules. Similar requirements apply to strategies when importing strategy
modules. A protecting extension M of a strategy module M ′ should not alter the rewriting
paths permitted by each strategy declared in M ′. The declaration and definition of new strate-
gies in the importing module does not affect the semantics of the strategies declared in the
imported module, but adding new definitions for the imported strategies may change their be-
havior. If new rewriting paths are added to the imported strategies, but those of the imported
module are preserved, the extending mode should be used. In any other case, the including

mode is the right choice.

Let us illustrate the importation modes with a simple example. The following strategy
module SMOD-IMPORT-EXAMPLE declares two strategies st1 and st2. Since st1 is not given any
definition, no rewriting is possible using it, and thus st1 is equivalent to fail. On the other
hand, the definition of st2 describes all rewriting paths of the form q → ’z for every quoted
identifier q.

mod SMOD-IMPORT-EXAMPLE0 is

protecting QID .

rl [ab] : ’a => ’b .

rl [bc] : ’b => ’c .

rl [zz] : Q:Qid => ’z .

endm

smod SMOD-IMPORT-EXAMPLE is

protecting SMOD-IMPORT-EXAMPLE0 .

strats st1 st2 @ Qid .

sd st2 := st1 ? bc : zz .

endsm

The module SMOD-IMPORT-EXAMPLE’ below includes a new definition for st2 that allows the
additional rewriting path ’a → ’b. Hence, SMOD-IMPORT-EXAMPLE should not be imported in
protecting mode but in extending mode.

10.3. PARAMETERIZATION IN STRATEGY MODULES 275

smod SMOD-IMPORT-EXAMPLE’ is

extending SMOD-IMPORT-EXAMPLE .

sd st2 := ab .

endsm

Although there is no direct way of restricting an already defined strategy, this may indirectly
happen due to the conditional and its derived operators. The following module extends st1

with the ’a→ ’b path. As a result, the condition of st1’s definition st1 ? bc : zz has now
solutions for ’a, the rewriting path ’a→ ’b→ ’c is allowed, but also ’a→ ’z is lost, because
the negative branch of the conditional is not evaluated.

smod SMOD-IMPORT-EXAMPLE’’ is

including SMOD-IMPORT-EXAMPLE .

sd st1 := ab .

endsm

The semantic requirements for strategies refer to the rewriting paths that can be followed while
executing the strategy, which is stronger than refering only to their evaluation results. However,
it this example, the results are also changed non-conservatively:

Maude> srew in SMOD-IMPORT-EXAMPLE : ’a using st2 .

Solution 1

rewrites: 1

result Qid: ’z

No more solutions.

rewrites: 1

Maude> srew in SMOD-IMPORT-EXAMPLE’’ : ’a using st2 .

Solution 1

rewrites: 2

result Qid: ’c

No more solutions.

rewrites: 2

As for functional and system modules, these requirements are not checked by Maude at runtime.
Finally, the language of module renamings (see Section 6.2.2) is extended with strategy

renamings. Like for regular operators, strat name to newName renames all strategies whose
name is name to newName. To rename only a specific instance of an overloaded strategy name,
its arity and subject sort can be made explicit with strat name : s1 . . . sn @ s to newName.

10.3 Parameterization in strategy modules

Strategy modules can be parameterized like any other module in Maude, by means of theories
and views, as explained in Section 6.3. A parameterized strategy module is a usual strategy
module that takes a set of formal parameters, bound to some theories:

smod SM{X1 :: T1, ..., XN :: TN} is ... endsm

These theories can be functional or system theories, or also strategy theories. A strategy theory
specifies the signature of the strategies that a concrete strategy module parameter must provide
and the requirements that these actual strategies must satisfy. How a particular strategy module

276 CHAPTER 10. STRATEGY LANGUAGE

meets the requirements of a strategy theory is specified by means of a view with strategy
bindings, which will be described soon, and then views are used to instantiate parameterized
modules with actual parameters. Strategy theories are introduced with the syntax:

sth T is ... endsth

and have features entirely similar to those of strategy modules. They can:

• import other theories in including mode,

• import modules of any kind,

• declare strategies,

• provide strategy definitions, and

• include other declarations and statements that functional and system theories admit.

The simplest strategy theory STRIV declares a single strategy without parameters:

sth STRIV is

including TRIV .

strat st @ Elt .

endsth

The subject sort Elt of the strategy st is imported from the functional theory TRIV. Strategy
theories can never be used to parameterize functional or system modules.

Given a strategy module that meets the requirements of a strategy theory, we should specify
how they are actually met by using a view. The repertoire of mappings that can appear in a
view (see Section 6.3.2) has been extended with additional syntax for strategy bindings:

1. Mapping all formal strategies with the same given name at once. Each affected strategy
will be seeked in the target module after translating its arguments according to the sort
mappings of the view.

strat 〈StratName〉 to 〈StratName〉 .

For example, consider the following strategy theory FOO and strategy module BAR:

sth STHEORY is

including TRIV .

protecting NAT .

strat foo : Elt @ Elt .

strat foo : Elt Nat @ Elt .

endsth

smod SMODULE is

protecting STRING .

protecting NAT .

strat bar : String @ String .

strat bar : String Nat @ String .

endsm

The following view Bar maps both the strategy foo(Elt) to bar(String) and the strat-
egy foo(Elt, Nat) to bar(String, Nat) with a single mapping strat foo to bar.

10.3. PARAMETERIZATION IN STRATEGY MODULES 277

view SModule from STHEORY to SMODULE is

sort Elt to String .

strat foo to bar .

endv

2. Mapping a single formal strategy to an existing strategy in the target module.

strat 〈StratName〉 : 〈Sort-1 〉 ... 〈Sort-k〉 @ 〈Sort〉 to 〈StratName〉 .

For example, the previous view Bar can also be written as:

view SModule’ from STHEORY to SMODULE is

sort Elt to String .

strat foo : Elt @ Elt to bar .

strat foo : Elt Nat @ Elt to bar .

endv

3. Mapping a single formal strategy to an actual strategy expression in the target module.

strat 〈StrategyCall〉 to expr 〈StrategyExpression〉 .

Only variables are allowed as arguments in the lefthand side of the mapping, as for
the operator to term mappings (see Section 6.3.2). These variables can be used in the
strategy expression in the righthand side. When the module is instantiated, the strategy
calls matching the lefthand side will be substituted by the lefthand side expression in any
strategy definition of the module.

Finally, and as usual, modules are instantiated with views using the syntax

SM{View1, . . ., ViewN}

Let us illustrate how parameterized strategy modules are instantiated by strategy views
with an example. The following parameterized strategy module BACKTRACKING is a backtracking
problem solver: the generic algorithm is specified as a strategy solve depending on some formal
declarations.

smod BACKTRACKING{X :: BT-STRAT} is

strat solve @ X$State .

var S : X$State .

sd solve := (match S s.t. isSolution(S)) ?

idle : (expand ; solve) .

endsm

This module is parameterized by the backtracking problem specification, whose requirements
are expressed in the strategy theory BT-STRAT. Its main element is the expand strategy, which
is intended to generate all the successors of the problem state in which it is applied.

fth BT-ELEMS is

protecting BOOL .

sort State .

op isSolution : State -> Bool .

endfth

sth BT-STRAT is

including BT-ELEMS .

strat expand @ State .

endsth

278 CHAPTER 10. STRATEGY LANGUAGE

The strategy theory includes a functional theory BT-ELEMS, where we require a sort State for the
problem states, and a predicate isSolution to recognize solutions among them. The strategy
theory itself declares the strategy expand without parameters. Now, we specify a concrete
backtracking problem, the 8-queens problem, and instantiate the parameterized BACKTRACKING

module with it by means of a view. Then, the instantiated strategy solve will be able to solve
the 8-queens problem. The problem is described in the system module QUEENS and the strategy
module QUEENS-STRAT:

mod QUEENS is

protecting LIST{Nat} .

protecting SET{Nat} .

op isOk : List{Nat} -> Bool .

op ok : List{Nat} Nat Nat -> Bool .

op isSolution : List{Nat} -> Bool .

vars N M Diff : Nat .

var L : List{Nat} .

var S : Set{Nat} .

eq isOk(L N) = ok(L, N, 1) .

eq ok(nil, M, Diff) = true .

ceq ok(L N, M, Diff) = ok(L, M, Diff + 1)

if N =/= M /\ N =/= M + Diff /\ M =/= N + Diff .

eq isSolution(L) = size(L) == 8 .

crl [next] : L => L N if N, S := 1, 2, 3, 4, 5, 6, 7, 8 .

endm

smod QUEENS-STRAT is

protecting QUEENS .

strat expand @ List{Nat} .

var L : List{Nat} .

sd expand := top(next) ; match L s.t. isOk(L) .

endsm

Then, we define a view from the BT-STRAT strategy theory to QUEENS-STRAT:

view QueensBT from BT-STRAT to QUEENS-STRAT is

sort State to List{Nat} .

strat expand to expand .

endv

As with sorts and operators, unmentioned strategy names get the identity mapping, so the
mapping for expand in QueenBT could be omitted. Finally, we can instantiate the parameterized
module:

smod BT-QUEENS is

protecting BACKTRACKING{QueensBT} .

endsm

and run solve for 8-queens:

Maude> srew [2] nil using solve .

srewrite [2] in BT-QUEENS : nil using solve .

10.4. STRATEGY SEARCH AND THE DSREWRITE COMMAND 279

Solution 1

rewrites: 285984 in 238ms cpu (238ms real) (1200211 rewrites/second)

result NeList{Nat}: 1 5 8 6 3 7 2 4

Solution 2

rewrites: 285984 in 238ms cpu (238ms real) (1200211 rewrites/second)

result NeList{Nat}: 1 6 8 3 7 4 2 5

Typically, views will be defined from a strategy theory to a strategy module or theory, but
other combinations are possible. In general, strategic and non-strategic theories and modules
can be combined with freedom in views.

1. Views from strategy theories to non-strategy modules (or theories) are useful when the
target strategies are simple enough to be defined by strategy expressions, for which to

expr bindings must be used.

2. Views from non-strategy theories to strategy modules (or theories) can be used to in-
stantiate modules of a lower level with strategy modules. In that case, the instantiated
module is automatically promoted to a strategy module. These views cannot contain
strategy bindings, as there are no formal strategies to bind.

Otherwise, all the details about module instantiation in Section 6.3.4 are applicable to the
strategy level as well. As a simple example, we can write a view from the functional theory
TRIV to the strategy theory STRIV and vice-versa as follows:

view StrivIdle from STRIV to TRIV is

sort Elt to Elt .

strat st to expr idle .

endv

view STRIV from TRIV to STRIV is

sort Elt to Elt .

endv

Moreover, we could have defined a view from the strategy theory BT-STRAT directly to the
functional module QUEENS by binding the formal strategy expand to the actual inline definition
of the expand strategy we already use in the strategy module QUEENS-STRAT. In this way, we
do not need to define or use the QUEENS-STRAT strategy module.

view QueensBT2 from BT-STRAT to QUEENS is

sort State to List{Nat} .

var L : State .

strat expand to expr top(next) ; match L s.t. isOk(L) .

endv

10.4 Strategy search and the dsrewrite command

Although strategies control and restrict rewriting, they do not make the process deterministic.
A strategy may allow multiple rewriting paths, produced by alternative local decisions that
may appear during its execution. The rewrite and frewrite commands eliminate this non-
determinism by each choosing a specific fixed strategy, as explained in Sections 5.4.1 and 5.4.2.
Instead, the search command explores all the possible rule applications looking for a term

280 CHAPTER 10. STRATEGY LANGUAGE

matching a given target. The srewrite command agrees with search in the exhaustive explo-
ration of the alternatives, looking, in this case, for strategy solutions. However, the srewrite

search is not conducted on the complete rewriting tree of search, but in a subtree pruned by
the effect of the strategy. How this tree is explored has implications for the command’s output
and its performance.

The srewrite command explores the rewriting graph following a fair policy which ensures
that all solutions reachable in a finite number of steps are eventually found, unless the inter-
preter runs out of memory. Without being a breadth-first search, multiple alternative paths are
explored in parallel. This can be observed in the n-queens problem presented in Section 10.3,
and in the particular example we showed:

Maude> srew [2] nil using solve .

Solution 1

rewrites: 285984 in 249ms cpu (248ms real) (1147935 rewrites/second)

result NeList{Nat}: 1 5 8 6 3 7 2 4

Solution 2

rewrites: 285984 in 249ms cpu (249ms real) (1147935 rewrites/second)

result NeList{Nat}: 1 6 8 3 7 4 2 5

Notice that both solutions are obtained at the same time and with the same number of rewrites,
since these and even more rewriting paths are being explored in parallel. All of them increment
indiscriminately the common rewrites counter. In this particular example, being all the solu-
tions at the same depth in the rewriting tree, the tree has to be explored almost completely
before the first solution is found.

An alternative rewriting command dsrewrite (depth strategic rewrite) explores the strategy
rewriting graph in depth. Its syntax coincides with that of the srewrite command except for
the starting keyword, which can be abbreviated to dsrew.

dsrewrite [n] in 〈ModId〉 : 〈Term〉 by 〈StrategyExpression〉 .

Using this command in the previous example, we can observe some differences. The first solution
is obtained sooner and some rewrites before the second. In absolute terms, both solutions are
shown earlier and using fewer rewrites. The memory usage is reduced too.

Maude> dsrew [2] nil using solve .

dsrewrite [2] in BT-QUEENS : nil using solve .

Solution 1

rewrites: 15602 in 16ms cpu (17ms real) (942092 rewrites/second)

result NeList{Nat}: 1 5 8 6 3 7 2 4

Solution 2

rewrites: 20339 in 19ms cpu (21ms real) (1022728 rewrites/second)

result NeList{Nat}: 1 6 8 3 7 4 2 5

However, the disadvantage is that the depth-first exploration could get lost in an infinite branch
before finding some reachable solutions, which would then be missed (see Section 10.5 for an
example). The depth-first search order is determined by the order of the direct successors,
which is summarized in the following precedences:

• Rule applications and matchrew matches are issued as in the rewrite and match com-
mands, i.e., from outer to inner positions and from left to right. Rules are selected in
their syntactical order within the module.

10.5. CASE STUDY: LOGIC PROGRAMMING 281

• In an alternative α |β, the successors of α appear before the successors of β.

• In an iteration, leaving precedes continuing with another iteration.

• Strategy definitions are selected in the order they appear in the module. If the parameters
match in different ways, these strategy executions are generated as in the match command.

• Rule and strategy condition fragments are processed from left to right and matches are
generated as before. Rewriting condition fragments solutions are depth-first searched
using these precedences.

10.5 Case study: logic programming

In this section, the strategy language is used to define the semantics of a logic programming
language similar to Prolog [35]. Strategies will be used to discard failed proofs, to enforce the
Prolog search strategy, and to implement advanced features like negation and cuts.

First, the syntax of the language is defined in a functional module:

fmod LP-SYNTAX is

protecting NAT .

protecting QID .

sort Variable .

op x{_} : Nat -> Variable [ctor] .

sorts Term NvTerm .

subsorts Qid < NvTerm < Term .

subsort Variable < Term .

op _[_] : Qid NeTermList -> NvTerm [ctor prec 30 gather (e &)] .

sort NeTermList .

subsort Term < NeTermList .

op _,_ : NeTermList NeTermList -> NeTermList [ctor assoc] .

sort Predicate .

op _‘(_‘) : Qid NeTermList -> Predicate [ctor prec 30 gather (e &)] .

sorts PredicateList NePredicateList .

subsorts Predicate < NePredicateList < PredicateList .

op nil : -> PredicateList [ctor] .

op _,_ : PredicateList PredicateList -> PredicateList

[ctor assoc prec 50 id: nil] .

op _,_ : NePredicateList PredicateList -> NePredicateList [ditto] .

op _,_ : PredicateList NePredicateList -> NePredicateList [ditto] .

sort Clause .

op _:-_ : Predicate PredicateList -> Clause [ctor prec 60] .

sort Program .

subsort Clause < Program .

op nil : -> Program [ctor] .

op _;_ : Program Program -> Program [ctor assoc prec 70 id: nil] .

endfm

282 CHAPTER 10. STRATEGY LANGUAGE

Tom

SallyMike

John

Erica

Jane

Figure 10.2: Family tree defined by the example predicates

The language distinguishes between terms and predicates: the first describe data while the
second state facts about it. Terms are constants represented by quoted identifiers, variables
of the form x{n}, and structured terms like ’f[’a, ’b], built from symbols composed of a
name and a list of terms between brackets. Predicates also take a non-empty list of terms but
between parentheses. A program is a list of Horn clauses. They are composed of a predicate
called head, the :- symbol, and a comma-separated list of predicates called premises. Clauses
with an empty list of premises are called facts. For example, we can express familiar relations
with predicates and people names as constants, then we can give some clauses to indicate how
complex relationships derive from simpler ones:

ops kinship family : -> Program .

eq kinship =

’sibling(x{1},x{2}) :- ’parent(x{3},x{1}), ’parent(x{3}, x{2}) ;

’parent(x{1}, x{2}) :- ’father(x{1}, x{2}) ;

’parent(x{1}, x{2}) :- ’mother(x{1}, x{2}) ;

’relative(x{1},x{2}) :- ’parent(x{1},x{3}), ’parent(x{3},x{2}) ;

’relative(x{1},x{2}) :- ’sibling(x{1},x{3}), ’relative(x{3},x{2}) .

eq family =

’mother(’jane, ’mike) :- nil ;

’mother(’sally, ’john) :- nil ;

’father(’tom, ’sally) :- nil ;

’father(’tom, ’erica) :- nil ;

’father(’mike, ’john) :- nil ;

kinship .

According to the clauses above, Erica is sibling of Sally ’sibling(’erica, ’sally) because
they both have Tom as parent, ’parent(’tom, ’erica) and ’parent(’tom, ’sally). And
this is true because he is the father of both, ’father(’tom, ’erica) and ’father(’tom,

’sally).

The language interpreter is given a query, i.e., a list of predicates that may contain free
variables, and it answers whether the conjunction of all of them can be satisfied and for which
substitutions it does happen. The proof procedure consists in finding a clause whose head
unifies with the predicate, and then trying to recursively prove their premises, while carrying the
variable bindings during the process. Unification is implemented in a module LP-UNIFICATION,
where substitutions are defined:

sort Binding .

op _->_ : Variable Term -> Binding [ctor prec 60] .

10.5. CASE STUDY: LOGIC PROGRAMMING 283

sort Substitution .

subsort Binding < Substitution .

op empty : -> Substitution [ctor] .

op _;_ : Substitution Substitution -> Substitution

[ctor assoc comm prec 70 id: empty] .

The unify operator calculates the substitution that unifies two given predicates if possible,
respecting the bindings from an initial substitution.

op unify : Predicate Predicate Substitution -> Substitution? .

sort Substitution? .

subsort Substitution < Substitution? .

op fail : -> Substitution? [ctor] .

The variables in a clause must be fresh each time it is applied, so they must be renamed. An
operator does so helped by an index that is supposed to be greater that any variable index
involved.

op rename : Clause Nat -> Clause .

Finally, a partial function value obtains the value of a variable in a given substitution:

op value : Variable Substitution ~> Term .

eq value(V, (V -> T) ; S) = T .

The language semantics is defined in a system module LP-SEMANTICS. The state of the inter-
preter is represented as a Configuration, and a rule modifies it while applying the clauses.

mod LP-SEMANTICS is

protecting LP-UNIFICATION .

sort Configuration .

vars N1 N2 : Nat . vars P1 P2 P3 : Predicate .

vars PL1 PL2 PL3 : PredicateList . vars S1 S2 : Substitution .

vars Pr Pr1 Pr2 : Program .

op <_|_> : PredicateList Program -> Configuration [ctor] .

eq < PL1 | Pr > = < last(PL1) | PL1 $ empty | Pr > .

op <_|_$_|_> : Nat PredicateList Substitution Program -> Configuration [ctor] .

crl [clause] : < N1 | P1, PL1 $ S1 | Pr1 ; P2 :- PL2 ; Pr2 >

=> < N2 | PL3, PL1 $ S2 | Pr1 ; P2 :- PL2 ; Pr2 >

if P3 :- PL3 := rename(P2 :- PL2,N1)

/\ S2 := unify(P1,P3,S1)

/\ N2 := max(N1,last(P3 :- PL3)) .

endm

The interpreter state holds a predicate list of pending goals, and a substitution that accumulates
the variable bindings from the previous execution. It also carries the program and maintains
a renaming index greater than the index of any variable seen. The clause rule selects any
program clause and tries to unify its head with the first predicate in the goal list. If it succeeds,
the predicate is replaced by the clause premises and the current substitution is completed.

284 CHAPTER 10. STRATEGY LANGUAGE

Additionally, it takes care of renaming the selected clause and updating the variable index
counter.

A proof is successfully finished when a configuration of the form < N | nil $ S | Pr > is
reached, i.e., when no pending goals remain, and then S is a substitution that makes the initial
predicate hold.

Coming back to the family tree example, we can now ask questions like whether Jane and
John are relatives, or of whom Tom is parent. As we want to know if a proof can be concluded
for the initial predicate, search is the appropriate command. The value of Pr has been omitted
in the following results for clarity.

Maude> search < ’relative(’jane, ’john) | family > =>* < N | nil $ S | Pr > .

Solution 1 (state 11)

states: 12 rewrites: 1713

N:Nat --> 7

S:Substitution --> x{1} -> ’jane ; x{2} -> ’john ; x{3} -> x{5} ;

x{4} -> ’jane ; x{5} -> ’mike ; x{6} -> x{5} ; x{7} -> ’john

No more solutions.

states: 12 rewrites: 1967

Maude> search < ’parent(’tom, x{1}) | family > =>* < N | nil $ S | Pr > .

Solution 1 (state 3)

states: 4 rewrites: 251

N:Nat --> 3

S:Substitution --> x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’sally

Solution 2 (state 4)

states: 5 rewrites: 280

N:Nat --> 3

S:Substitution --> x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’erica

No more solutions.

The rewrite command is not useful in this context because it simply explores a single rewriting
path, thus a single proof path. This is clearly not enough to show multiple solutions, but it may
also be insufficient to find a single one, as we can see running the first example with rewrite.

Maude> rew < ’relative(’jane, ’john) | family > .

rewrites: 422

result Configuration: < 5 | ’father(x{4},x{5}),’parent(x{3},x{2}) $
x{1} -> ’jane ; x{2} -> ’john ; x{3} -> x{5} ; x{4} -> ’jane | family >

An admissible logic programming interpreter must consider all possible proof paths and be
able to resume them when the execution arrives to a dead end. Strategies can take care of this.
First, we define an auxiliary predicate isSolution to decide whether a given configuration is
a solution.

mod LP-EXTRA is

protecting LP-SEMANTICS .

op isSolution : Configuration -> Bool .

var N : Nat . var S : Substitution .

var Pr : Program .

10.5. CASE STUDY: LOGIC PROGRAMMING 285

eq isSolution(< N | nil $ S | Pr >) = true .

eq isSolution(Conf) = false [owise] .

endm

Now, we can define the strategy solve-simple that applies clause until a solution is found,
and implicitly rejects any rewriting path that does not end in one. The exhaustive search of
the srewrite command shows all reachable solutions for the initial predicate.

smod PROLOG is

protecting LP-EXTRA .

strat solve-simple @ Configuration .

sd solve-simple := match Conf s.t. isSolution(Conf)

? idle : (clause ; solve-simple) .

endsm

The above definition is identical to the backtracking scheme described in Section 10.3. In
fact, the BACKTRACKING module parameterized by a convenient view can be used to define
solve-simple. Even so, during this section, we will add some other elements to the strategy
that are not compatible with that scheme. Now, the strategy can be applied to the previous
examples:

Maude> srew < ’parent(’tom, x{1}) | family > using solve-simple .

Solution 1

rewrites: 544

result Configuration: < 3 | nil $ x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’sally

| (omitted) >

Solution 2

rewrites: 544

result Configuration: < 3 | nil $ x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’erica

| (omitted) >

No more solutions.

rewrites: 544

The resulting configurations are not easily readable, because they include the full program,
which has not changed and has been omitted here, and also substitutions containing meaningless
variables that do not occur in the initial predicate. We propose to wrap solving strategies, like
solve-simple and those we will define next, as a strategy wsolve that additionally cleans
and presents the results in a more readable form. This is defined in the strategy module
PL-SIMPLIFIER, which imports some required functions and rules from the system module
PL-SIMPLIFIER-BASE. Since this wrapper is intended to be used for any solving strategy we
might define, PL-SIMPLIFIER is a strategy module parameterized by a new theory INTERPRETER

that strategies like solve-simple should satisfy.

sth INTERPRETER is

protecting LP-SEMANTICS .

strat solve @ Configuration .

endsth

view Simple from INTERPRETER to PROLOG is

strat solve to solve-simple .

endv

286 CHAPTER 10. STRATEGY LANGUAGE

smod PL-SIMPLIFIER{X :: INTERPRETER} is

protecting PL-SIMPLIFIER-BASE .

strat wsolve @ Configuration .

var Conf : Configuration .

var VS : VarSet .

sd wsolve := matchrew Conf s.t. VS := occurs(Conf)

by Conf using (solve ; solution[VS <- VS]) .

endsm

The strategy wsolve records the variables that occur in the initial configuration predicate, then
executes the solve strategy, and finally applies the solution rule with the initial variable set.
This rule restricts the substitution to the variables in the given set, after resolving them by
transitivity. This procedure is defined in the LP-SIMPLIFICATION-BASE module, which is only
partially reproduced here because it has no interest regarding strategies.

mod PL-SIMPLIFIER-BASE is

extending LP-SEMANTICS .

sort VarSet .

subsort Variable < VarSet .

op empty : -> VarSet .

op _;_ : VarSet VarSet -> VarSet [ctor assoc comm id: empty] .

*** [...]

op occurs : Configuration -> VarSet .

op simplify : Substitution VarSet -> Substitution .

op solution : Substitution -> Configuration [ctor format (g! o)] .

rl [solution] : < N | nil $ S | Pr > => solution(simplify(S, VS)) [nonexec] .

endm

Instantiating the module, we obtain a wrapped strategy that additionally pretty prints the
solution. The same will be done for the other solving strategies defined in the rest of the
section.

smod PROLOG-MAIN is

protecting PL-SIMPLIFIER{Simple} * (strat wsolve to wsolve-simple) .

endsm

We can also observe that the order in which solutions appear depends on the way the
rewriting tree is explored. With the dsrewrite command the results will appear in the same
order as in Prolog, because both explore the derivation tree in depth. However, the srewrite

command will often obtain shallower solutions first.

Maude> dsrew < ’p(x{1}) | ’p(x{1}) :- ’q(x{1}) ; ’p(’a) :- nil ; ’q(’b) :- nil >

using wsolve-simple .

Solution 1

rewrites: 82

result Configuration: solution(x{1} -> ’b)

Solution 2

rewrites: 111

result Configuration: solution(x{1} -> ’a)

No more solutions.

rewrites: 117

10.5. CASE STUDY: LOGIC PROGRAMMING 287

Maude> srew < ’p(x{1}) | ’p(x{1}) :- ’q(x{1}) ; ’p(’a) :- nil ; ’q(’b) :- nil >

using wsolve-simple .

Solution 1

rewrites: 105

result Configuration: solution(x{1} -> ’a)

Solution 2

rewrites: 117

result Configuration: solution(x{1} -> ’b)

No more solutions.

rewrites: 95

However, the benefit of using srewrite is that all reachable solutions are shown. In Prolog
and with dsrewrite some of them may be hidden by a non-terminating branch.

Maude> dsrew < ’p(x{1}) | ’p(x{1}) :- ’p(x{1}) ; ’p(’a) :- nil >

using wsolve-simple .

Debug(1)> abort . *** non-terminating

Maude> srew < ’p(x{1}) | ’p(x{1}) :- ’p(x{1}) ; ’p(’a) :- nil >

using wsolve-simple .

Solution 1

rewrites: 109 in 0ms cpu (3ms real) (~ rewrites/second)

result Configuration: solution(x{1} -> ’a)

Debug(1)> abort . *** non-terminating

10.5.1 Negation as failure

In logic programming, the concept of negation is somewhat subtle. Facts and predicates express
positive knowledge, so the alternatives are explicitly asserting what is false, or assuming that
any predicate that cannot be derived from the considered facts is false. The last approach
is known as negation as failure: the negation of a predicate holds if the predicate cannot be
proved, no matter the values its variables take. This cannot be expressed with Horn clauses
but can be easily implemented using strategies and an extra rewriting rule, added to LP-EXTRA.
Negation is represented as a normal predicate named \+, whose argument is written as a term.

mod LP-EXTRA+NEG is

extending LP-EXTRA .

var N : Nat . var Q : Qid .

var NeTL : NeTermList . var PL : PredicateList .

var S : Substitution . var Pr : Program .

var Conf : Configuration .

crl [negation] : < N | ’\+(Q[NeTL]), PL $ S | Pr > => < N | PL $ S | Pr >

if < N | Q(NeTL) $ S | Pr > => Conf .

endm

288 CHAPTER 10. STRATEGY LANGUAGE

The negation rule only removes the negation predicate from the goal list if its rewriting con-
dition holds. By its own semantics, the negation never binds variables, so the substitution
remains unchanged. The initial term of the rewriting condition contains the negated predicate
as its only goal. Whether this term can be rewritten to a solution configuration determines
whether the negated predicate can be satisfied. Hence, we need to control the condition with
a strategy that fails whenever that happens.

smod PROLOG+NEG is

protecting LP-EXTRA+NEG .

strat solve-neg @ Configuration .

var Conf : Configuration .

sd solve-neg := match Conf s.t. isSolution(Conf) ? idle :

((clause | negation{not(solve-neg)}) ; solve-neg) .

endsm

The strategy is similar to the original solve-simple strategy, but the negation rule can be
applied when a negated predicate is on top of the goal list. not(solve-neg) fails if solve-neg
finds a solution for the negated predicate. Otherwise, it behaves like idle, triggering the rule
application. Thus, it is a suitable strategy for the rewriting condition.

We can illustrate the negation feature using the family tree example. A predicate ’no-children
claims that someone does not have descendants:

Maude> srew < ’no-children(’erica) | family ;

’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using wsolve-neg .

Solution 1

rewrites: 887

result Configuration: solution(empty)

No more solutions.

rewrites: 887

Maude> srew < ’no-children(’mike) | family ;

’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using solve-neg .

No solution.

rewrites: 894

The second predicate does not succeed since Mike is the father of John. Similarly, we can define
’orphan(x{1}) := ’\+(’parent[x{2}, x{1}]).

10.5.2 Cuts

Prolog includes a more powerful (and more controversial) control feature called cut. Intuitively,
a cut ! is a goal that always succeeds and establishes a wall preventing backtracking left-wise.
It can appear among the premises of a clause, and it triggers two effects when it is reached:

1. Locally to the clause, the first substitution produced to prove the predicates to the left
of the cut is definitive, and it cannot be reconsidered.

2. Only the current clause can be used to prove the predicate to which the clause was applied.
In other words, no other clause for this predicate can be used if the current clause fails

10.5. CASE STUDY: LOGIC PROGRAMMING 289

or more solutions are required.

Up to now, the order in which the solutions are found was less important, specially when using
the srew command. However, for cut to be well-defined and coincide with its Prolog semantics,
we need to respect its order strictly:

1. Inside a clause, the premises are proven from left to right.

2. To prove each goal, the program clauses are used in order, starting from the first one.

Keeping all this in mind, the cut-aware semantics is defined by means of two strategies solve

and solveOne. The first one calculates all reachable solutions in no particular order, while
the second calculates only the first solution according to the order described above. The
ordered trial of the program clauses is conducted by two recursive strategies clauseWalk and
clauseWalkOne receiving a program as argument. Before describing them, the LP-SYNTAX

module should be extended with the cut symbol.

fmod LP-SYNTAX+CUT is

extending LP-SYNTAX .

sorts CfPredicateList NeCfPredicateList .

subsorts Predicate < NeCfPredicateList

< CfPredicateList NePredicateList < PredicateList .

op ! : -> NePredicateList [ctor] .

mb nil : CfPredicateList .

op _,_ : NeCfPredicateList NeCfPredicateList -> NeCfPredicateList [ditto] .

op _,_ : CfPredicateList CfPredicateList -> CfPredicateList [ditto] .

op _,_ : NeCfPredicateList CfPredicateList -> NeCfPredicateList [ditto] .

op _,_ : CfPredicateList NeCfPredicateList -> NeCfPredicateList [ditto] .

op _,_ : PredicateList CfPredicateList -> PredicateList [ditto] .

op _,_ : CfPredicateList PredicateList -> PredicateList [ditto] .

endfm

The CfPredicateList sort represents cut-free predicate lists. These can be treated as usual,
while clauses and goal lists containing cuts will be treated differently. The four strategies
mentioned before are defined in the PROLOG+CUT module:

smod PROLOG+CUT is

protecting LP-EXTRA+CUT .

var Conf : Configuration .

var N : NAt .

var CfPL : CfPredicateList .

var P : Predicate .

vars Pr Pr2 : Program .

vars PL PL2 : PredicateList .

var S : Substitution .

strats solve solveOne @ Configuration .

sd solve := match Conf s.t. isSolution(Conf) or-else (

matchrew Conf s.t. < N | CfPL $ S | Pr > := Conf

by Conf using clauseWalk(Pr)

| matchrew Conf s.t. < N | CfPL, !, PL $ S | Pr > := Conf

290 CHAPTER 10. STRATEGY LANGUAGE

by Conf using (cut{solveOne} ; solve)

) .

sd solveOne := match Conf s.t. isSolution(Conf) or-else (

matchrew Conf s.t. < N | CfPL $ S | Pr > := Conf

by Conf using clauseWalkOne(Pr)

| matchrew Conf s.t. < N | CfPL, !, PL $ S | Pr > := Conf

by Conf using (cut{solveOne} ; solveOne)

) .

strats clauseWalk clauseWalkOne : Program @ Configuration .

sd clauseWalk(nil) := fail .

sd clauseWalk(P :- PL2 ; Pr) := (clause[Pr2 <- Pr] ; solve) | clauseWalk(Pr) .

sd clauseWalk(P :- CfPL, !, PL ; Pr) := (clause[Pr2 <- Pr] ; cut{solveOne})

? solve : clauseWalk(Pr) .

sd clauseWalkOne(nil) := fail .

sd clauseWalkOne(P :- CfPL ; Pr) := (clause[Pr2 <- Pr] ; solveOne)

or-else clauseWalkOne(Pr) .

sd clauseWalkOne(P :- CfPL, !, PL ; Pr) := (clause[Pr2 <- Pr] ; cut{solveOne})

? solveOne : clauseWalkOne(Pr) .

endsm

As in the previous strategies, solve stops when the subject term is a solution. Otherwise, two
mutually exclusive branches are available. The first branch deals with cut-free goal lists, and
simply invokes clauseWalk to attempt the program clauses in order. The second branch deals
with cuts thanks to a new conditional rule cut defined in LP-EXTRA.

mod LP-EXTRA+CUT is

extending LP-SYNTAX+CUT .

extending LP-SEMANTICS+CALL .

extending LP-EXTRA .

vars N1 N2 : Nat . var CfPL : CfPredicateList .

var PL : PredicateList . vars S1 S2 : Substitution .

var Pr : Program .

crl [cut] : < N1 | CfPL, !, PL $ S1 | Pr > => < N2 | PL $ S2 | Pr >

if < N1 | CfPL $ S1 | Pr > => < N2 | nil $ S2 | Pr > .

endm

This rule isolates the goal list to the left of the cut, which is cut-free. If a solution can be
found for it, in the main configuration the left predicate list and the first cut are both removed,
and the substitution is updated according to the result of the rewriting condition. Since cut
disallows reconsidering the substitution that arrives to it, we are only interested in a single
solution for the rewriting condition. This is achieved by controlling it with solveOne, which
produces one solution at most. Notice that we are managing the cuts by anticipating them,
and it works regardless of the way the strategy search tree is explored, and without explicit
mention of backtracking. However, this only ensures the local effect of the cut; the second effect
is guaranteed by clauseWalk. The recursive definition of solveOne only differs from solve in
that clauseWalkOne is called instead of clauseWalk. The reason why only a solution is found
by solveOne is because of clauseWalkOne, which is explained below.

clauseWalk is a recursive strategy that walks through the program clauses and tries them in

10.5. CASE STUDY: LOGIC PROGRAMMING 291

order. Setting Pr2 to the argument’s Pr, makes the application clause[Pr2 <- Pr] determin-
istic and ensures the current clause in the strategy arguments is used. If the clause succeeds,
the execution continues with a recursive call to solve. No matter whether all this fails or not,
the next clause is also tried to possibly find other solutions. clauseWalkOne differs only in
that the disjuntive combinator | is replaced by an or-else. This ensures that only a single
solution is found and that it is the first according to the order described before. The second
effect of cut is guaranteed by the third definition of both clauseWalkOne and clauseWalk, that
are dedicated to clauses with at least one cut in their premises. First, they apply the current
clause using the clause rule. If the rule can be applied, its premises are transferred to the
configuration goal list, where the cut is managed by cut{solveOne} as we explained above.
Notice that the cut is only reached if cut{solveOne} succeeds. In that case, we continue with
a recursive call to solve, ignoring the rest of clauses in Pr for the current predicate, as the
second effect of cut requires. Otherwise, we continue with the next clause because the cut has
not been triggered.

The examples in Section 10.5.1 can also be expressed by means of cuts.

Maude> srew < ’no-children(’erica) | family ;

’no-children(x{1}) :- ’parent(x{1}, x{2}), !, ’fail(x{1}) ;

’no-children(x{1}) :- nil > using wsolve .

Solution 1

rewrites: 789

result Configuration: solution(empty)

No more solutions.

rewrites: 789

where fail is a predicate that always fails. This usage pattern of cut imitates the typical
definition of the negation \+ predicate. In fact, this predicate can be defined inside the language
if completed by an extra meta-predicate named call, which converts its argument from a term
to a predicate, as the negation rule implicitly did. It is implemented by means of an equation
than reduces the head of the goal list:

fmod LP-SEMANTICS+CALL is

protecting LP-SEMANTICS .

var N : Nat . var Q : Qid .

var NeTL : NeTermList . var PL : PredicateList .

var S : Substitution . var Pr : Program .

var V : Variable .

eq [call] : < N | ’call(Q[NeTL]), PL $ S | Pr >

= < N | Q(NeTL), PL $ S | Pr > .

ceq [call] : < N | ’call(V), PL $ S | Pr >

= < N | Q(NeTL), PL $ S | Pr > if Q[NeTL] := value(V, S) .

endfm

Negation is then defined:

eq negation-bycut := ’\+(x{1}) :- ’call(x{1}), !, ’fail(x{1}) ;

’\+(x{1}) :- nil .

This is a negation as failure, because whenever the \+ predicate argument can be proven, the
cut will be reached. Then, any other alternative proof for the negation will be discarded, in

292 CHAPTER 10. STRATEGY LANGUAGE

particular the use of the second clause. Since fail always fails, the negation will fail completely.
On the contrary, when the argument predicate does not produce any result, the cut will not be
reached and the second clause will be used, thus proving the negation of the predicate.

Maude> srew < ’no-children(’erica) | family ; negation-bycut ;

’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using wsolve .

Solution 1

rewrites: 1028

result Configuration: solution(empty)

No more solutions.

rewrites: 1028

Maude> srew < ’no-children(’mike) | family ; negation-bycut ;

’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using wsolve .

No solution.

rewrites: 736

Chapter 11

Model Checking Invariants
Through Search

A rewrite theory, specified in Maude as a system module, provides an executable mathematical
model of a concurrent system. We can use the Maude specification to simulate the concurrent
system so specified. But we can do more. Under appropriate conditions we can check that our
mathematical model satisfies some important properties, or obtain a useful counterexample
showing that the property in question is violated. This kind of model-checking analysis can be
quite general. Chapter 12 will explain how, under appropriate finite reachability assumptions,
we can model check any linear time temporal logic (LTL) property of a system specified in
Maude as a system module. This chapter focuses on a simpler, yet very useful, model-checking
capability, namely, the model checking of invariants, which can be accomplished just by using
the search command.

11.1 Invariants

Invariants are the most common and useful safety properties, that is, properties stating that
something bad should never happen. Given a transition system and an initial state s0, an
invariant I is a predicate defining a subset of states meeting two properties:

• it contains s0, and

• it contains any state reachable from s0 through a finite number of transitions.

Therefore, an invariant is a predicate defining a set of states that contains all the states reachable
from s0. If an invariant holds, that is, if it is truly an invariant satisfying the two properties
above, then we know that something “bad” can never happen, namely, the negation ¬I of the
invariant is impossible. In other words, we view ¬I as a bad property that should never happen,
and I as a good property we want to ensure.

Given a rewrite theory R = (Σ, E, φ,R) specified in Maude as a system module, we can
define an invariant I, yielding a decidable set of states, by:

1. choosing a given kind k in Σ as the kind of states and an initial state init in it; and

2. specifying an equationally-defined Boolean condition I, so that the invariant holds of a
state if and only if such a state satisfies the condition I.

293

294 CHAPTER 11. MODEL CHECKING INVARIANTS THROUGH SEARCH

The transition system implicit in this setting is one in which a one-step transition between
two states, that is, between two elements [t], [t′] ∈ TΣ/E,k, exists if and only if there is a
representative t0 ∈ [t] and a one-step rewrite with the rules R, t0 −→1 t′0, such that t′0 ∈ [t′].
We introduce the notation

R, init |= 2I

to state that the transition system associated with R with state kind k and initial state init

satisfies the invariant I.

11.2 Model checking of invariants

The key question now is: how can we automatically verify that an invariant I holds? The answer
is very simple. Assuming that R = (Σ, E, φ,R) satisfies reasonable executability conditions,
namely, that E and R are finite sets, (Σ, E) is ground Church-Rosser and terminating,1 and
the rules R are ground coherent with E, and assuming, further, that all the conditions for rules
in R are purely equational, then I holds if and only if the search command

search init =>* x:k such that I(x:k) =/= true .

has no solutions. Indeed, having no solutions exactly means that on init, and on all states
reachable from it, the predicate I evaluates to true, that is, that I is an invariant. Assuming
that I has been fully defined in all cases (which is always easy with the owise feature, described
in Section 4.5.4), so that it always evaluates to either true or false, we could instead give the
command

search init =>* x:k such that not I(x:k) .

Consider, for example, a simple clock that marks the hours of the day. Such a clock can be
specified with the system module

mod SIMPLE-CLOCK is

protecting INT .

sort Clock .

op clock : Int -> Clock [ctor] .

var T : Int .

rl clock(T) => clock((T + 1) rem 24) .

endm

A natural initial state is the state clock(0). Note that, in principle, the clock could be in an
infinite number of states, such as clock(7633157) or clock(-33457129). The point, however,
is that if our initial state is clock(0), then only states clock(T) with times T such that
0 <= T < 24 can be reached. This suggests making the predicate 0 <= T < 24 an invariant of
our clock system.

Using simple linear arithmetic reasoning, we can express the negation of such an invariant
as the predicate (T < 0) or (T >= 24); thus, we can automatically verify that our simple
clock satisfies the invariant by giving the command:

Maude> search in SIMPLE-CLOCK : clock(0) =>* clock(T)

such that T < 0 or T >= 24 .

No solution.

states: 24 rewrites: 216 in 0ms cpu (2ms real) (~ rews/sec)

1As usual, the ground Church-Rosser and termination assumptions should be understood modulo any axioms
A ⊆ E which in Maude are declared as equational attributes of operators.

11.2. MODEL CHECKING OF INVARIANTS 295

If, as it is the case in this clock example, the number of states reachable from the initial state
is finite, then search commands of this kind provide a decision procedure for the satisfaction of
invariants. That is, in finite time Maude will either find no solutions to a search for a state
violating the invariant, or will find a state violating the invariant together with a sequence of
rewrites from the initial state to it, that is, a counterexample.

But what if the number of states reachable from the initial state is infinite? In such a
case, if the invariant I is violated, the search command will terminate in finite time yielding
a counterexample. Termination is guaranteed by the breadth-first nature of the search. The
point is that such a counterexample is a reachable state; therefore, there is a finite sequence of
rewrites from the initial state to such a violating state. Since there is only a finite number of
rules R, and therefore a finite number of ways that each state can be rewritten, even though the
number of reachable states is infinite, the number of states reachable from the initial state by
a sequence of rewrites of length less than a given bound is always finite. This bounded subset
is always explored in finite time by the search command. This means that, for systems where
the set of reachable states is infinite, search becomes a semi-decision procedure for detecting
the violation of an invariant. That is, if the invariant is violated, we are guaranteed to get a
counterexample; but, if it is not violated, we will search forever, never finding it.

We can illustrate the semi-decision procedure nature of search for the verification of invariant
failures with a simple infinite-state example of processes and resources. This example has some
similarities with the classical dining philosophers problem, but it is on the one hand simpler
(processes and resources have no identities or topology), and on the other hand more complex,
since the number of processes and resources can grow dynamically in an unbounded manner.

mod PROCS-RESOURCES is

sorts State Resources Process .

subsorts Process Resources < State .

ops res null : -> Resources [ctor] .

op p : Resources -> Process [ctor] .

op __ : Resources Resources -> Resources

[ctor assoc comm id: null] .

op __ : State State -> State [ctor ditto] .

rl [acq1] : p(null) res => p(res) .

rl [acq2] : p(res) res => p(res res) .

rl [rel] : p(res res) => p(null) res res .

rl [dupl] : p(null) res => p(null) res p(null) res .

endm

The state is a soup (multiset) of processes and resources. Each process needs to acquire two
resources. Originally, each process p contains the null state; but if a resource res is available,
it can acquire it (rule acq1). If a second resource becomes available, it can also acquire it (rule
acq2). After acquiring both resources and using them, the process can release them (rule rel).
Furthermore, the number of processes and resources can grow in an unbounded manner by the
duplication of each process-resource pair (rule dupl).

One invariant we might like to verify about this system is deadlock freedom. There are two
ways to model check this property: one completely straightforward, and another requiring some
extra work. The straightforward manner is to give the search command

Maude> search in PROCS-RESOURCES : res p(null) =>! X:State .

Solution 1 (state 1)

states: 3 rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res)

296 CHAPTER 11. MODEL CHECKING INVARIANTS THROUGH SEARCH

Solution 2 (state 5)

states: 9 rewrites: 9 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res)

Solution 3 (state 13)

states: 19 rewrites: 26 in 0ms cpu (3ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res)

Solution 4 (state 25)

states: 34 rewrites: 56 in 0ms cpu (4ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res)

Solution 5 (state 43)

states: 55 rewrites: 104 in 0ms cpu (23ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

......

Solution 20 (state 1649)

states: 1770 rewrites: 5640 in 20ms cpu (67ms real)

(282000 rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)

p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)

p(res) p(res) p(res) p(res)

......

Maude will indeed continue printing all the solutions it finds. But since there is an infinite
number of deadlock states, it may be preferable to specify in advance a bound on the number of
solutions, giving, for example, a command like the following, that looks for at most 5 solutions.

Maude> search [5] in PROCS-RESOURCES : res p(null) =>! X:State .

The nice thing about model checking deadlock freedom this way is that there is no need
to explicitly specify the invariant as a Boolean predicate. This is because the negation of the
invariant is by definition the set of deadlock states, which is what the search command with
the =>! qualification precisely looks for.

If one wishes, one can, with a little more work, perform an equivalent model checking of
the same property by using an explicit enabledness predicate. Of course, this cannot be done
in the original module, because such a predicate has not been defined, but this is easy enough
to do:

mod PROCS-RESOURCES-ENABLED is

protecting PROCS-RESOURCES .

protecting BOOL .

op enabled : State -> Bool .

eq enabled(p(null) res X:State) = true .

eq enabled(p(res) res X:State) = true .

eq enabled(p(res res) X:State) = true .

eq enabled(X:State) = false [owise] .

endm

One can then give the command

Maude> search [5] in PROCS-RESOURCES-ENABLED : res p(null)

=>* X:State such that enabled(X:State) =/= true .

11.3. BOUNDED MODEL CHECKING OF INVARIANTS 297

getting the following 5 solutions:

Solution 1 (state 1)

states: 2 rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res)

Solution 2 (state 5)

states: 6 rewrites: 15 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res) p(res)

Solution 3 (state 13)

states: 14 rewrites: 41 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res)

Solution 4 (state 25)

states: 26 rewrites: 87 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res)

Solution 5 (state 43)

states: 44 rewrites: 160 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

11.3 Bounded model checking of invariants

In cases where either the set of reachable states is infinite, or it is finite but too large to be
explored in reasonable time due to time and memory limitations, bounded model checking is an
appealing formal analysis method. The idea of bounded model checking is that we model check
a property, not for all reachable states, but only for those states reachable within a certain
depth bound, that is, reachable by a sequence of transitions of bounded length. Of course, our
analysis is not complete anymore, since we may fail to find a counterexample lying at greater
depth. However, bounded model checking can be quite effective in finding counterexamples and
it is a widely used procedure. Bounded model checking of invariants is supported in Maude by
means of the bounded search command.

Consider the following specification of a readers-writers system.

mod READERS-WRITERS is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number R of readers and the number
W of writers accessing a critical resource. Readers and writers can leave the resource at any

298 CHAPTER 11. MODEL CHECKING INVARIANTS THROUGH SEARCH

time, but writers can only gain access to it if nobody else is using it, and readers only if there
are no writers.

Taking < 0, 0 > as the initial state, this simple system satisfies two important invariants,
namely:

• mutual exclusion: readers and writers never access the resource simultaneously: only
readers or only writers can do so at any given time.

• one writer : at most one writer will be able to access the resource at any given time.

We could try model checking these two invariants in two different ways:

• we can represent the invariants implicitly by representing their negations through patterns;
or

• we can represent them explicitly as Boolean predicates.

To model check our two invariants using an implicit representation we could use the commands

Maude> search < 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

Maude> search < 0, 0 > =>* < N:Nat, s(s(M:Nat)) > .

since the negation of the first invariant corresponds to the simultaneous presence of both readers
and writers, which is exactly captured by the first pattern < s(N:Nat), s(M:Nat) >; whereas
the negation of the fact that zero or at most one writer should be present at any given time is
exactly captured by the second pattern < N:Nat, s(s(M:Nat)) >.

The problem with the above two search comands is that, since the number or readers allowed
is unbounded, the set of reachable states is infinite and the commands never terminate. We
can instead perform bounded model checking of these two invariants by giving a depth bound,
for example 105, with the commands:

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 100002 rewrites: 200001 in 312460ms cpu (636669ms real)

(640 rews/sec)

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 100002 rewrites: 200001 in 70600ms cpu (623434ms real)

(2832 rews/sec)

As the reader can observe, these computations take quite a long time. Notice that the terms
appearing during the search grow very quickly. A very simple way of improving performance
in this case is using the iter attribute for the s operator.

op s : Nat -> Nat [ctor iter] .

Then, we obtain a much better performance:

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

11.4. VERIFYING INFINITE-STATE SYSTEMS THROUGH ABSTRACTIONS 299

No solution.

states: 100002 rewrites: 200001 in 610ms cpu (1298ms real)

(327870 rews/sec)

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 100002 rewrites: 200001 in 400ms cpu (1191ms real)

(500002 rews/sec)

In the following section we will use some formal tools for checking properties about the
READERS-WRITERS module. Since some of these tools cannot handle the iter attribute, we use
the module as shown above.

11.4 Verifying infinite-state systems through abstractions

The bounded model checking of our two invariants for the readers and writers example up
to depth 106 greatly increases our confidence that the invariants hold, but, as already men-
tioned, bounded model checking is an incomplete procedure that falls short of being a proof: a
counterexample at greater depth could exist.

Can we actually fully verify such invariants in an automatic way? One possible method is
to verify the invariants through search not on the original infinite-state system, but on a finite-
state abstraction of it, that is, on an appropriate quotient of the original system whose set of
reachable states is finite. The paper [113] describes a simple method for, given a rewrite theory
R = (Σ, E, φ,R), defining an abstraction A of it: just add equations. That is, we can define
our abstract theory as a rewrite theory A = (Σ, E ∪ G,φ,R), with G a set of extra equations
powerful enough to collapse the infinite set of reachable states into a finite set. This method
can be used (with an additional deadlock-freedom requirement) to verify not just invariants,
but in fact any LTL formula (see [113] and Section 13.4 of [29]).

Of course, the equations G we add cannot be arbitrary. First of all, they should respect all
the necessary executability assumptions, so that in A = (Σ, E ∪ G,φ,R) the equations E ∪ G
should be ground Church-Rosser and terminating,2 and the rules R should be ground coherent
with E ∪G. Furthermore, the equations G should be invariant-preserving with respect to the
invariants that we want to model check; that is, for any such invariant I and for any two ground
terms t, t′ denoting states such that t =E∪G t′, it should be the case that E ` I(t) = I(t′).

A first key observation is that, if both R and A protect the sort Bool, that is, the only
canonical forms of that sort are true and false, and true 6= false, then the equations G are
invariant-preserving. A second key observation is that we may be able to automatically check
that a module protects the sort Bool by:

1. checking that it has no equations with true or false in the lefthand side;

2. checking that it is ground confluent and sort-decreasing with the Church-Rosser Checker
(CRC) tool;

3. checking that it is terminating with the Maude Termination Tool (MTT); and

4. checking that it is sufficiently complete with the Sufficient Completeness Checker (SCC)
tool.

2Again, possibly modulo equational attributes A ⊆ E ∪G.

300 CHAPTER 11. MODEL CHECKING INVARIANTS THROUGH SEARCH

Indeed, since true and false are the only constructors of sort Bool, (4) ensures the “no junk”
part of protection, whereas (1)–(3) ensure the “no confusion,” true 6= false part.

For invariant verification, the key property that an abstraction meeting these requirements
satisfies is that, if I is one of the invariants preserved by G, then we have the implication

A, init |= 2I =⇒ R, init |= 2I

Therefore, if we can verify the invariant on A, we are sure that it also holds on R. However, the
fact that we find a counterexample in A does not necessarily mean that a counterexample exists
for R: it could be a spurious counterexample, caused by A being too coarse of an abstraction,
and therefore having no counterpart in R. In such cases, one possible approach is to refine our
abstraction by imposing fewer equations.

We can illustrate these ideas by defining an abstraction of our readers-writers system. In
order to check that the equations in our abstraction preserve the invariants, we need an explicit
representation of those invariants. Since at present the CRC and MTT tools do not handle
predefined modules like BOOL, we use instead a sort NewBool.

mod READERS-WRITERS-PREDS is

protecting READERS-WRITERS .

sort NewBool .

ops tt ff : -> NewBool [ctor] .

ops mutex one-writer : Config -> NewBool [frozen] .

eq mutex(< s(N:Nat), s(M:Nat) >) = ff .

eq mutex(< 0, N:Nat >) = tt .

eq mutex(< N:Nat, 0 >) = tt .

eq one-writer(< N:Nat, s(s(M:Nat)) >) = ff .

eq one-writer(< N:Nat, 0 >) = tt .

eq one-writer(< N:Nat, s(0) >) = tt .

endm

We can now define our abstraction, in which all the states having more than one reader and
no writers are identified with the state having exactly one reader and no writer.

mod READERS-WRITERS-ABS is

including READERS-WRITERS-PREDS .

including READERS-WRITERS .

eq < s(s(N:Nat)), 0 > = < s(0), 0 > .

endm

where the second including importation is needed because the READERS-WRITERS module
is not protected, but would be assumed protected by default (because it is protected in
READERS-WRITERS-PREDS) unless we explicitly declare it in including mode (see Section 6.1.3).

In order to check both the executability and the invariant-preservation properties of this
abstraction, since we have no equations with either tt or ff in their lefthand side, we now just
need to check:

1. that the equations in both READERS-WRITERS-PREDS and READERS-WRITERS-ABS are ground
confluent, sort-decreasing, and terminating;

2. that the equations in both READERS-WRITERS-PREDS and READERS-WRITERS-ABS are suf-
ficiently complete; and

3. that the rules in both READERS-WRITERS-PREDS and READERS-WRITERS-ABS are ground
coherent with respect to their equations.

11.4. VERIFYING INFINITE-STATE SYSTEMS THROUGH ABSTRACTIONS 301

Regarding termination, since the equations of READERS-WRITERS-ABS contain those of the
module READERS-WRITERS-PREDS, it is enough to check the termination of the equations in the
former. The MTT tool, using the AProVE termination tool, checks this automatically.

Once the READERS-WRITERS-ABS and READERS-WRITERS-PREDS modules are available in Full
Maude (see Section 21.1), we can check confluence of the equations by invoking the CRC as
follows:

Maude> (check Church-Rosser READERS-WRITERS-PREDS .)

Church-Rosser checking of READERS-WRITERS-PREDS

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

Maude> (check Church-Rosser READERS-WRITERS-ABS .)

Church-Rosser checking of READERS-WRITERS-ABS

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

which finishes task (1).
Regarding (2), the SCC tool gives us:

Maude> (scc READERS-WRITERS-PREDS .)

Checking sufficient completeness of READERS-WRITERS-PREDS ...

Success: READERS-WRITERS-PREDS is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

Maude> (scc READERS-WRITERS-ABS .)

Checking sufficient completeness of READERS-WRITERS-ABS ...

Success: READERS-WRITERS-ABS is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

This leaves us with task (3), where the Coherence Checker (ChC) tool responds as follows:

Maude> (check coherence READERS-WRITERS-PREDS .)

Coherence checking of READERS-WRITERS-PREDS

Coherence checking solution:

All critical pairs have been rewritten and all equations

are non-constructor.

The specification is coherent.

Maude> (check coherence READERS-WRITERS-ABS .)

Coherence checking of READERS-WRITERS-ABS

Coherence checking solution:

The following critical pairs cannot be rewritten:

cp < s(0), 0 > => < s(N*@:Nat), 0 > .

Of course, ground coherence means that all ground instances of this pair can be rewritten by a
one-step rewrite up to canonical form by the equations. We can reason by cases and decompose
this critical pair into two:

cp < s(0), 0 > => < s(0), 0 > .

cp < s(0), 0 > => < s(s(N:Nat)), 0 > .

302 CHAPTER 11. MODEL CHECKING INVARIANTS THROUGH SEARCH

Using the reduce command we can check that the canonical form of the term < s(s(N:Nat)), 0 >

is < s(0), 0 >. Therefore, all we need to do is to check that < s(0), 0 > rewrites to itself
(up to canonical form) in one step. We can do this check by giving the command:

Maude> search in READERS-WRITERS-ABS : < s(0), 0 > =>1 X:Config .

Solution 1 (state 0)

states: 1 rewrites: 2 in 0ms cpu (26ms real) (~ rews/sec)

X:Config --> < s(0), 0 >

Solution 2 (state 1)

states: 2 rewrites: 3 in 0ms cpu (124ms real) (~ rews/sec)

X:Config --> < 0, 0 >

No more solutions.

We have therefore completed all the checks (1)–(3) and can now automatically verify the
two invariants on the abstract system, and therefore conclude that they hold in our original
infinite-state readers-writers system, by executing the search commands:

Maude> search in READERS-WRITERS-ABS :

< 0, 0 > =>* C:Config such that mutex(C:Config) = ff .

No solution.

states: 3 rewrites: 9 in 0ms cpu (0ms real) (~ rews/sec)

Maude> search in READERS-WRITERS-ABS :

< 0, 0 > =>* C:Config such that one-writer(C:Config) = ff .

No solution.

states: 3 rewrites: 9 in 0ms cpu (0ms real) (~ rews/sec)

Chapter 12

LTL Model Checking

As pointed out in Section 1.4, given a Maude system module, we can distinguish two levels of
specification:

• a system specification level, provided by the rewrite theory specified by that system mod-
ule which defines the behavior of the system, and

• a property specification level, given by some property (or properties) ϕ that we want to
state and prove about our module.

This chapter discusses how a specific property specification logic, linear temporal logic
(LTL), and a decision procedure for it, model checking, can be used to prove properties when
the set of states reachable from an initial state in a system module is finite. It also explains how
this is supported in Maude by its MODEL-CHECKER module, and other related modules, including
the SAT-SOLVER module that can be used to check both satisfiability of an LTL formula and
LTL tautologies. These modules are found in the file model-checker.maude.

Temporal logic allows specification of properties such as safety properties (ensuring that
something bad never happens) and liveness properties (ensuring that something good eventually
happens). These properties are related to the infinite behavior of a system. There are different
temporal logics [24]; we focus on linear temporal logic [96, 24], because of its intuitive appeal,
widespread use, and well-developed proof methods and decision procedures.

12.1 LTL formulas and the LTL module

Given a set AP of atomic propositions, we define the formulas of the propositional linear tem-
poral logic LTL(AP) inductively as follows:

• True: > ∈ LTL(AP).

• Atomic propositions: If p ∈ AP , then p ∈ LTL(AP).

• Next operator: If ϕ ∈ LTL(AP), then ©ϕ ∈ LTL(AP).

• Until operator: If ϕ,ψ ∈ LTL(AP), then ϕ U ψ ∈ LTL(AP).

• Boolean connectives: If ϕ,ψ ∈ LTL(AP), then the formulas ¬ϕ, and ϕ ∨ ψ are in
LTL(AP).

303

304 CHAPTER 12. LTL MODEL CHECKING

Other LTL connectives can be defined in terms of the above minimal set of connectives as
follows:

• Other Boolean connectives:

– False: ⊥ = ¬>
– Conjunction: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))

– Implication: ϕ→ ψ = (¬ϕ) ∨ ψ.

• Other temporal operators:

– Eventually: 3ϕ = > U ϕ
– Henceforth: 2ϕ = ¬3¬ϕ
– Release: ϕ R ψ = ¬((¬ϕ) U (¬ψ))

– Unless: ϕW ψ = (ϕ U ψ) ∨ (2ϕ)

– Leads-to: ϕ; ψ = 2(ϕ→ (3ψ))

– Strong implication: ϕ⇒ ψ = 2(ϕ→ ψ)

– Strong equivalence: ϕ⇔ ψ = 2(ϕ↔ ψ).

The LTL syntax, in a typewriter approximation of the above mathematical syntax, is sup-
ported in Maude by the following LTL functional module (in the file model-checker.maude).

fmod LTL is

protecting BOOL .

sorts Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor format (g o)] .

op ~_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _/_ : Formula Formula -> Formula

[comm ctor gather (E e) prec 55 format (d r o d)] .

op _\/_ : Formula Formula -> Formula

[comm ctor gather (E e) prec 59 format (d r o d)] .

op O_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _U_ : Formula Formula -> Formula

[ctor prec 63 format (d r o d)] .

op _R_ : Formula Formula -> Formula

[ctor prec 63 format (d r o d)] .

*** defined LTL operators

op _->_ : Formula Formula -> Formula

[gather (e E) prec 65 format (d r o d)] .

op _<->_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

op <>_ : Formula -> Formula [prec 53 format (r o d)] .

op []_ : Formula -> Formula [prec 53 format (r d o d)] .

op _W_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

op _|->_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

op _=>_ : Formula Formula -> Formula

[gather (e E) prec 65 format (d r o d)] .

op _<=>_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

vars f g : Formula .

12.2. ASSOCIATING KRIPKE STRUCTURES TO REWRITE THEORIES 305

eq f -> g = ~ f \/ g .

eq f <-> g = (f -> g) /\ (g -> f) .

eq <> f = True U f .

eq [] f = False R f .

eq f W g = (f U g) \/ [] f .

eq f |-> g = [](f -> (<> g)) .

eq f => g = [] (f -> g) .

eq f <=> g = [] (f <-> g) .

*** negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~ f = f .

eq ~ (f \/ g) = ~ f /\ ~ g .

eq ~ (f /\ g) = ~ f \/ ~ g .

eq ~ O f = O ~ f .

eq ~ (f U g) = (~ f) R (~ g) .

eq ~ (f R g) = (~ f) U (~ g) .

endfm

Note that, for the moment, no set AP of atomic propositions has been specified in the LTL

module. Section 12.2 explains how such atomic propositions are defined for a given system
module M, and Section 12.3 explains how they are added to the LTL module as a subsort Prop

of Formula in the MODEL-CHECKER module.

Note that the nonconstructor connectives have been defined in terms of more basic con-
structor connectives in the first set of equations. But since there are good reasons to put an
LTL formula in negative normal form by pushing the negations next to the atomic propositions
(this is specified by the second set of equations) we need to consider also the duals of the basic
connectives >, ©, U , and ∨ (respectively, True, O_, _U_, and _\/_) as constructors. That is,
we need to also have as constructors the dual connectives: ⊥, R, and ∧ (respectively, False,
R, and _/_). Note that © is self-dual.

12.2 Associating Kripke structures to rewrite theories

Since the models of temporal logic are Kripke structures, we need to explain how we can
associate a Kripke structure to the rewrite theory specified by a Maude system module M.

Kripke structures are the natural models for propositional temporal logic. Essentially, a
Kripke structure is a (total) unlabeled transition system to which we have added a collection of
unary state predicates on its set of states.

A binary relation R ⊆ A × A on a set A is called total if and only if for each a ∈ A there
is at least one a′ ∈ A such that (a, a′) ∈ R. If R is not total, it can be made total by defining
R• = R ∪ {(a, a) ∈ A2 |6 ∃a′ ∈ A (a, a′) ∈ R}.

A Kripke structure is a triple A = (A,→A, L) such that A is a set, called the set of states,
→A is a total binary relation on A, called the transition relation, and L : A −→ P(AP) is
a function, called the labeling function, associating to each state a ∈ A the set L(a) of those
atomic propositions in AP that hold in the state a.

The semantics of LTL(AP) is defined by means of a satisfaction relation

A, a |= ϕ

306 CHAPTER 12. LTL MODEL CHECKING

between a Kripke structure A having AP as its atomic propositions, a state a ∈ A, and an LTL
formula ϕ ∈ LTL(AP). Specifically, A, a |= ϕ holds if and only if for each path π ∈ Path(A)a
the path satisfaction relation

A, π |= ϕ

holds, where we define the set Path(A)a of computation paths starting at state a as the set
of functions of the form π : N −→ A such that π(0) = a and, for each n ∈ N, we have
π(n)→A π(n+ 1).

We can define the path satisfaction relation (for any path, beginning at any state) inductively
as follows:

• We always have A, π |=LTL >.

• For p ∈ AP ,
A, π |=LTL p ⇔ p ∈ L(π(0)).

• For ©ϕ ∈ LTL(A),
A, π |=LTL ©ϕ ⇔ A, s;π |=LTL ϕ,

where s : N −→ N is the successor function, and where (s;π)(n) = π(s(n)) = π(n+ 1).

• For ϕ U ψ ∈ LTL(A),
A, π |=LTL ϕ U ψ ⇔

(∃n ∈ N)

((A, sn;π |=LTL ψ) ∧ ((∀m ∈ N) m < n ⇒ A, sm;π |=LTL ϕ)).

• For ¬ϕ ∈ LTL(AP),
A, π |=LTL ¬ϕ ⇔ A, π 6|=LTL ϕ.

• For ϕ ∨ ψ ∈ LTL(AP),

A, π |=LTL ϕ ∨ ψ ⇔ A, π |=LTL ϕ or A, π |=LTL ψ.

How can we associate a Kripke structure to the rewrite theory R = (Σ, E, φ,R) specified
by a Maude system module M? We just need to make explicit two things:

• the intended kind k of states in the signature Σ, and

• the relevant state predicates, that is, the relevant set AP of atomic propositions.

In general, the state predicates need not be part of the system specification and therefore
they need not be specified in our system module M. They are typically part of the property spec-
ification. This is because the state predicates need not be related to the operational semantics
of M: they are just certain predicates about the states of the system specified by M that are
needed to specify some properties.

Therefore, after choosing a given kind, say [Foo], in M as our kind for states we can specify
the relevant state predicates in a module M-PREDS protecting M according to the following
general pattern:

mod M-PREDS is

protecting M .

including SATISFACTION .

subsort Foo < State .

...

endm

12.2. ASSOCIATING KRIPKE STRUCTURES TO REWRITE THEORIES 307

where the dots ‘...’ indicate the part in which the syntax and semantics of the relevant state
predicates are specified, as further explained in what follows.

The module SATISFACTION (contained in the model-checker.maude file) is very simple,
and has the following specification:

fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

where the sorts State and Prop are unspecified. However, by importing SATISFACTION into
M-PREDS and giving the subsort declaration

subsort Foo < State .

all terms of sort Foo in M are also made terms of sort State. Note that we then have the kind
identity [Foo] = [State].

The operator

op _|=_ : State Prop -> Bool [frozen] .

is crucial to define the semantics of the relevant state predicates in M-PREDS. Each such state
predicate is declared as an operator of sort Prop. In standard LTL propositional logic, the set
AP of atomic propositions is assumed to be a set of constants. In Maude, however, we can
define parametric state predicates, that is, operators of sort Prop which need not be constants,
but may have one or more sorts as parameter arguments. We then define the semantics of such
state predicates (when the predicate holds) by appropriate equations.

We can illustrate all this by means of a simple mutual exclusion example. Suppose that our
original system module M is the following module MUTEX, in which two processes, one named a

and another named b, can be either waiting or in their critical section, and take turns accessing
their critical section by passing each other a different token (either $ or *).

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .

ops wait critical : -> Mode [ctor] .

op [_,_] : Name Mode -> Proc [ctor] .

ops * $: -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .

rl [b-enter] : * [b, wait] => [b, critical] .

rl [a-exit] : [a, critical] => [a, wait] * .

rl [b-exit] : [b, critical] => [b, wait] $.

endm

Our obvious kind for states is the kind [Conf] of configurations. In order to state the
desired safety and liveness properties we need state predicates telling us whether a process is
waiting or is in its critical section. We can make these predicates parametric on the name of
the process and define their semantics as follows:

mod MUTEX-PREDS is

protecting MUTEX .

including SATISFACTION .

308 CHAPTER 12. LTL MODEL CHECKING

subsort Conf < State .

op crit : Name -> Prop .

op wait : Name -> Prop .

var N : Name .

var C : Conf .

var P : Prop .

eq [N, critical] C |= crit(N) = true .

eq [N, wait] C |= wait(N) = true .

eq C |= P = false [owise] .

endm

Note the equations, defining when each of the two parametric state predicates holds in a given
state.

The above example illustrates a general method by which desired state predicates for a
module M are defined in a protecting extension, say M-PREDS, of M which imports SATISFACTION.
One specifies the desired states by choosing a sort in M and declaring it as a subsort of State.
One then defines the syntax of the desired state predicates as operators of sort Prop, and
defines their semantics by means of a set of equations that specify for what states a given
state predicate evaluates to true. We assume that those equations, when added to those of
M, are (ground) Church-Rosser and terminating, and, furthermore, that M’s equational part is
protected when the new operators and equations defining the state predicates are added.

Since we should protect BOOL, it is important to make sure that satisfaction of state predi-
cates is fully defined. This can be checked with Maude’s Sufficient Completeness Checker (SCC)
tool. This means that we should give equations for when the predicates are true and when
they are false. In practice, however, this can often be reduced to specifying when a predicate
is true by means of (possibly conditional) equations of the general form,

t |= p(v1, . . . , vn) = true if C

because we can use the owise feature (described in Section 4.5.4) to cover all the remaining
cases, when it is false, with an equation

x : State |= p(y1, . . . , yn) = false [owise].

In some cases, however—for example, because we want to perform reasoning using formal tools
which do not accept owise declarations—we may fully define the true and false cases of a
predicate not by using the owise attribute, but by explicit (possibly conditional) equations of
the more general form,

t |= p(v1, . . . , vn) = bexp if C,

where bexp is an arbitrary Boolean expression.
We are now ready to associate with a system module M specifying a rewrite theory R =

(Σ, E, φ,R) (with a selected kind k of states and with state predicates Π defined by means of
equations D in a protecting extension M-PREDS) a Kripke structure whose atomic predicates
are specified by the set

APΠ = {θ(p) | p ∈ Π, θ ground substitution},

where by convention we use the simplified notation θ(p) to denote the ground term θ(p(x1, . . . , xn)).
This defines a labeling function LΠ on the set of states TΣ/E,k assigning to each [t] ∈ TΣ/E,k

the set of atomic propositions

LΠ([t]) = {θ(p) ∈ APΠ | (E ∪D) ` (∀ ∅) t |= θ(p) = true}.

12.3. LTL MODEL CHECKING 309

The Kripke structure we are interested in is then

K(R, k)Π = (TΣ/E,k, (→1
R)•, LΠ),

where (→1
R)• denotes the total relation extending the one-step R-rewriting relation→1

R among
states of kind k, that is, [t] →1

R [t′] holds if and only if there are u ∈ [t] and u′ ∈ [t′] such
that u′ is the result of applying one of the rules in R to u at some position. Under the usual
assumptions that E is (ground) Church-Rosser and terminating (possibly modulo some axioms
A contained in E) and R is (ground) coherent relative to E (again, possibly modulo A), u can
always be chosen to be the canonical form of t under the equations E.

12.3 LTL model checking

Suppose that, given a system module M specifying a rewrite theory R = (Σ, E, φ,R), we have:

• chosen a kind k in M as our kind of states;

• defined some state predicates Π and their semantics in a module, say M-PREDS, protecting
M by the method already explained in Section 12.2.

Then, as explained in Section 12.2, this defines a Kripke structure K(R, k)Π on the set of atomic
propositions APΠ. Given an initial state [t] ∈ TΣ/E,k and an LTL formula ϕ ∈ LTL(APΠ) we
would like to have a procedure to decide the satisfaction relation

K(R, k)Π, [t] |= ϕ.

In general this relation is undecidable. It becomes decidable if two conditions hold:

1. the set of states in TΣ/E,k that are reachable from [t] by rewriting is finite,1 and

2. the rewrite theory R = (Σ, E, φ,R) specified by M plus the equations D defining the
predicates Π are such that:

• both E and E ∪ D are (ground) Church-Rosser and terminating, perhaps modulo
some axioms A, with (Σ, E) ⊆ (Σ ∪Π, E ∪D) a protecting extension, and

• R is (ground) coherent relative to E (again, perhaps modulo some axioms A).

Under these assumptions, both the state predicates Π and the transition relation →1
R are

computable and, given the finite reachability assumption, we can then settle the above satisfac-
tion problem using a model-checking procedure.

Specifically, Maude uses an on-the-fly LTL model-checking procedure of the style described
in [24]. The basis of this procedure is the following. Each LTL formula ϕ has an associated
Büchi automaton Bϕ whose acceptance ω-language is exactly that of the behaviors satisfying
ϕ. We can then reduce the satisfaction problem

K(R, k)Π, [t] |= ϕ

to the emptiness problem of the language accepted by the synchronous product of B¬ϕ and
(the Büchi automaton associated with) (K(R, k)Π, [t]). The formula ϕ is satisfied if and only
if such a language is empty. The model-checking procedure checks emptiness by looking for
a counterexample, that is, an infinite computation belonging to the language recognized by

1Note that this can happen even when TΣ/E,k is an infinite set: there is no requirement that TΣ/E,k is finite.

310 CHAPTER 12. LTL MODEL CHECKING

the synchronous product. For a detailed explanation of this general method of on-the-fly LTL
model checking, see [24]; and for a discussion of the specific techniques used in the Maude LTL
model-checker implementation, see [62].

This makes clear our interest in obtaining the negative normal form of a formula ¬ϕ, since we
need it to build the Büchi automatonB¬ϕ. For efficiency purposes we need to makeB¬ϕ as small
as possible. The following module LTL-SIMPLIFIER (also in the model-checker.maude file)
tries to further simplify the negative normal form of the formula ¬ϕ in the hope of generating
a smaller Büchi automaton B¬ϕ. This module is optional (the user may choose to include it or
not when doing model checking) but tends to help building a smaller B¬ϕ.

fmod LTL-SIMPLIFIER is

including LTL .

*** The simplifier is based on:

*** Kousha Etessami and Gerard J. Holzman,

*** "Optimizing Buchi Automata", CONCUR 2000, LNCS 1877.

*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula PE-Formula PU-Formula .

subsort TrueFormula FalseFormula < PureFormula <

PE-Formula PU-Formula < Formula .

op True : -> TrueFormula [ctor ditto] .

op False : -> FalseFormula [ctor ditto] .

op _/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _\/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _\/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _\/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op O_ : PE-Formula -> PE-Formula [ctor ditto] .

op O_ : PU-Formula -> PU-Formula [ctor ditto] .

op O_ : PureFormula -> PureFormula [ctor ditto] .

op _U_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _U_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _U_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _U_ : TrueFormula Formula -> PE-Formula [ctor ditto] .

op _U_ : TrueFormula PU-Formula -> PureFormula [ctor ditto] .

op _R_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _R_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _R_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _R_ : FalseFormula Formula -> PU-Formula [ctor ditto] .

op _R_ : FalseFormula PE-Formula -> PureFormula [ctor ditto] .

vars p q r s : Formula .

var pe : PE-Formula .

var pu : PU-Formula .

var pr : PureFormula .

*** Rules 1, 2 and 3; each with its dual.

eq (p U r) /\ (q U r) = (p /\ q) U r .

eq (p R r) \/ (q R r) = (p \/ q) R r .

eq (p U q) \/ (p U r) = p U (q \/ r) .

eq (p R q) /\ (p R r) = p R (q /\ r) .

12.3. LTL MODEL CHECKING 311

eq True U (p U q) = True U q .

eq False R (p R q) = False R q .

*** Rules 4 and 5 do most of the work.

eq p U pe = pe .

eq p R pu = pu .

*** An extra rule in the same style.

eq O pr = pr .

*** We also use the rules from:

*** Fabio Somenzi and Roderick Bloem,

*** "Efficient Buchi Automata from LTL Formulae",

*** p247-263, CAV 2000, LNCS 1633.

*** that are not subsumed by the previous system.

*** Four pairs of duals.

eq O p /\ O q = O (p /\ q) .

eq O p \/ O q = O (p \/ q) .

eq O p U O q = O (p U q) .

eq O p R O q = O (p R q) .

eq True U O p = O (True U p) .

eq False R O p = O (False R p) .

eq (False R (True U p)) \/ (False R (True U q))

= False R (True U (p \/ q)) .

eq (True U (False R p)) /\ (True U (False R q))

= True U (False R (p /\ q)) .

*** <= relation on formula

op _<=_ : Formula Formula -> Bool [prec 75] .

eq p <= p = true .

eq False <= p = true .

eq p <= True = true .

ceq p <= (q /\ r) = true if (p <= q) /\ (p <= r) .

ceq p <= (q \/ r) = true if p <= q .

ceq (p /\ q) <= r = true if p <= r .

ceq (p \/ q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q U r) = true if p <= r .

ceq (p R q) <= r = true if q <= r .

ceq (p U q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q R r) = true if (p <= q) /\ (p <= r) .

ceq (p U q) <= (r U s) = true if (p <= r) /\ (q <= s) .

ceq (p R q) <= (r R s) = true if (p <= r) /\ (q <= s) .

*** conditional rules depending on <= relation

ceq p /\ q = p if p <= q .

ceq p \/ q = q if p <= q .

ceq p /\ q = False if p <= ~ q .

ceq p \/ q = True if ~ p <= q .

ceq p U q = q if p <= q .

ceq p R q = q if q <= p .

312 CHAPTER 12. LTL MODEL CHECKING

ceq p U q = True U q if p =/= True /\ ~ q <= p .

ceq p R q = False R q if p =/= False /\ q <= ~ p .

ceq p U (q U r) = q U r if p <= q .

ceq p R (q R r) = q R r if q <= p .

endfm

Suppose that all the requirements listed above to perform model checking are satisfied. How
do we then model check a given LTL formula in Maude for a given initial state [t] in a module
M? We define a new module, say M-CHECK, according to the following pattern:

mod M-CHECK is

protecting M-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER . *** optional

op init : -> k . *** optional

eq init = t . *** optional

endm

The declaration of a constant init of the kind of states is not necessary: it is a matter of
convenience, since the initial state t may be a large term.

The module MODEL-CHECKER (in the file model-checker.maude) is as follows:

fmod MODEL-CHECKER is

protecting QID .

including SATISFACTION .

including LTL .

subsort Prop < Formula .

*** transitions and results

sorts RuleName Transition TransitionList ModelCheckResult .

subsort Qid < RuleName .

subsort Transition < TransitionList .

subsort Bool < ModelCheckResult .

ops unlabeled deadlock : -> RuleName .

op {_,_} : State RuleName -> Transition [ctor] .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList

[ctor assoc id: nil] .

op counterexample :

TransitionList TransitionList -> ModelCheckResult [ctor] .

op modelCheck : State Formula ~> ModelCheckResult

[special (...)] .

endfm

Its key operator is modelCheck (whose special attribute has been omitted here), which
takes a state and an LTL formula and returns either the Boolean true if the formula is sat-
isfied, or a counterexample when it is not satisfied. Note that the sort Prop coming from the
SATISFACTION module is declared as a subsort of Formula in LTL. In each concrete use of
MODEL-CHECKER, such as that in M-CHECK above, the atomic propositions in Prop will have been
specified in a module such as M-PREDS.

Let us illustrate the use of this operator with our MUTEX example. Following the pattern
described above, we can define the module

mod MUTEX-CHECK is

protecting MUTEX-PREDS .

12.3. LTL MODEL CHECKING 313

MUTEX-CHECK

MUTEX-PREDSMODEL-CHECKERLTL-SIMPLIFIER

MUTEXSATISFACTIONLTL QID

BOOL

Figure 12.1: Importation graph of model-checking modules

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 initial2 : -> Conf .

eq initial1 = $ [a, wait] [b, wait] .

eq initial2 = * [a, wait] [b, wait] .

endm

The relationships between all the modules involved at this point is illustrated in Figure 12.1,
where a single arrow represents an including importation and a triple arrow represents a
protecting importation.

We are then ready to model check different LTL properties of MUTEX. The first obvious
property to check is mutual exclusion:

Maude> red modelCheck(initial1, [] ~(crit(a) /\ crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial1, []~ (crit(a) /\ crit(b))) .

result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) /\ crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial2, []~ (crit(a) /\ crit(b))) .

result Bool: true

We can also model check the strong liveness property that if a process waits infinitely often,
then it is in its critical section infinitely often:

Maude> red modelCheck(initial1, ([]<> wait(a)) -> ([]<> crit(a))) .

reduce in MUTEX-CHECK :

modelCheck(initial1, []<> wait(a) -> []<> crit(a)) .

result Bool: true

Maude> red modelCheck(initial1, ([]<> wait(b)) -> ([]<> crit(b))) .

reduce in MUTEX-CHECK :

314 CHAPTER 12. LTL MODEL CHECKING

modelCheck(initial1, []<> wait(b) -> []<> crit(b)) .

result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(a)) -> ([]<> crit(a))) .

reduce in MUTEX-CHECK :

modelCheck(initial2, []<> wait(a) -> []<> crit(a)) .

result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(b)) -> ([]<> crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial2, []<> wait(b) -> []<> crit(b)) .

result Bool: true

Of course, not all properties are true. Therefore, instead of a success we can get a coun-
terexample showing why a property fails. Suppose that we want to check whether, beginning
in the state initial1, process b will always be waiting. We then get the counterexample:

Maude> red modelCheck(initial1, [] wait(b)) .

reduce in MUTEX-CHECK : modelCheck(initial1, []wait(b)) .

result ModelCheckResult:

counterexample({$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}

{* [a, wait] [b, wait], ’b-enter},

{[a, wait] [b, critical], ’b-exit}

{$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}

{* [a, wait] [b, wait], ’b-enter})

The main constructors used in the syntax of a counterexample term are:

op {_,_} : State RuleName -> Transition .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList

[ctor assoc id: nil] .

op counterexample :

TransitionList TransitionList -> ModelCheckResult [ctor] .

Therefore, a counterexample is a pair consisting of two lists of transitions, where the first
corresponds to a finite path beginning in the initial state, and the second describes a loop. This
is because, if an LTL formula ϕ is not satisfied by a finite Kripke structure, it is always possible
to find a counterexample for ϕ having the form of a path of transitions followed by a cycle [24].
Note that each transition is represented as a pair, consisting of a state and the label of the rule
applied to reach the next state.

Let us finish this section with an example of how not to use the model checker. Consider
the following specification:

mod MODEL-CHECK-BAD-EX is

including MODEL-CHECKER .

extending LTL .

sort Foo .

op a : -> Foo .

op f : Foo -> Foo .

rl a => f(a) .

subsort Foo < State .

op p : -> Prop .

12.4. THE LTL SATISFIABILITY AND TAUTOLOGY CHECKER 315

endm

This module describes an infinite transition system of the form

a→ f(a)→ f(f(a))→ f(f(f(a)))→ · · · ,

where the property p is not satisfied anywhere. Therefore the state a does not satisfy, e.g., the
property []p. However, if we try to invoke Maude with the command

Maude> red in MODEL-CHECK-BAD-EX : modelCheck(a, []p) .

we run into a nonterminating computation.
Making explicit that p does not hold in a by adding the equation

eq (a |= p) = false .

does not help. We run into the same problem even if the formula does not contain a temporal
operator: modelCheck(a, p) does not terminate either. The reason is that the set of states
reachable from a is not finite, and hence one of the main requirements for the model-checking
algorithm is not satisfied.

12.4 The LTL satisfiability and tautology checker

A formula ϕ ∈ LTL(AP) is satisfiable if there is a Kripke structure A = (A,→A, L), with
L : A −→ P(AP), and a computation path π such that A, π |= ϕ. Satisfiability of a formula ϕ ∈
LTL(AP) is a decidable property. In Maude, the satisfiability decision procedure is supported by
the following predefined functional module SAT-SOLVER (also in the file model-checker.maude).

fmod SAT-SOLVER is

protecting LTL .

*** formula lists and results

sorts FormulaList SatSolveResult TautCheckResult .

subsort Formula < FormulaList .

subsort Bool < SatSolveResult TautCheckResult .

op nil : -> FormulaList [ctor] .

op _;_ : FormulaList FormulaList -> FormulaList

[ctor assoc id: nil] .

op model : FormulaList FormulaList -> SatSolveResult [ctor] .

op satSolve : Formula ~> SatSolveResult [special (...)] .

op counterexample :

FormulaList FormulaList -> TautCheckResult [ctor] .

op tautCheck : Formula ~> TautCheckResult .

op $invert : SatSolveResult -> TautCheckResult .

var F : Formula .

vars L C : FormulaList .

eq tautCheck(F) = $invert(satSolve(~ F)) .

eq $invert(false) = true .

eq $invert(model(L, C)) = counterexample(L, C) .

endfm

316 CHAPTER 12. LTL MODEL CHECKING

a b ¬c c

Figure 12.2: Graphical representation of a Kripke structure

One can define the desired atomic predicates in a module extending SAT-SOLVER, such as,
for example,

fmod SAT-SOLVER-TEST is

extending SAT-SOLVER .

extending LTL .

ops a b c d e p q r : -> Formula .

endfm

The user can then decide the satisfiability of an LTL formula involving those atomic propo-
sitions by applying the operator satSolve (whose special attribute has also been omitted in
the module above) to the given formula and evaluating the expression. The resulting solution
of sort SatSolveResult is then either false, if no model exists, or a finite model satisfying
the formula. Such a model is described by a comma-separated pair of finite paths of states: an
initial path leading to a cycle. Each state is described by a conjunction of atomic propositions
or negated atomic propositions, with the propositions not mentioned in the conjunction being
“don’t care” ones. For example, we can evaluate

Maude> red satSolve(a /\ (O b) /\ (O O ((~ c) /\ [](c \/ (O c))))) .

reduce in SAT-SOLVER-TEST :

satSolve(O O (~ c /\ [](c \/ O c)) /\ (a /\ O b)) .

result SatSolveResult: model(a ; b, (~ c) ; c)

which is satisfied by a four-state model with a holding in the first state, b holding in the second,
c not holding in the third but holding in the fourth, and the fourth state going back to the
third, as shown in Figure 12.2.

We call ϕ ∈ LTL(AP) a tautology if and only if A, a |=LTL ϕ holds for every Kripke structure
A = (A,→A, L) with L : A −→ P(AP), and every state a ∈ A. It then follows easily that ϕ
is a tautology if and only if ¬ϕ is unsatisfiable. Therefore, the module SAT-SOLVER can also
be used as a tautology checker. This is accomplished by using the tautCheck, $invert, and
counterexample operators and their corresponding equations in SAT-SOLVER. The tautCheck

function returns either true if the formula is a tautology, or a finite model that does not satisfy
the formula. For example, we can evaluate:

Maude> red tautCheck((a => (O a)) <-> (a => ([] a))) .

reduce in SAT-SOLVER-TEST : tautCheck((a => O a) <-> a => []a) .

result Bool: true

Maude> red tautCheck((a -> (O a)) <-> (a -> ([] a))) .

reduce in SAT-SOLVER-TEST : tautCheck((a -> O a) <-> a -> []a) .

result TautCheckResult: counterexample(a ; a ; (~ a), True)

The tautology checker gives us also a decision procedure for semantic LTL equality, which
is further discussed in [62].

12.5. OTHER MODEL-CHECKING EXAMPLES 317

12.5 Other model-checking examples

In [29, Section 16.6] some properties of a Mobile Maude application are model checked. This
example is interesting because two levels of reflection (see Chapter 17) are involved: the object
level, at which Mobile Maude system code executes, and the metalevel, at which application
code is executed.

The model checker can also be executed in Full Maude. This is illustrated with an example
in Section 22.7. This example, though quite simple, is interesting in several ways. The use
of parameterization is exploited at both the system and the property level. At the system
level, it allows a succinct specification of a parametric system. At the property level, it makes
possible the specification of the relevant properties for each value of the parameter, also in a
very succinct way. This is quite useful, because the property formulas vary as the parameter
changes, and the parametric description encompasses an infinite number of instance formulas.

318 CHAPTER 12. LTL MODEL CHECKING

Chapter 13

Unification

13.1 Introduction

Unification is the solving of equations, either in free algebras of the form TΣ(X), or in relatively
free algebras modulo a set E of equations, that is, in algebras of the form TΣ/E(X). The first
case is sometimes called syntactic unification. The second case is sometimes called E-unification
or unification modulo E; if E is not explicitly mentioned, then it is called equational unification
or semantic unification.

In solving any equation, such as, for example,

f(x, h(y)) = f(g(y), z)

we look for instances of the variables appearing in the equation that make both sides equal.
Variables can of course be instantiated by substitutions. A substitution that makes both sides of
the equation equal, that is, a solution of the equation, is called a unifier. For example, if we are
solving the above equation in the free algebra TΣ(X) with X a countable set of variables and
with Σ having a single sort (unsorted unification), the substitution σ = {x 7→ g(y), z 7→ h(y)}
is a unifier, and indeed the so-called most general unifier, so that for any other unifier ρ there
exists a substitution µ such that ρ = σ;µ, where σ;µ denotes composition of substitutions in
diagrammatic order. That is, any other solution of the equation is an instance of the most
general solution provided by σ.

Of course, some equations may not have syntactic unifiers, but may have semantic unifiers
modulo some equations E. Consider, for example, the equation

f(h(y), x) = f(g(y), z)

which obviously does not have any solution in TΣ(X). It does, however, have a solution in
TΣ/C(X), where C is the commutativity axiom f(x, y) = f(y, x). Indeed, the exact same
substitution σ solving the first equation f(x, h(y)) = f(g(y), z) in a syntactic way, is now
a unifier solving the second equation f(h(y), x) = f(g(y), z) modulo C, because we have
f(h(y), g(y)) =C f(g(y), h(y)).

Unification is a fundamental deductive mechanism used in many automated deduction tasks
(see Section 13.5 for a discussion of some of them). It is also very important in combining
the paradigms of functional programming and logic programming (in the Prolog sense of “logic
programming”). Furthermore, in the context of Maude, unification can be very useful to reason
not only about equational theories (functional modules or theories), but also, as explained in
Section 13.5.2, about rewrite theories (system modules or theories).

319

320 CHAPTER 13. UNIFICATION

Therefore, it is very useful to have an efficient implementation of unification available in
Core Maude, which is what this chapter describes. Specifically, we explain how order-sorted
unification modulo frequently occurring equational axioms is supported in Maude. In Chap-
ter 14, we explain order-sorted unification modulo convergent equational theories, also available
in Maude.

13.2 Order-sorted unification

Although the most general equational theories supported by Maude are membership equational
theories, to obtain practical unification algorithms, allowing us to effectively compute the solu-
tions of an equational unification problem, it is important to restrict ourselves to order-sorted
equational theories. We can define the basic concepts of order-sorted E-unification in full
generality.

Given an order-sorted equational theory (Σ, E), an E-unification problem consists of a
nonempty set of unification equations of the form t =? t′, written in the notation

t1 =? t′1 ∧ . . . ∧ tn =? t′n

where n ≥ 1 and the “conjunction” operator ∧ is assumed to be associative and commutative.

Given such an E-unification problem, an E-unifier for it is an order-sorted substitution1

σ : Vars(t1, t
′
1, . . . , tn, t

′
n) −→ TΣ(X) (where we assume that the set X of variables contains a

countable number of variables for each sort) such that, for all i = 1, . . . , n,

E ` (∀Yi) σ(ti) = σ(t′i),

where Yi = Vars(σ(ti), σ(t′i)), that is, all the equations (∀Yi) σ(ti) = σ(t′i) can be deduced in
(membership) equational logic from the set of equations E.

A set U of unifiers is called a complete set of E-unifiers for a given E-unification problem
t1 =? t′1 ∧ . . . ∧ tn =? t′n iff for any other E-unifier ρ of the same E-unification problem there
exists a substitution µ and a unifier σ ∈ U such that ρ =E σ;µ, that is, for each variable x in
the domain of ρ we have E ` ρ(x) = µ(σ(x)). A complete set U of E-unifiers is called minimal
if any proper subset of U fails to be complete.

For an order-sorted equational theory (Σ, E), unification is said to be finitary if for any
E-unification problem there is always a finite complete set of unifiers U . Similarly, unification
for (Σ, E) is called unitary if it is finitary and for any E-unification problem a minimal complete
set of unifiers is always either empty or a singleton set. We say that (Σ, E) has a unification
algorithm if there is an algorithm generating a complete set of E-unifiers for any E-unification
problem in (Σ, E).

Unlike unsorted syntactic unification, which always either fails or has a single most general
unifier, order-sorted syntactic unification is not necessarily unitary, that is, there is in general
no single most general unifier. What exists (if Σ is finite) is a finite minimal complete set of
syntactic unifiers. For some commonly occurring theories having a unification algorithm, such
as the theory A of associativity of a binary function symbol, it is well-known that unification is
not finitary: in general an infinite number of solutions may exist. However, for other theories,
such as commutativity C or associativity-commutativity AC, unification is finitary, both when
Σ is unsorted and when Σ is order-sorted (and finite).

1That is, a sort-preserving mapping from Vars(t1, t′1, . . . , tn, t
′
n), the set of all variables appearing in the

terms ti or t′i, to TΣ(X).

13.3. THEORIES CURRENTLY SUPPORTED 321

13.2.1 A hybrid approach to equational order-sorted unification

We define a hybrid approach, in which we take advantage of Maude’s structuring of a mod-
ule’s equations into equational axioms Ax, such as associativity, and/or commutativity, and/or
identity, and equations E, which are assumed to be coherent,2 confluent, and terminating
modulo Ax. We can then consider order-sorted equational theories of the form (Σ, E ∪ Ax)
and decompose the E ∪ Ax-unification problem into two problems: one of Ax-unification, and
another of E ∪ Ax-unification that uses an Ax-unification algorithm as a subroutine. This
decomposition, as well as a similar one for membership equational theories, is explained in
Section 13.5. The point of this decomposition is that Ax-unification needs to be built-in at the
level of Core Maude’s C++ implementation for efficiency purposes and E ∪Ax-unification can
then be built on top of Ax-unification. Since the axioms Ax are well-known and unification
algorithms exist for them, the task of building in efficient Ax-unification algorithms, although
highly nontrivial, becomes manageable. Maude 2.6 implemented E ∪Ax-unification in Maude
itself, but E ∪Ax-unification is also implemented in Core Maude’s C++ level since Maude 2.7
(see Chapter 14).

13.3 Theories currently supported

As mentioned in Section 13.2.1, a practical way of dealing with order-sorted equational unifi-
cation is to consider order-sorted theories of the form (Σ, E ∪Ax), with Ax a set of commonly
occurring axioms, declared in Maude as equational attributes (see Section 4.4.1), and E the
remaining equations specified with the eq or ceq keywords. We can then decompose the E∪Ax-
unification problem into an Ax-unification problem and an E ∪ Ax-unification problem that
uses an Ax-unification algorithm as a subroutine. In such a decomposition, the efficiency of the
Ax-unification algorithm becomes crucial.

Maude currently provides an order-sorted Ax-unification algorithm for all order-sorted theo-
ries (Σ, E∪Ax) such that the order-sorted signature Σ is preregular modulo Ax (see Sections 3.8
and 20.3.5) and the axioms Ax associated to function symbols are as follows:

• there can be arbitrary function symbols and constants with no equational attributes;

• the iter equational attribute can be declared for some unary symbols;

• different equational attributes can be declared for some binary function symbols:

– the assoc attribute3; usually referred to as A (for associative),

– the comm attribute; usually referred to as C (for commutative),

– the assoc comm attributes; usually referred to as AC (for associative and commu-
tative),

2Coherence of E modulo Ax is very closely related to the notion of coherence of rules relative to equations
explained in Section 5.3; see [85, 107] for the precise definition of coherence in the equational case. The main
role of coherence of E modulo Ax is to get the effect of rewriting in Ax-equivalence classes with E. For example,
for Ax = AC, coherence modulo AC is easily achieved by adding to each equation in E with a top AC function
symbol in its lefthand side a similar equation with an extra “extension variable” argument added to the AC
function symbol, as explained in Section 4.8. Section 4.8 also explains how, for rewriting modulo axioms Ax
supported by Maude, Maude automatically performs such a coherence completion in an implicit, built-in way
using extension variables and “extension aware” Ax-matching algorithms; see also Section 21.5.

3Although associative unification is infinitary in general, we support a substantial class of equational problems
for which it is finitary, and provide a finite but incomplete set of solutions (with an explicit warning that it may
be incomplete) in all other cases. See Section 13.4.6.

322 CHAPTER 13. UNIFICATION

– the assoc comm id: attributes; usually referred to as ACU (for associative and
commutative with identity, or unit),

– the assoc id: attributes3; usually referred to as AU (for associative and identity,
or unit),

– the comm id: attributes; usually referred to as CU (for commutative and identity,
or unit),

– the id: attribute; usually referred to as U (for identity, or unit),

– the left id: attribute; usually referred to as Ul (for left identity, or unit), and

– the right id: attribute; usually referred to as Ur (for right identity, or unit),

but no other equational attributes must be given for such symbols.

Explicitly excluded are theories with a binary symbol declared with the idem attribute.
However, the lack of the idem attribute in general can be avoided by observing that this axiom
has the finite variant property, so that, used as variant equations, it can be combined with all the
other just-mentioned attributes by means of variant unification algorithms (see Section 14.8).

If we give to Maude a unification problem in a functional module of the form fmod (Σ, Ax)
endfm where Σ and Ax satisfy the above requirements, we get a complete4 set of order-sorted
unifiers modulo the theory (Σ, Ax). If, instead, we give the same problem to Maude in the
functional module fmod (Σ, E ∪ Ax) endfm, then the equations E are ignored, and we get the
same unifiers as for the module or theory obtained by omitting the equations E. Similarly, if we
provide the same unification problem in a functional theory fth (Σ, E ∪Ax) endfth, a system
module mod (Σ, E ∪Ax,R) endm or a system theory th (Σ, E ∪Ax,R) endth, we again get the
same set of unifiers as for the theory (Σ, Ax). All this is consistent with the decomposition idea
mentioned above: to deal with order-sorted E ∪ Ax-unification, other methods, that use the
Ax-unification algorithm as a component, can later be defined as we explain in Section 13.5.

Maude is even more tolerant than this. The user can give to Maude a unification problem in
a functional module (or functional theory, or system module, or system theory) of the form fmod

(Σ, E ∪M ∪Ax∪Ax′) endfm (or the analogous specification in the other cases), where (Σ, Ax)
satisfies the conditions mentioned above, but M is an optional set of membership axioms (that
is, (Σ, E ∪M ∪Ax∪Ax′) can be a membership equational theory and not just an order-sorted
theory), and the axioms Ax′ violate those conditions mentioned above. Then what will happen
is:

1. As before, the additional equations E (or rules R) are completely ignored, and the mem-
bership axioms M are likewise ignored.

2. If a unification problem involves the occurrence of a symbol satisfying axioms Ax′ at the
root position of a non-ground subterm, the unification process will fail and a warning will
be printed.

3. If a unification problem involves the occurrence of symbols satisfying axioms Ax′, but all
such occurrences are always in ground subterms of the problem, then this special case of
Ax ∪ Ax′-unification is handled by Maude and the corresponding Ax ∪ Ax′-unifiers are
returned.

4Or a finite but incomplete set (with an explicit warning) when one of the symbols has the assoc attribute
without the comm attribute and the equations fall outside the class for which a finite, complete set of unifiers
can be computed.

13.4. THE UNIFY COMMAND 323

Furthermore, the functional module fmod (Σ, E ∪M ∪ Ax ∪ Ax′) endfm (or the analogous
functional theory or system module or theory) may import predefined modules such as BOOL

or NAT, so that function symbols in such predefined modules can also be used in unification
problems.

13.4 The unify command

Given a functional module or theory, or a system module or theory, 〈ModId 〉, the user can give
to Maude a unification command of the following two forms:

unify [n] in 〈ModId〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k〉 =? 〈Term’-k〉 .

irredundant unify [n] in 〈ModId〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k〉 =? 〈Term’-k〉 .

where k ≥ 1; n is an optional argument providing a bound on the number of unifiers requested,
so that if the cardinality of the set of unifiers is greater than the specified bound, the unifiers
beyond that bound are omitted; and 〈ModId 〉 can be any module or theory declared in the
current Maude session (as usual, if no module is mentioned, the current module is used). The
second command generates all the unifiers and, then, filters them against each other in order
to return a minimal set of most general unifiers modulo the axioms.

For a simple example of syntactic order-sorted unification problem illustrating:

• the use of the unify command;

• the use of the predefined operator _^_ in the NAT module, representing exponentiation on
natural numbers; and

• the, in general, non-unitary nature of order-sorted unification,

we can define the module

fmod UNIFICATION-EX1 is

protecting NAT .

op f : Nat Nat -> Nat .

op f : NzNat Nat -> NzNat .

op f : Nat NzNat -> NzNat .

endfm

and then give to Maude the following command:

Maude> unify f(X:Nat, Y:Nat) ^ B:NzNat =? A:NzNat ^ f(Y:Nat, Z:Nat) .

Unifier 1

X:Nat --> #1:Nat

Y:Nat --> #2:NzNat

B:NzNat --> f(#2:NzNat, #3:Nat)

A:NzNat --> f(#1:Nat, #2:NzNat)

Z:Nat --> #3:Nat

Unifier 2

X:Nat --> #1:NzNat

Y:Nat --> #2:Nat

B:NzNat --> f(#2:Nat, #3:NzNat)

A:NzNat --> f(#1:NzNat, #2:Nat)

Z:Nat --> #3:NzNat

324 CHAPTER 13. UNIFICATION

The next example in the same module illustrates the use of the unify command with a
unification problem consisting of two equations:

Maude> unify f(X:Nat, Y:NzNat) =? f(Z:NzNat, U:Nat)

/\ V:NzNat =? f(X:Nat, U:Nat) .

Unifier 1

X:Nat --> #1:NzNat

Y:NzNat --> #2:NzNat

Z:NzNat --> #1:NzNat

U:Nat --> #2:NzNat

V:NzNat --> f(#1:NzNat, #2:NzNat)

Note that, as already mentioned, we could instead invoke the unify command in a functional
or system module or theory having additional equations, memberships, or rules, which are
always ignored. For example, we could have instead declared the system theory

th UNIFICATION-EX2 is

protecting NAT .

op f : Nat Nat -> Nat .

op f : NzNat Nat -> NzNat .

op f : Nat NzNat -> NzNat .

eq f(f(N:Nat, M:Nat), K:Nat) = f(N:Nat, M:Nat) .

rl f(N:Nat, M:Nat) => 0 .

endth

so that, if we give again the same unify commands above, we will obtain exactly the same sets
of order-sorted unifiers as for the UNIFICATION-EX1 module.

The following unification command in the predefined CONVERSION module (see Section 7.9)
illustrates a further point on the handling of built-in constants and functions. Built-in constants,
even though infinite in number (all strings, all quoted identifiers, all natural numbers, and so
on), are handled and can be used in unification problems. But built-in functions are not
considered built-in for unification purposes; therefore, built-in evaluation of such functions is
not performed during the unification.

Maude> unify in CONVERSION :

X:String < "foo" + Y:Char =?

Z:String + string(pi) < "foo" + Z:String .

Unifier 1

X:String --> #1:Char + string(pi)

Y:Char --> #1:Char

Z:String --> #1:Char

The above examples illustrate a further point about the form of the returned unifiers,
namely, that in each assignment X --> t in a unifier, the variables appearing in the term t are
always fresh variables of the form #n:Sort. The user is required5 not to use variables of this
form in the submitted unification problem. A warning is printed if this requirement is violated:

Maude> unify in NAT : X:Nat ^ #1:Nat =? #2:Nat .

Warning: unsafe variable name #1:Nat in unification problem.

5When unification is used at the metalevel (see Section 17.6.8), there are two possibilities: (i) a counter
for new fresh variables must take into account the numbers used for both forms of fresh variables, or (ii) an
alternative identifier for new variables can be given.

13.4. THE UNIFY COMMAND 325

13.4.1 Non-supported unification examples

The handling of unification problems in modules with operators whose equational axioms are
excluded from the current unification algorithm can be illustrated by means of the following
module:

fmod UNIFICATION-EX3 is

protecting NAT .

op f : Nat Nat -> Nat [idem] .

endfm

As already mentioned, a unification problem using such an idempotent function symbol f in a
non-ground subterm will mean that the unification attempt fails and a warning is issued:

Maude> unify f(f(X:Nat, Y:Nat), Z:Nat) =? f(A:Nat, B:Nat) .

Warning: Term f(X:Nat, Y:Nat, Z:Nat) is non-ground and unification

for its top symbol is not currently supported.

Instead, if all symbols satisfying unsupported equational axioms Ax′ only appear in ground
subterms of the unification problem, the unification attempt succeeds with the correct set of
order-sorted Ax ∪Ax′-unifiers:

Maude> unify X:Nat + f(f(41, 42),43) =? Y:Nat + f(41,f(42,43)) .

Unifier 1

X:Nat --> #1:Nat + f(41, f(42, 43))

Y:Nat --> #1:Nat + f(f(41, 42), 43)

Unifier 2

X:Nat --> f(41, f(42, 43))

Y:Nat --> f(f(41, 42), 43)

Note, however, that, as already mentioned, unification modulo the idem attribute can be
achieved by variant-based unification using the explicit equation f(N:Nat,N:Nat) = N:Nat (see
Section 14.8).

13.4.2 Associative-commutative (AC) unification examples

The use of a bound on the number of unifiers, as well as the use of the associative-commutative
(AC) operator + in the predefined NAT module (see Section 7.2), plus the fact that even small
AC -unification problems can generate a large number of unifiers are all illustrated by the
following command:

Maude> unify [100] in NAT :

X:Nat + X:Nat + Y:Nat =? A:Nat + B:Nat + C:Nat .

Unifier 1

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #5:Nat + #6:Nat + #8:Nat

Y:Nat --> #4:Nat + #7:Nat + #9:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat + #3:Nat + #4:Nat

B:Nat --> #2:Nat + #5:Nat + #5:Nat + #6:Nat + #7:Nat

C:Nat --> #3:Nat + #6:Nat + #8:Nat + #8:Nat + #9:Nat

...

Unifier 100

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #4:Nat

Y:Nat --> #5:Nat

326 CHAPTER 13. UNIFICATION

A:Nat --> #1:Nat + #1:Nat + #2:Nat

B:Nat --> #2:Nat + #3:Nat

C:Nat --> #3:Nat + #4:Nat + #4:Nat + #5:Nat

The unification problem above has 381 unifiers, though only 100 were asked for. Indeed, it
is the minimal set of most general unifiers and the irredundant unify command returns the
same set with 381 unifiers.

13.4.3 Unification examples with the iter attribute

The following example illustrates the efficiency of order-sorted unification modulo the iter

theory (in this example in combination with the comm theory). Consider the following module:

fmod ITER-EXAMPLE is

sorts NzEvenNat EvenNat OddNat NzNat Nat EvenInt OddInt NzInt Int .

subsorts OddNat < OddInt NzNat < NzInt < Int .

subsorts EvenNat < EvenInt Nat < Int .

subsorts NzEvenNat < NzNat EvenNat < Nat .

op 0 : -> EvenNat .

op s : EvenNat -> OddNat [iter] .

op s : OddNat -> NzEvenNat [iter] .

op s : Nat -> NzNat [iter] .

op s : EvenInt -> OddInt [iter] .

op s : OddInt -> EvenInt [iter] .

op s : Int -> Int [iter] .

op _+_ : Int Int -> Int [comm gather (E e)] .

op _+_ : OddInt OddInt -> EvenInt [ditto] .

op _+_ : EvenInt EvenInt -> EvenInt [ditto] .

op _+_ : OddInt EvenInt -> OddInt [ditto] .

op _+_ : Nat Nat -> Nat [ditto] .

op _+_ : Nat NzNat -> NzNat [ditto] .

op _+_ : OddNat OddNat -> NzEvenNat [ditto] .

op _+_ : NzEvenNat EvenNat -> NzEvenNat [ditto] .

op _+_ : EvenNat EvenNat -> EvenNat [ditto] .

op _+_ : OddNat EvenNat -> OddNat [ditto] .

endfm

We can then give the unification commands:

Maude> unify in ITER-EXAMPLE :

s^1000000(X:OddNat) =? s^100000000001(Y:Int) .

Decision time: 1ms cpu (1ms real)

Unifier 1

X:OddNat --> s^99999000001(#1:EvenNat)

Y:Int --> #1:EvenNat

and

Maude> unify in ITER-EXAMPLE :

s^1000000(X:OddNat) =? s^100000000001(Y:Int + Z:Int + W:Int) .

Decision time: 2ms cpu (5ms real)

13.4. THE UNIFY COMMAND 327

Unifier 1

X:OddNat --> s^99999000001(#1:OddNat + (#2:OddNat + #3:EvenNat))

W:Int --> #1:OddNat

Z:Int --> #2:OddNat

Y:Int --> #3:EvenNat

Unifier 2

X:OddNat --> s^99999000001(#1:OddNat + (#2:EvenNat + #3:OddNat))

W:Int --> #1:OddNat

Z:Int --> #2:EvenNat

Y:Int --> #3:OddNat

Unifier 3

X:OddNat --> s^99999000001(#1:EvenNat + (#2:OddNat + #3:OddNat))

W:Int --> #1:EvenNat

Z:Int --> #2:OddNat

Y:Int --> #3:OddNat

Unifier 4

X:OddNat --> s^99999000001(#1:EvenNat + (#2:EvenNat + #3:EvenNat))

W:Int --> #1:EvenNat

Z:Int --> #2:EvenNat

Y:Int --> #3:EvenNat

Note that the second command produces more unifiers than the first command even though
both unification problems have only one most general unifier. We can, however, obtain just the
single most general unifier for the second unification problem by giving the command:

Maude> irredundant unify in ITER-EXAMPLE :

s^1000000(X:OddNat) =? s^100000000001(Y:Int + Z:Int + W:Int) .

Decision time: 0ms cpu (0ms real)

Unifier 1

X:OddNat --> s^99999000001(#1:EvenNat + (#2:EvenNat + #3:EvenNat))

W:Int --> #1:EvenNat

Z:Int --> #2:EvenNat

Y:Int --> #3:EvenNat

As already mentioned, assuming that no bound on the number of unifiers is specified by
the user, Maude will always compute a complete set of order-sorted unifiers modulo Ax, for
Ax the supported equational axioms described in Section 13.3 for which unification is known
to be finitary. However, there is no guarantee that the computed set of unifiers is minimal if
the unify command, instead of the irredundant unify command, is used. That is, some of
the unifiers in the computed set may be redundant, since they could be obtained as instances
(modulo Ax) of other unifiers in the set.

13.4.4 Associative-commutative with identity (ACU) unification ex-
amples

To illustrate the use of the unification command in the presence of ACU operators, let us
consider yet another version of the vending machine example (first presented in Section 5.1 and
in other sections of this document in different forms):

mod UNIF-VENDING-MACHINE is

328 CHAPTER 13. UNIFICATION

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change]: q q q q = $.

endm

We can ask whether there is an equational unifier of two configurations, one containing at
least two quarters, and another containing at least one dollar.

Maude> unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $
Y:Marking --> q q

Unifier 2

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Notice that the computed set of unifiers is not minimal, because the first solution is the instance
of the second obtained by substituting the variable #1:Marking with the constant empty.

Maude> irredundant unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Recall that memberships are discarded completely. For instance, if we modify the previous
example to include a membership definition for a new sort Quarter, any unification call with
that sort may not succeed.

mod UNIF-VENDING-MACHINE-MB is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

sort Quarter .

subsort Quarter < Coin .

13.4. THE UNIFY COMMAND 329

mb q : Quarter .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change]: q q q q = $.

endm

We can ask whether there is an equational unifier of two configurations, one containing at least
two quarters, and another containing two quarters and a dollar, but it fails:

Maude> unify in UNIF-VENDING-MACHINE-MB :

< q q X:Marking > =? < $ Y:Quarter Z:Quarter > .

No unifier.

despite the fact that instantiating both Y and Z to q is part of a solution in the unification call
above. The reason is that the membership is not used during ACU unification and therefore
the algorithm unification treats the sort Quarter as empty.

13.4.5 Unification examples with an identity symbol

Let us illustrate the use of the different combinations of the identity attribute for unification.
Let us consider first a module using the left-id attribute.

mod LEFTID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (E e) left id: e] .

ops a b c d e : -> Elem .

endm

Then the following two unification problems have a different meaning, where we have swapped
the position of the variables. First, when we unify two terms where variables of sort Magma are
at the left of the terms, we have both a syntactic unifier and a unifier modulo identity.

Maude> unify in LEFTID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

Unifier 1

X:Magma --> a

Y:Magma --> e

Unifier 2

X:Magma --> #1:Magma a

Y:Magma --> #1:Magma

When the variables are instead at the right side of the terms of sort Magma, there is clearly no uni-
fier, since the term a a Y:Magma is parsed as (a a) Y:Magma in module LEFTID-UNIFICATION-EX
due to the attribute gather (E e) (see Section 3.9).

Maude> unify in LEFTID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

No unifier.

Consider now a similar module but for the right identity.

mod RIGHTID-UNIFICATION-EX is

sorts Magma Elem .

330 CHAPTER 13. UNIFICATION

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (e E) right id: e] .

ops a b c d e : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of the terms, there is
clearly no unifier, since the term Y:Magma a a is parsed this time as Y:Magma (a a) in module
RIGHTID-UNIFICATION-EX due to the attribute gather (e E) (see Section 3.9).

Maude> unify in RIGTHID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

No unifier.

When the variables are instead at the right side of the terms of sort Magma, we have both a
syntactic unifier and a unifier modulo identity:

Maude> unify in RIGTHID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

Unifier 1

X:Magma --> a

Y:Magma --> e

Unifier 2

X:Magma --> #1:Magma a

Y:Magma --> #1:Magma

Consider now a similar module but with the identity attribute.

mod ID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (E e) id: e] .

ops a b c d e : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of the terms, we have
both a syntactic unifier and a unifier modulo identity:

Maude> unify in ID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

Unifier 1

X:Magma --> a

Y:Magma --> e

Unifier 2

X:Magma --> #1:Magma a

Y:Magma --> #1:Magma

When the variables of sort Magma are instead at the right side of the terms of sort Magma, we
only have a unifier modulo identity:

Maude> unify in ID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

Unifier 1

X:Magma --> a

Y:Magma --> e

And finally, when we add commutativity, we obtain slightly different results.

13.4. THE UNIFY COMMAND 331

mod COMM-ID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (E e) comm id: e] .

ops a b c d e : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of the terms, we have
both a syntactic unifier and a unifier modulo identity and commutativity, but the latter is
duplicated:

Maude> unify in COMM-ID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

Unifier 1

X:Magma --> a

Y:Magma --> e

Unifier 2

X:Magma --> a #1:Magma

Y:Magma --> #1:Magma

Unifier 3

X:Magma --> a

Y:Magma --> e

When the variables of sort Magma are instead at the right side of the terms of sort Magma, we
have several unifiers modulo identity and commutativity:

Maude> unify in COMMID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

Unifier 1

X:Magma --> a a

Y:Magma --> a

Unifier 2

X:Magma --> a

Y:Magma --> e

Unifier 3

X:Magma --> a

Y:Magma --> e

Note that the first solution is intriguing and is obtained by unifying terms (X:Magma a) and
((a a) Y:Magma).

13.4.6 Associative (A) unification examples

In general, unification modulo associativity is not finitary. However the Maude implementation
provides a finitary and complete set of unifiers for a substantial class of unification problems
where associative unification happens to be finitary. In problems outside of this class, a finite
but in general incomplete set of unifiers is returned, with an explicit warning that the set
may be incomplete. Let us illustrate the use of the unification command in the presence of A
symbols with the different capabilities and limitations. One of the key ideas for having finitary
unification modulo associativity is to have variables over associative symbols being linear, i.e.,
having only one occurrence among all the terms in a unification problem.

332 CHAPTER 13. UNIFICATION

Consider a very simple module with a binary associative function symbol:

fmod UNIFICATION-EX4 is

protecting NAT .

sort NList .

subsort Nat < NList .

op _:_ : NList NList -> NList [assoc] .

endfm

A unification problem using such an associative function symbol returns five unifiers without
any problem because the unification problem is linear.

Maude> unify in UNIFICATION-EX4 : X:NList : Y:NList : Z:NList =? P:NList : Q:NList .

Unifier 1

X:NList --> #1:NList : #2:NList

Y:NList --> #3:NList

Z:NList --> #4:NList

P:NList --> #1:NList

Q:NList --> #2:NList : #3:NList : #4:NList

Unifier 2

X:NList --> #1:NList

Y:NList --> #2:NList : #3:NList

Z:NList --> #4:NList

P:NList --> #1:NList : #2:NList

Q:NList --> #3:NList : #4:NList

Unifier 3

X:NList --> #1:NList

Y:NList --> #2:NList

Z:NList --> #3:NList : #4:NList

P:NList --> #1:NList : #2:NList : #3:NList

Q:NList --> #4:NList

Unifier 4

X:NList --> #1:NList

Y:NList --> #2:NList

Z:NList --> #3:NList

P:NList --> #1:NList : #2:NList

Q:NList --> #3:NList

Unifier 5

X:NList --> #1:NList

Y:NList --> #2:NList

Z:NList --> #3:NList

P:NList --> #1:NList

Q:NList --> #2:NList : #3:NList

The unification problem may not be linear but it may be easy to detect that there is
no unifier, e.g. it is impossible to unify a list X concatenated with itself with another list Y

concatenated also with itself but with a natural number, e.g. 1, in between.

Maude> unify in UNIFICATION-EX4 : X:NList : X:NList =? Y:NList : 1 : Y:NList .

No unifier.

13.4. THE UNIFY COMMAND 333

When associative variables are non-linear, Maude has implemented a cycle detection that
may have different outcomes:

1. There are non-linear variables but only on one side of the problem. This implies that
there is no risk of infinitary behavior and Maude will be complete with no need for cycle
detection.

Maude> unify in UNIFICATION-EX4 : P:NList : P:NList =? 1 : Q:NList : 2 .

Unifier 1

P:NList --> 1 : #1:NList : 2

Q:NList --> #1:NList : 2 : 1 : #1:NList

Unifier 2

P:NList --> 1 : 2

Q:NList --> 2 : 1

2. Cycle detection is used when non-linear variables appear on both sides but no variable
occurs more than twice. It may detect spurious cycles, i.e., a cycle that does not corre-
spond to unifiers, but then nothing is reported. If there is at least one unifier associated
to the cycle, a warning will be printed and the acyclic solutions are returned.

Maude> unify in UNIFICATION-EX4 : 0 : X:NList =? X:NList : 0 .

Warning: Unification modulo the theory of operator _:_ has encountered

an instance for which it may not be complete.

Unifier 1

X:NList --> 0

Warning: Some unifiers may have been missed due to incomplete

unification algorithm(s).

Note that the unification problem 0 : X =? X : 0 has an infinite family of most general
unifiers {X 7→ 0n} for 0n being a list of n consecutive 0 elements.

3. If neither of the two above cases apply, then Maude forces termination with an internal
depth bound and, therefore, no cycle detection is activated. In this case, a warning will
be printed and the solutions up to the internal depth bound are returned.

Maude> unify in UNIFICATION-EX4 :

X:NList : X:NList : X:NList =? Y:NList : Y:NList : Z:NList : Y:NList .

Warning: Unification modulo the theory of operator _:_ has encountered

an instance for which it may not be complete.

Unifier 1

X:NList --> #1:NList : #1:NList : #1:NList : #1:NList

Y:NList --> #1:NList : #1:NList : #1:NList

Z:NList --> #1:NList : #1:NList : #1:NList

Unifier 2

X:NList --> #1:NList : #1:NList : #1:NList

Y:NList --> #1:NList : #1:NList

Z:NList --> #1:NList : #1:NList : #1:NList

Unifier 3

X:NList --> #1:NList : #1:NList

334 CHAPTER 13. UNIFICATION

Y:NList --> #1:NList

Z:NList --> #1:NList : #1:NList : #1:NList

Warning: Some unifiers may have been missed due to incomplete

unification algorithm(s).

If the verbose mode is activated (see Section 23.15), Maude will print different internal
messages associated to the situations above:

• Associative unification using cycle detection.

• Associative unification algorithm detected an infinite family of unifiers.

• Associative unification using depth bound of 5.

• Associative unification algorithm hit depth bound.

13.4.7 Associative with identity (AU) unification examples

Unification modulo associativity and identity was the missing case for associativity without
commutativity. It has been implemented in Maude 3.1. Unification modulo associativity but
with left identity or right identity is still missing and will be available in the future. However,
it is currently supported in a different way, namely, by variant-based unification using an
explicit equation (see Section 14.8). Note that unification modulo associativity and identity
is, in general, not finitary, as in the case of only associativity, and the same conventions and
warnings apply (see Section 13.4.6). Let us illustrate the use of the unification command in the
presence of AU symbols using previous examples.

Consider a very simple module, adapting the previous theory UNIFICATION-EX4, with a
binary associative symbol with an identity symbol for the empty list:

fmod UNIFICATION-EX5 is

protecting NAT .

sort NList .

op nil : -> NList .

subsort Nat < NList .

op _:_ : NList NList -> NList [assoc id: nil] .

endfm

The unification problem below, using an associative symbol with identity, returns 32 unifiers
using the unify command. Instead, the minimal set contains only 3, obtained by using the
irredundant unify command.

Maude> irredundant unify in UNIFICATION-EX5 :

X:NList : Y:NList : Z:NList =? P:NList : Q:NList .

Decision time: 2ms cpu (2ms real)

Unifier 1

X:NList --> #3:NList : #4:NList

Y:NList --> #1:NList

Z:NList --> #2:NList

P:NList --> #3:NList

Q:NList --> #4:NList : #1:NList : #2:NList

Unifier 2

X:NList --> #1:NList

13.5. SOME APPLICATIONS OF UNIFICATION 335

Y:NList --> #3:NList : #4:NList

Z:NList --> #2:NList

P:NList --> #1:NList : #3:NList

Q:NList --> #4:NList : #2:NList

Unifier 3

X:NList --> #1:NList

Y:NList --> #2:NList

Z:NList --> #4:NList : #3:NList

P:NList --> #1:NList : #2:NList : #4:NList

Q:NList --> #3:NList

This is an example where associativity-identity has fewer most general unifiers than associativ-
ity; see the unification command for theory UNIFICATION-EX4 in page 332 above with 5 most
general unifiers (both the unify and irredundant unify commands return 5 although only
the former is shown).

The reader may be aware that the algorithm for associative-identity unification produces
many redundant unifiers due to its collapse nature and how the order-sorted information is
actually treated. Therefore, the use of the irredundant unify command is advised.

13.5 Some applications of unification

In this section we review briefly some applications that can be developed using a unification
infrastructure like the one described in this chapter. We begin in Section 13.5.1 by discussing
narrowing and narrowing-based unification algorithms. These algorithms are actually imple-
mented in Core Maude’s C++ and described in Chapter 14. We then explain in Section 13.5.2
how narrowing modulo an equational theory can be used for reachability analysis of concur-
rent systems described by rewrite theories, and, more generally, for symbolic temporal logic
model checking of such systems. This narrowing-based reachability analysis is implemented in
Core Maude’s C++ and described in Chapter 15. Finally, we discuss briefly other automated
deduction applications, including theorem proving ones.

13.5.1 Narrowing-based unification

If we have a dedicated algorithm (as the one supported by Maude) to solve unification problems
in an order-sorted theory (Σ, Ax), then we can use it as a component to obtain a unification
algorithm for theories of the form (Σ, E ∪ Ax), provided the equations E are unconditional,
coherent, confluent and terminating modulo Ax [85].

The technique used under such conditions to obtain an E ∪ Ax-unification algorithm from
an Ax-unification algorithm is called narrowing, and is the obvious generalization of term
rewriting to handle logical variables and perform a kind of symbolic execution. In ordinary
term rewriting, if we want to apply a rewrite rule, say l → r, to a term t at position p, the
subterm t|p must be an instance of the lefthand side l, that is, there must be a substitution
σ such that t|p = σ(l). Instead, in narrowing we can apply the rule l → r at a non-variable
position p in t, provided the unification problem t|p =? l (where the variables of l and t are
assumed disjoint) has a nonempty set of unifiers. For any such unifier θ we then narrow the
original term t to the substitution instance under θ of t[r]p. We then write

t; θ(t[r]p)

for such a narrowing step. For example, in the standard, unsorted specification of the natural
numbers, we can use the equation x + s(y) = s(x + y) as a rewrite rule to narrow the term

336 CHAPTER 13. UNIFICATION

x′ ∗ (y′ + z′) at position 2 with substitution θ = {x 7→ y′′, y 7→ z′′, y′ 7→ y′′, z′ 7→ s(z′′)} to get
the narrowing step

x′ ∗ (y′ + z′) ; x′ ∗ s(y′′ + z′′).

In this example, θ is the most general unifier for the syntactic unification problem y′ + z′ =?

x + s(y). However, in the same way as we can perform rewriting modulo a set of axioms Ax
if we have an Ax-matching algorithm, we can likewise perform narrowing modulo a set Ax of
axioms if we have an Ax-unification algorithm. That is, the unification problems t|p =? l are
now solved, not by syntactic unification, but by Ax-unification.

If a theory (Σ, E∪Ax) satisfies the above coherence, confluence, and termination modulo Ax
requirements, we can systematically reduce E∪Ax-unification problems to narrowing problems
as follows:

1. we add a fresh new sort Truth to Σ with a constant tt;

2. for each top sort of each connected component of sorts we add a binary predicate eq of
sort Truth and add to E the equation eq(x,x) = tt, where x has such a top sort;

3. we then reduce an E ∪ Ax-unification problem t =? t′ to the narrowing reachability
problem

eq(t, t′) ;∗ tt

modulo Ax in the theory extending (Σ, E ∪ Ax) with these new sorts, operators, and
equations, where E and the new equations are used as rewrite rules.

That is, we search for all narrowing paths modulo Ax from eq(t, t′) to tt. Each such path
then gives us a unifier of the equation t =? t′, just by composing the unifiers of each narrowing
step in the path. As explained in [17], narrowing can be performed not only in order-sorted
equational theories, but also in membership equational theories, although the membership case
is not yet implemented in Maude.

The just-described computation of E ∪ Ax-unifiers by narrowing modulo Ax yields a com-
plete but in general infinite set of E ∪ Ax-unifiers. For the case when Ax = ∅, some sufficient
conditions are known ensuring termination of the basic narrowing strategy (see, e.g., [84, 5, 3]),
and therefore ensuring that the complete set of E∪Ax-unifiers computed by basic narrowing is
finite. However, for commonly occurring sets Ax of axioms, such as associativity-commutativity
(AC), it is well-known that narrowing modulo AC “almost never terminates” and, further-
more, that narrowing strategies facilitating termination such as basic narrowing are incomplete
[137, 36]. Based on the idea of “variants” in [36], a complete, yet quite efficient in terms of
its search space, narrowing strategy modulo Ax called folding variant narrowing has been pro-
posed in [70, 71]. Furthermore, in [69, 71, 23] sufficient checkable conditions on (Σ, E ∪ Ax)
have been given ensuring that the E ∪ Ax-unification algorithm provided by folding variant
narrowing modulo Ax is finitary.

In Maude 2.6, a narrowing library developed by Santiago Escobar implemented the folding
variant narrowing as a component, making E ∪Ax-unification available as part of Full Maude.
Instead, E∪Ax-unification is implemented in Core Maude’s C++ level starting from Maude 2.7
(see Section 14.8).

13.5.2 Symbolic reachability analysis in rewrite theories

A rewrite theory6, say R = (Σ, E ∪Ax,R), specified in Maude as a system module, describes a
concurrent system whose states are E∪Ax-equivalence classes of ground terms, and whose local

6All we say here applies also to rewrite theories with an additional freezing function φ specifying which
arguments of each function symbol are frozen.

13.5. SOME APPLICATIONS OF UNIFICATION 337

concurrent transitions are specified by the rules R. When formally analyzing the properties of
R, an important problem is ascertaining for specific patterns t and t′ the following symbolic
reachability problem:

∃X t −→∗ t′

with X the set of variables appearing in t and t′, which for this discussion we may assume are
a disjoint union of those in t and those in t′. That is, t and t′ symbolically describe sets of
concurrent states [[t]] and [[t′]] (namely, all the ground substitution instances of t, resp. t′, or,
more precisely, the E ∪ Ax-equivalence classes associated to such ground instances). And we
are asking: is there a state in [[t]] from which we can reach a state in [[t′]] after a finite number
of rewriting steps?

For example, R may specify a cryptographic protocol, t may symbolically describe a set of
initial states, and t′ may likewise describe a set of attack states. Then, if the above reachability
question can be answered in the affirmative, the protocol R is insecure against the kinds of
attacks described by t′. Furthermore, if the way of answering the reachability question is
somehow constructive, we should be able to exhibit a concrete attack as a rewrite sequence
violating the security of the protocol.

As explained in [114] and generalized in [110], provided the rewrite theoryR = (Σ, E∪Ax,R)
is topmost (that is, all rewrites take place at the root of a term), or, as in the case of AC rewriting
of object-oriented systems, R is “essentially topmost,” and the rules R are coherent with E
modulo Ax, narrowing with the rules R modulo the equations E ∪ Ax gives a constructive,
sound, and complete method to solve reachability problems of the form ∃X t −→∗ t′, that is,
such a problem has an affirmative answer if and only if we can find a finite narrowing sequence
modulo E ∪ Ax of the form t ;∗ θ(t′) for some θ. The method is constructive, because
instantiating t with the composition of the unifiers for each step in the narrowing sequence
gives us a concrete rewrite sequence witnessing the existential formula.

Of course, narrowing with R modulo E∪Ax requires performing E∪Ax-unification at each
narrowing step. As explained in Section 13.5.1, E ∪ Ax-unification can itself be performed by
narrowing with the equations E modulo Ax, provided E is coherent, confluent, and terminating
modulo Ax. Therefore, in performing symbolic reachability analysis in a rewrite theory R =
(Σ, E∪Ax,R) there are usually two levels of narrowing and two levels of unification: narrowing
with R modulo E ∪ Ax for reachability, and narrowing with E modulo Ax for unification
purposes. Similarly, unification modulo E ∪ Ax is performed by narrowing, while unification
modulo Ax is usually performed in a built-in way.

This is exactly the approach taken in the Maude-NPA protocol analyzer [66, 67], where
cryptographic protocols are formally specified as rewrite theories of the formR = (Σ, E∪Ax,R),
and the formal reachability analysis is performed in a backwards way, from an attack state to an
initial state. This just means that we perform standard (forwards) reachability analysis with the
rewrite theory R−1 = (Σ, E∪Ax,R−1), where R−1 = {r −→ l | (l −→ r) ∈ R}. The equational
theory E ∪ Ax typically specifies the algebraic properties of the cryptographic functions used
in the given protocol, for example, public key encryption and decryption, exclusive or, modular
exponentiation, and so on. Reasoning modulo such algebraic properties is very important to
gain high levels of assurance, since it is well-known that some cryptographic protocols that can
be proved secure under the standard Dolev-Yao model, in which the cryptographic functions
are treated as a “black box,” can actually be broken by an attacker that makes clever use of
the algebraic properties of the cryptographic functions of the protocol. Besides using narrowing
with rules modulo equations, the Maude-NPA tool uses several state space reduction techniques,
including grammars that can describe sets of unreachable states that need not be explored [66],
to drastically reduce the narrowing search space, often from an infinite set of states to a finite
set of them, so that finite failure to find an attack becomes an actual proof of security.

338 CHAPTER 13. UNIFICATION

Given a rewrite theory R = (Σ, E ∪ Ax,R), we may be interested in verifying properties
more general than existential questions of the form ∃X t −→∗ t′. Note that we can view such
questions as questions about the violation of an invariant, because we can regard the set of
states [[t′]] as the complement of an invariant set of states, say I, which can be easily specified
by an equationally-defined predicate. That is, proving the existential formula ∃X t −→∗ t′ is
the same thing as finding a counterexample for the assertion R, t |= 2I. This is just a temporal
logic satisfaction assertion (see Chapter 12), but with the following nonstandard features: (i)
the term t does not describe a single initial state, but a possibly infinite set [[t]] of initial states;
and (ii) there is no guarantee that the set of reachable states is finite. Therefore, standard
model-checking techniques may not be usable, because of a possible double infinity: in the
number of initial states, and in the number of states reachable for each of those initial states.
One can also generalize the above reachability question R, t |= 2I to questions of the form
R, t |= ϕ, with ϕ a temporal logic formula. The papers [68, 8] show how narrowing can be used
(again, both at the level of transitions with rules R and at the level of equations E) to perform
logical model checking to verify such temporal logic formulas; this is a a kind of symbolic model
checking not in the binary decision diagram sense of “symbolic,” which still remains finite-state,
but in a much more general sense in which possibly infinite sets of states are finitely described
by patterns with logical variables.

In Maude 2.7, a narrowing-based reachability analysis developed by Santiago Escobar was
implemented as part of Full Maude. In Maude 3.0, a narrowing-based reachability analysis has
been directly implemented in Core Maude’s C++ (see Chapter 15).

13.5.3 Other automated deduction applications

The automated deduction application par excellence, and the one that historically, thanks to
Alan Robinson, gave rise to the unification notion is resolution-based theorem proving [127].
Subsequent work by Gordon Plotkin [124] made it clear that not just syntactic unification,
but unification modulo a set of equational axioms Ax is a very useful mechanism supporting
theorem proving. Indeed, state-of-the-art resolution-based theorem provers routinely support
unification modulo commonly occurring equational theories such as AC. Of course, the use of
equational unification need not be restricted to resolution-based theorem provers. For example,
the paper [129] shows how narrowing with sequent rules and equational unification can be used
in a sequent-based theorem prover in which one can reason modulo both the equivalences given
by the structural rules for sequents and also Boolean equivalences between formulas.

Yet another important application area is that of formal reasoning methods such as Knuth-
Bendix equational completion (and its associated “inductionless induction” theorem-proving
methods), checking local confluence of rewrite rules, and checking coherence of a set of rewrite
rules with respect to a set of equations [138]. In all these formal reasoning methods one needs
to compute critical pairs by unification of a term with a subterm of another term. In particular,
tools such as the Maude Church-Rosser Checker (CRC) and Coherence Checker (ChC) were
before restricted to theories where the only equational axiom supported was commutativity.
The present built-in support for unification modulo a wide set Ax of axioms (further extensible
to identity axioms by narrowing as explained in Section 13.5.1) has made it possible to have
much more general versions of the Maude Church-Rosser Checker and Coherence Checker tools
to reason about the confluence and coherence of Maude specifications modulo equational axioms
specified as equational attributes in Maude modules and theories [55, 54, 56].

13.6. ENDOGENOUS VS. EXOGENOUS ORDER-SORTED UNIFICATION ALGORITHMS339

13.6 Endogenous vs. exogenous order-sorted unification
algorithms

The current Maude order-sorted unification algorithm modulo axioms Ax is what we might
call an endogenous algorithm, in the sense that the computation of order-sorted unifiers is
intimately integrated with the order-sorted reasoning process, so that unifiers that do not type
under the order-sorted typing restrictions are never generated. This makes such an algorithm
typically more efficient, because the order-sorted typing restrictions may drastically cut the
number of generated unifiers, particularly modulo axioms such as AC where the number of
unsorted unifiers can be very large. That is, order-sorted unification, even though it lacks
the unitary property of unsorted syntactic unification and is in general more expensive than
unsorted unification in the syntactic case, can often be more efficient in the modulo Ax case
because of the drastic reductions that can be achieved by order-sorted typing restrictions in the
number of Ax-unifiers. Moreover, even in the syntactic case, the efficiency of deductive processes
that use order-sorted unification can substantially increase, because order-sorted unification will
fail more often than unsorted unification, leading to smaller search spaces.

However, from the early papers on order-sorted unification such as, e.g., [130, 112, 132]
a more modular, although typically less efficient, approach to order-sorted unification, which
we might call exogenous has been known. The basic idea is to reuse an existing unsorted
unification algorithm modulo some axioms Ax (under some conditions on Ax) to compute
order-sorted Ax-unifiers in the following way:

1. type information is removed from the order-sorted Ax-unification problem to convert it
into an unsorted Ax-unification problem;

2. a complete set of unsorted Ax-unifiers is computed; and

3. the order-sorted Ax-unifiers of the original problem are obtained from the unsorted ones
by a process of filtering the unsorted unifiers through an order-sorted reasoning process, in
which the sorts of the variables in the original problem are taken into account. Each order-
sorted unifier thus obtained is always a specialization of a corresponding unsorted one,
where the unsorted variables have been specialized to given sorts; however, some unsorted
unifiers, perhaps many, may be filtered out by this process and have no corresponding
order-sorted unifiers.

For a state-of-the art study of the exogenous approach, allowing very general axioms Ax and
proving the correctness of an order-sorted inference system to generate the order-sorted unifiers
from the unsorted ones, see [82].

Both the endogenous and the exogenous approaches have their own advantages and disad-
vantages. The endogenous approach is more efficient, but it requires dedicated algorithms and
implementations, so that unsorted unification algorithms and tools cannot be reused. The ex-
ogenous algorithms are less efficient because: (i) they can generate many unifiers that may later
be discarded; (ii) a separate order-sorted filtering process is needed; and (iii) changes of rep-
resentation, and even parsing, are required between unsorted and order-sorted representations
(particularly when existing unsorted algorithms are reused). However, they are more modu-
lar and flexible, so that one can with relatively little effort obtain an order-sorted unification
algorithm from an unsorted one.

In Maude we have experimented with, and benefited from, both an exogenous algorithm
and the current endogenous one. The exogenous algorithm was developed in collaboration with
Evelyn Contejean and Claude Marché from Université Paris-Sud, and involved also the efforts
of Prasanna Thati and Joe Hendrix at UIUC. It reused the rich library of unsorted unification

340 CHAPTER 13. UNIFICATION

algorithms modulo axioms of the CiME system [38], which could be called from Maude in
an experimental version. Inside Maude, it used the order-sorted inference system to compute
order-sorted unifiers developed by Joe Hendrix and described in [82].

This exogenous algorithm has been extensively used in a previous version of the Maude-
NPA tool, and has been shown effective in finding attacks to cryptographic protocols modulo
nontrivial equational theories of the form E ∪ Ax [65]. The exogenous algorithm has also
been extremely useful in testing the endogenous one. Because of the large number of unifiers
generated and the complex nature of semantic unification algorithms, their testing is a nontrivial
matter, and the automation of such testing is quite difficult. Thanks to the exogenous algorithm,
and through the efforts of Ralf Sasse and Santiago Escobar, it has been possible to generate
large numbers of random unification problems of different sizes in which the sets of unifiers
generated by the exogenous and endogenous order-sorted unification algorithms have been
automatically compared. This testing uncovered several bugs in an earlier alpha version of the
Maude endogenous algorithm, and has also served to evaluate in practice the greater efficiency
of the endogenous algorithm developed by Steven Eker.

13.7 Some notes on the implementation of unification

Order-sorted unification is NP-complete in general because Boolean algebra can be encoded
as an order-sorted free theory signature and hence satisfiability can be reduced to an order-
sorted free theory unification problem. In practice, reasonable performance can be obtained
using a binary decision diagram technique to compute sorts for free variables occurring in
unsorted unifiers. Furthermore in the AC case, sort information can be pushed into the unsorted
unification algorithm and used to prune the Diophantine basis and the choice of subsets drawn
from such a basis [60].

The unification theory combination framework and AC -unification algorithm are based
on [16], while the Diophantine system solver used by the AC algorithm is based on [37]. The
unification algorithm has been thoroughly tested by Santiago Escobar and Ralf Sasse using
CiME [38] as an oracle, and has shown better average performance than CiME on the same
problems.

The addition of ACU to the theories handled by the dedicated unification algorithm in
Maude required substantial changes to the unification infrastructure implemented in previous
versions of Maude for C and AC theories because of the problems associated with collapse
theories. In this section we give an overview of the techniques used and highlight a novel
algorithm for selecting sets of Diophantine basis elements during the computation of ACU
unifiers.

13.7.1 Combining unification algorithms

The basic approach to solving unification problems where function symbols are drawn from
more than one theory is variable abstraction where alien subterms, i.e., subterms headed by a
symbol from a theory different from that of the top symbol of the parent term, are replaced by
fresh variables to form pure unification subproblems which only involve variables and function
symbols from a single theory and which can be passed to a unification algorithm for such
a theory. Proving termination of combinations of algorithms is nontrivial, as variables are
necessarily shared between theories and the unification of variables in one theory can create new
unification subproblems in another theory, potentially ad infinitum. Stickel’s algorithm [133],
which combined the AC and free theories, required an elaborate termination proof by Fages
[72]. Boudet et al. [16] proposed a much simpler approach where all unification subproblems

13.7. SOME NOTES ON THE IMPLEMENTATION OF UNIFICATION 341

and variable bindings in a given theory are solved (and re-solved if another subproblem in that
theory is created) simultaneously. This method requires a simultaneous E-unification algorithm
for each theory E and was the method implemented in Maude for C, AC, and ∅ prior to the
addition of ACU.

Collapse theories add two major complications to the combination of unification algorithms.
Firstly, theory clashes where two terms with top symbols from different theories are required to
unify can no longer be treated as a failure, since if one of the top symbols belongs to a collapse
theory, a collapse may occur, yielding solutions. Secondly, compound cycles, that is, problems
of the form x1 =? t1(. . . , x2, . . .), x2 =? t2(. . . , x3, . . .), . . . , xn =? tn(. . . , x1, . . .) where the
terms ti are pure in different theories, can no longer be treated as failure, since solutions may
be possible via collapse.

Several authors have proposed combination schemes that can handle collapse theories. We
use a simplified version of an algorithm due to Boudet [15]. The original algorithm also handles
nonregular theories but we omit that capability to simplify the implementation. The key idea
is that each theory E needs a restricted simultaneous E-unification algorithm which solves
the simultaneous unification problem for pure equations that are pure in E but where certain
variables may be marked as only being allowed to unify with other variables. A theory clash
subproblem f(. . .) =? g(. . .), is split into a disjunction of two subproblems each of which is
a conjunction x =? f(. . .) ∧ x =? g(. . .) where x is a fresh variable. In one subproblem x is
marked in the f equation and in the other subproblem x is marked in the g equation; either
or both branches of the search may return solutions. Restricted unification is also used to
break compound cycles. Because we do not handle nonregular theories, Boudet-style variable-
elimination algorithms are unnecessary.

Boudet’s algorithm assumes that theories are disjoint, i.e., that they do not share function
symbols. Because in Maude this is not quite true — identities can contain symbols from other
theories — we need to handle a special kind of variable elimination. We illustrate the issue
with the following example:

fmod UNIFICATION-CYCLE is

sort S .

vars X Y : S .

ops a b c d : -> S .

op f : S S -> S [assoc comm id: g(c, d)] .

op g : S S -> S [assoc comm id: f(a, b)] .

endfm

Maude> unify X =? f(Y, a, b) /\ Y =? g(X, c, d) .

Here the unification problem would already be in solved form but for the compound cycle
formed by the X and Y variables. Restricted unification cannot break this cycle, since neither of
the righthand sides can collapse out of their theory. However, putting Y = g(c, d) eliminates
Y from the first equation yielding X = f(a, b) which eliminates X from the second equation,
thus yielding a solution. This situation is somewhat pathological in Maude programs, and we
do not really care about performance in its handling. Maude handles it by looking for this kind
of cyclic dependency between theories when the signature is preprocessed and setting a flag
so that a brute force variable elimination algorithm will be used to try and break compound
cycles at unification time.

13.7.2 Combining incomplete unification algorithms

The unification infrastructure now supports the notion of incomplete unification algorithms (see
Section 13.4.6). This has several major components. Firstly the algorithm for combining uni-

342 CHAPTER 13. UNIFICATION

fication algorithms now prioritizes theories that have complete algorithms and amongst those,
prioritizes theories that are expected to have fewer partial solutions. The idea of this heuristic
is to minimize branching and when a unification problem with an incomplete unification algo-
rithm has to be solved, to have more information on shared variables (ideally they would be
bound to terms in collapse-free theories), in order to minimize the likelihood of encountering
an incomplete case. Secondly, when different equations on the same theory are given as a
unification problem, equations with a lower likelihood of encountering an incomplete case are
prioritized. Thirdly, when incompleteness does occur it is tracked through the various levels of
unification calls so that appropriate warnings can be issued.

13.7.3 Diophantine basis element selection

We solve restricted simultaneous ACU unification using an extension of the simultaneous AC
unification algorithm in [16]. For an ACU function symbol f we are presented with a set
of flattened pure equations that take the form f(xp11 , . . . , x

pn
n) =? f(yq11 , . . . , y

qm
m) or x1 =?

f(yq11 , . . . , y
qm
m). Each f -equation yields a Diophantine equation p1X1 + · · · + pnXn = q1Y1 +

· · ·+ qmYm or respectively, X1 = q1Y1 + · · ·+ qmYm where the Xi’s and Yi’s are non-negative
Diophantine variables. If an original variable is marked in some equation, the corresponding
Diophantine variable receives an upper-bound of 1. Also, we may be able to obtain an upper-
bound from order-sorting information, using the signature analysis technique in [57].

The general solution to a set of non-negative Diophantine equations is a set of basis elements
from which all solutions can be obtained by linear combination. Upper-bound information may
trivially eliminate some basis elements from consideration and can be used by the Diophantine
solver to terminate the search for basis elements early.

A fresh variable zk is allocated for each basis element αk and unifiers are formed by
finding sets of basis elements that satisfy certain properties and constructing assignments
xi ← f(. . . , z

αk,i

k , . . .) where k ranges over the indices of the selected basis elements and αk,i is
the value of Xi in the basis element αk.

The criteria for choosing the sets of basis elements is the key difference between AC unifica-
tion, ACU unification, and restricted ACU unification. With AC unification, every selection of
basis elements whose sum yields a nonzero value for each Xi and Yi must be considered. With
ACU unification that requirement is lifted because of the availability of an identity element.
The identity element also means that any assignment including basis element αk generalizes
the same assignment with αk removed by assigning the identity element to zk and thus there
is a single most general solution, formed by selecting all the basis elements.

In the case of restricted ACU unification, we may have upper-bounds on variables because
they are marked. In Maude, order-sorted considerations may place upper-bounds on variables,
and may also place a lower-bound of 1 on variables where the corresponding original variable
has a sort that cannot take the identity element. In order to find a complete set of unifiers we
need to find all maximal sets of basis elements whose sum satisfies the upper and lower-bounds
on the variables.

Several explicit schemes for searching the subsets of basis elements were tried but the search
was typically the dominant cost for ACU unification, often rendering the solution of quite mod-
est unification problems impractical. In the current implementation this search is performed
symbolically using a Binary Decision Diagram (BDD) [20] based algorithm. A BDD variable is
allocated for each basis element, whose value, true or false, denotes whether the basis element is
included in the subset. A BDD, called legal, is constructed, which evaluates to true on exactly
those valuations that correspond to selections of basis elements that satisfy the upper- and
lower-bound constraints on each Diophantine variable. Enforcement of the upper-bounds on
the sum is done using dynamic programming and the BDD ite operation. Using the BDD legal,

13.7. SOME NOTES ON THE IMPLEMENTATION OF UNIFICATION 343

a second BDD, called maximal, is constructed which is true on exactly those valuations where
legal is true, and changing a false into a true makes legal false. These valuations of the BDD
variables and thus the subsets of basis elements they encode are then recovered by tracing the
paths from the root to the true terminal in maximal. This method yielded a dramatic speed
up (from hours to milliseconds) on problems of useful size.

344 CHAPTER 13. UNIFICATION

Chapter 14

Variants and Variant Unification

14.1 Introduction

As explained in Section 13.2, Maude features order-sorted unification modulo axioms Ax,
including associativity1 (A), commutativity (C), associative-identity (AU)1, commutativity-
identity (CU), associativity-commutativity (AC), associativity-commutativity-identity (ACU),
and (left-, right- or two-sided) identity (Ul, Ur, U). However, order-sorted equational unifica-
tion in full generality considers a decomposition of an equational theory (Σ, E ∪ Ax) into two
problems: one of Ax-unification, and another of E ∪Ax-unification that uses an Ax-unification
algorithm as a subroutine. As explained in Section 13.5.1, algorithms for E ∪ Ax-unification
have been extensively defined by using narrowing-based unification, where for a unification
problem t =? t′ we obtain the search space associated to narrowing the term eq(t, t′) using E
modulo Ax and search for all paths from eq(t, t′) to the truth constant tt. However, we use
the notion of variants of a term for generating such a narrowing search space.

14.2 Term variants

Comon-Lundh and Delaune’s notion of variant [36] characterizes the instances of a term w.r.t.
an equational theory E∪Ax such that the equations E are confluent, terminating, and coherent
modulo axioms Ax.

The E,Ax-variants of a term t are pairs (t′, θ), with θ a substitution and t′ the
E,Ax-canonical form of θ(t).

A preorder relation of generalization that holds between such pairs can be given: we say a
variant (t1, θ1) of a term t is more general than another variant (t2, θ2) of the same term t if
there is a substitution ρ such that ρ(t1) =Ax t2, and (θ1; ρ)|Var(t) =Ax (θ2)|Var(t). A complete
set of E,Ax-variants (up to renaming) of a term t is a subset V of E,Ax-variants of t such
that for any variant (σ(t)↓E,Ax, σ) there exists a more general variant (t′, θ) in V .

In order to avoid clashing of algorithms and notions, we have decided that the equations
used for variant generation (and variant-based unification) should be identifiable and clearly
distinguished from standard equations in Maude. For this purpose we have defined a new

1As already explained, for a useful subclass of associative and associative-identity unification problems com-
plete sets of unifiers are returned, and in all other cases a possibly incomplete such set is returned with a
warning. See Sections 13.4.6 and 13.4.7.

345

346 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

attribute for equations: the keyword variant. This implies that if the user wants to use an
equation t = t’ both for variant generation and for simplification, it should be duplicated:
eq t = t’ . and eq t = t’ [variant] . No equation with the variant attribute can have
the owise attribute. Note that what this allows is a greater flexibility at the operational level
when combining variant generation and simplification: by the above method, an equation can
be used for either purpose (declared only once in the appropriate way), or for both, by a double
declaration.

For example, consider the following functional module defining the addition function _+_

on natural numbers built from 0 and s:

fmod NAT-VARIANT is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

eq [base] : 0 + Y = Y [variant] .

eq [ind] : s(X) + Y = s(X + Y) [variant] .

endfm

The term X + s(0) has an infinite number of variants w.r.t. those equations, i.e.,

• (s(0), {X 7→ 0}),

• (s(s(Y)), {X 7→ s(Y)}),

• (s(s(0)), {X 7→ s(0)}),

• (s(s(s(Y))), {X 7→ s(s(Y))}),

• (s(s(s(0))), {X 7→ s(s(0))}), . . .

Indeed, there is no finite, complete, most general set of variants for that term. However, the
term 0 + X has a finite number of most general variants w.r.t. those equations, i.e., (X, id).
Obviously, there are many more variants, such as (0, {X 7→ 0}), but they are all instances of
the most general one.

An equational theory E ∪Ax has the finite variant property iff there is a finite complete set
of most general variants for each term. This property also ensures the existence of a generic
finitary E ∪ Ax-unification algorithm based on computing variants, as shown in Section 14.8.
However, if a theory does not have the finite variant property, we are still able to incrementally
enumerate all the variants of a term, as explained below in Section 14.6.

Consider the following equational theory for exclusive or.

fmod EXCLUSIVE-OR is

sorts Nat NatSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _*_ : NatSet NatSet -> NatSet [ctor assoc comm] .

vars X Y Z W : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

14.3. THEORIES CURRENTLY SUPPORTED 347

eq [id] : X * mt = X [variant] .

endfm

This theory has the finite variant property, as proved manually in [36] and automatically in [69].
For instance, the term X * X has a finite set of most general variants, just (mt, id). And the
term X * Y has also a finite, complete set of most general variants:

1. (X * Y, id),

2. (Z, {X 7→ mt, Y 7→ Z}),

3. (Z, {X 7→ Z, Y 7→ mt}),

4. (Z, {X 7→ Z * U, Y 7→ U}),

5. (Z, {X 7→ U, Y 7→ Z * U}),

6. (mt, {X 7→ U, Y 7→ U}), and

7. (Z1 * Z2, {X 7→ U * Z1, Y 7→ U * Z2})

Note that if variable X in the equational theory is changed2 from sort [NatSet] to Nat,
then the theory does not have the finite variant property, since every pair of similar elements
has to be separately eliminated, whereas now chunks of similar elements can be eliminated at
once. Also, note that the symbol _*_ cannot be made ACU instead of AC, because then the
equation3 X * X * Z = Z is not ACU -terminating.

The finite variant property happens to be an undecidable problem [14]. However, a semi-
decision procedure for checking the finite variant property has been developed which works well
in practice: it has recently [23] been shown that, in order to prove the finite variant property
for an equational theory (Σ, E ∪ Ax), it is enough to check, for each function symbol f ∈ Σ,
whether or not each pattern of the form f(X1, . . . , Xn) has a finite number of variants, where
the Xi are distinct variables of the appropriate kind and n is the arity of f . This can be done
by attempting to generate all the variants of f(X1, . . . , Xn) as described in Section 14.4 below.

Variants are used for variant-based unification in Section 14.8, and such a variant-based
unification is later used in Section 15.6 for symbolic reachability analysis. Before defining
variant-based unification, in Section 14.3 we introduce the class of equational theories admissible
for variant generation, and thus for variant-based unification. We also provide in Section 14.4
a command get variants for user generation of variants.

14.3 Theories currently supported

The equational theories that are admissible for variant generation are as follows. Let fmod

(Σ, E ∪ Ax) endfm (resp. fth (Σ, E ∪ Ax,R) endfth) be an order-sorted functional module
(resp. functional theory) where E is a set of equations specified with the eq keyword and the
attribute variant, and Ax is a set of axioms such that (Σ, Ax) satisfies the restrictions explained
in Section 13.3. Furthermore, the equations E must satisfy the following extra conditions:

• The equations E are unconditional, confluent, terminating, sort-decreasing, and coherent
modulo Ax (see also Section 21.5 for coherence details).

• An equation’s lefthand side cannot be a variable, and the owise feature is not allowed.

2Nothing happens if X is changed from [NatSet] to [Nat], since NatSet and Nat have the same kind.
3This is the only equation necessary for ACU -coherence and the other two would be eliminated.

348 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

Any system module mod (Σ, G ∪ E ∪Ax,R) endm (or system theory th (Σ, G ∪ E ∪Ax,R)
endth), where G is an additional set of equations (without the variant attribute!) and R is a
set of rules, is also considered admissible for variant generation if the equational part (Σ, E∪Ax)
satisfies the conditions described above. Note that when an equational theory (Σ, G∪E ∪Ax)
is entered into Maude, each equation in E (used for variant computation) must include the
variant attribute. Note that equations in G do not have any restriction, i.e., they can be
conditional equations, with the owise attribute, etc.

14.4 The get variants command

Given a module 〈ModId 〉, Maude provides two variant generation commands of the form:

get variants [n] in 〈ModId〉 : 〈Term〉 .

get irredundant variants [n] in 〈ModId〉 : 〈Term〉 .

where n is an optional argument providing a bound on the number of variants requested, so
that if the cardinality of the set of variants is greater than the specified bound, the variants
beyond that bound are omitted; and, as usual, if no module is mentioned, the current module
is used.

Maude allows an incremental generation of variants, as described in Section 14.6 below.
When a theory does not have the finite variant property, an incremental generation of the
(possibly infinite) set of most general variants would be returned by the first command get

variants. However, the second command, get irredundant variants, is useful for theories
that do have the finite variant property, since it will provide the set of most general variants of
a term, which is the basis for variant-based unification in Section 14.8.

For example, we can check that the EXCLUSIVE-OR module above has the finite variant
property by simply generating the variants for the exclusive-or symbol ∗.
Maude> get irredundant variants in EXCLUSIVE-OR : X * Y .

Variant 1

[NatSet]: #1:[NatSet] * #2:[NatSet]

X --> #1:[NatSet]

Y --> #2:[NatSet]

Variant 2

NatSet: mt

X --> %1:[NatSet]

Y --> %1:[NatSet]

Variant 3

[NatSet]: %1:[NatSet] * %3:[NatSet]

X --> %1:[NatSet] * %2:[NatSet]

Y --> %2:[NatSet] * %3:[NatSet]

Variant 4

[NatSet]: %1:[NatSet]

X --> %1:[NatSet] * %2:[NatSet]

Y --> %2:[NatSet]

Variant 5

[NatSet]: %2:[NatSet]

X --> %1:[NatSet]

14.4. THE GET VARIANTS COMMAND 349

Y --> %1:[NatSet] * %2:[NatSet]

Variant 6

[NatSet]: %1:[NatSet]

X --> mt

Y --> %1:[NatSet]

Variant 7

[NatSet]: %1:[NatSet]

X --> %1:[NatSet]

Y --> mt

No more variants.

The above example illustrates a difference between unifiers returned by the built-in unifi-
cation modulo axioms and unifiers returned by variant generation or variant-based unification:
there are two forms of fresh variables, the former #n:Sort and the new %n:Sort. The reasons
for this distinction are immaterial: they are adopted conventions dictated by implementation
choices. Both forms represent fresh variables and both share the same counter for new fresh
variables. The user is required not to use variables of any of these two forms in submitted
unification problems (either modulo axioms or variant-based). When variant-based unification
is used at the metalevel (see Section 17.6.9), there are two possibilities: (i) a counter for new
fresh variables must take into account the numbers used for both forms of fresh variables, or
(ii) an alternative identifier for new variables can be given.

Recall that memberships are discarded completely. For instance, we can modify the previous
example to include a membership definition for a new sort Empty.

fmod EXCLUSIVE-OR-MB is

sorts Nat NatSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _*_ : NatSet NatSet -> NatSet [ctor assoc comm] .

sort Empty .

subsort Empty < NatSet .

mb mt : Empty .

vars X Y Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X * mt = X [variant] .

endfm

We can ask then for the variants of the exclusive-or symbol ∗ when restricted to the sort Empty,
and the results use the variant equations but not the membership information.

Maude> get irredundant variants in EXCLUSIVE-OR-MB : X:Empty * Y:Empty .

Variant 1

NatSet: #1:Empty * #2:Empty

X:Empty --> #1:Empty

Y:Empty --> #2:Empty

350 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

Variant 2

Empty: mt

X:Empty --> %1:Empty

Y:Empty --> %1:Empty

No more variants.

Note that the membership is used to compute the least sort of terms involved in the results (like
the constant mt above), but is not used during variant generation. For example, this process is
not able to instantiate any of the two variables to the constant mt.

Consider now the following version of the vending machine to buy apples (a) or cakes (c)
with dollars ($) and/or quarters (q). The reader can check that the only difference with the
UNIF-VENDING-MACHINE module in Section 13.4.4 is the change equation, where we have added
the attribute variant and a variable M to make it ACU -coherent (see Section 21.5 for details
on ACU -coherence).

mod VARIANT-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change] : q q q q M = $ M [variant] .

endm

Note that the change equation satisfies the finite variant property, as proved by generating the
variants of symbol __.

Maude> get irredundant variants in VARIANT-VENDING-MACHINE : X:Marking Y:Marking .

Variant 1

State: #1:Marking #2:Marking

X:Marking --> #1:Marking

Y:Marking --> #2:Marking

Variant 2

State: %1:Marking %2:Marking

X:Marking --> q q q %1:Marking

Y:Marking --> q %2:Marking

Variant 3

State: %1:Marking %2:Marking

X:Marking --> q q %1:Marking

Y:Marking --> q q %2:Marking

Variant 4

State: %1:Marking %2:Marking

14.4. THE GET VARIANTS COMMAND 351

X:Marking --> q %1:Marking

Y:Marking --> q q q %2:Marking

We can also generate the variants of the state < $ q q X:Marking > containing at least a
dollar and two quarters.

Maude> get irredundant variants in VARIANT-VENDING-MACHINE : < $ q q X:Marking > .

Variant 1

State: < $ q q #1:Marking >

X:Marking --> #1:Marking

Variant 2

State: < $ $ %1:Marking >

X:Marking --> q q %1:Marking

These two variants form a finite, complete, and most general set of variants for the given term;
for example, the variant

{< $ $ q q Y:Marking >, X:Marking --> q q q q Y:Marking}

is an instance of the first variant above, i.e., the canonical form < $ $ q q Y:Marking > is an
instance of the normal form < $ q q #1:Marking > of the first variant, and the (normalized
version) of the instantiating substitution, i.e., #1:Marking --> $ Y:Marking, is an instance of
the empty substitution of the first variant.

We can consider a more complex equational theory such as Lankford’s formalization of an
Abelian group, specified in the following module.

fmod ABELIAN-GROUP is

sorts Element .

op _+_ : Element Element -> Element [comm assoc prec 30] .

op -_ : Element -> Element [prec 20] .

op 0 : -> Element .

vars X Y Z : Element .

eq X + 0 = X [variant] .

eq X + - X = 0 [variant] .

eq X + - X + Y = Y [variant] .

eq - - X = X [variant] .

eq - 0 = 0 [variant] .

eq - X + - Y = -(X + Y) [variant] .

eq -(X + Y) + Y = - X [variant] .

eq -(- X + Y) = X + - Y [variant] .

eq - X + - Y + Z = -(X + Y) + Z [variant] .

eq -(X + Y) + Y + Z = - X + Z [variant] .

endfm

The generation of the variants for the addition symbol takes more time and provides 47 variants:

Maude> get irredundant variants in ABELIAN-GROUP : X + Y .

Variant 1

Element: #1:Element + #2:Element

X --> #1:Element

Y --> #2:Element

Variant 2

Element: %1:Element

352 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

X --> 0

Y --> %1:Element

...

Variant 46

Element: %2:Element + - (%3:Element + %4:Element)

X --> %5:Element + - (%1:Element + %3:Element)

Y --> %1:Element + %2:Element + - (%4:Element + %5:Element)

Variant 47

Element: - (%2:Element + %3:Element)

X --> %4:Element + - (%1:Element + %2:Element)

Y --> %1:Element + - (%3:Element + %4:Element)

And the minus sign symbol has four variants:

Maude> get irredundant variants in ABELIAN-GROUP : - X .

Variant 1

Element: - #1:Element

X --> #1:Element

Variant 2

Element: %1:Element

X --> - %1:Element

Variant 3

Element: 0

X --> 0

Variant 4

Element: %1:Element + - %2:Element

X --> %2:Element + - %1:Element

14.5 Variant generation with irreducibility constraints

Variant generation is useful to many applications (see Sections 13.5 and 15.2) but especially for
variant-based unification, as explained in Section 14.8 below. One special version of the variant
generation algorithm implemented in Maude 3.0 includes irreducibility conditions, i.e., a term
is not allowed to be reducible after applying a substitution. This is useful when, for example,
the variants of a term may have been generated before and one is not interested in generating
the variants of a variant of a term, since the variant t3 of a variant t2 of a term t1 must be
already covered by a variant of t1 (maybe t2 itself). The irreducibility condition is appended
by using the keywords such that T1, T2, T3, ... irreducible.

For example, we may reconsider the generation of the set of irredundant variants of the
expression X * Y in page 348 but now assuming that the term itself is irreducible, that is, no
further variant must be computed.

Maude> get irredundant variants in EXCLUSIVE-OR : X * Y such that X * Y irreducible .

Variant 1

[NatSet]: #1:[NatSet] * #2:[NatSet]

X --> #1:[NatSet]

14.6. INCREMENTAL VARIANT GENERATION 353

Y --> #2:[NatSet]

Similarly, we may reconsider the generation of the set of irredundant variants of the state
< $ q q X:Marking > in page 351 but assuming that different subterms separated by commas
are irreducible.

Maude> get irredundant variants in VARIANT-VENDING-MACHINE : < $ q q X:Marking >

such that q q X:Marking, q X:Marking, X:Marking irreducible .

Variant 1

State: < $ q q #1:Marking >

X:Marking --> #1:Marking

This command clearly discards the variant where X:Marking is mapped to q q %1:Marking,
since it violates the condition that q q X:Marking must be irreducible under substitution.

14.6 Incremental variant generation

Another interesting feature is that variant generation is incremental and in this way we are able
to give partial support to theories that do not have the finite variant property. Let us consider
the functional module for addition NAT-VARIANT in Section 14.1 that does not have the finite
variant property. On the one hand, it is possible to have a term with a finite number of most
general variants although the theory does not have the finite variant property. For instance,
the term s(0) + X is simplified into s(X).

Maude> get variants in NAT-VARIANT : s(0) + X:Nat .

Variant 1

Nat: s(#1:Nat)

X:Nat --> #1:Nat

On the other hand, we can approximate the number of variants of a term that we suspect does
not have a finite number of most general variants. For instance, the term X + s(0) has an
infinite number of most general variants and we can approximate that infinite set of variants
by including a bound in the command, as it is also done for unification modulo axioms (see
Section 13.4.2).

Maude> get variants [10] in NAT-VARIANT : X:Nat + s(0) .

Variant 1

Nat: #1:Nat + s(0)

X:Nat --> #1:Nat

Variant 2

Nat: s(0)

X:Nat --> 0

...

Variant 10

Nat: s(s(s(s(s(0)))))

X:Nat --> s(s(s(s(0))))

Note that typing get irredundant variants in the previous command would force Maude to
generate the infinite set of variants before collecting the ten most general ones.

354 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

This incremental variant generation may be useful in applications where obtaining a com-
plete set of variants when possible is important. If we do not know a priori whether a term
has a finite number of most general variants, we can incrementally increase the bound and if
we obtain a number of variants smaller than the bound, we know for sure that it had a finite
number of most general variants.

When an equational theory satisfies the requirements in Section 14.3 and does not have the
finite variant property, it is because there are terms with an infinite set of most general variants.
Of course, if the user does not provide a bound, Maude does not stop because it always returns
a complete set of variants. However, when the user provides such a bound, the process will
always terminate with Maude returning a finite set of variants. As said above, the number of
returned variants can be smaller than the given bound when the term has indeed a finite set
of variants, but it will coincide with the bound otherwise.

14.7 Variant generation in incomplete unification exam-
ples

The unification infrastructure now supports the notion of incomplete unification algorithms
(see Section 13.4.6) and variant generation and variant unification have been updated.

Let us consider an equational theory combining variant equations and associativity.

fmod VARIANT-UNIFICATION-ASSOC is

protecting NAT .

sort NList .

subsort Nat < NList .

op _:_ : NList NList -> NList [assoc ctor] .

var E : Nat .

var L : NList .

ops tail prefix : NList ~> NList .

ops head last : NList ~> Nat .

eq head(E : L) = E [variant] .

eq tail(E : L) = L [variant] .

eq prefix(L : E) = L [variant] .

eq last(L : E) = E [variant] .

op duplicate : NList ~> Bool .

eq duplicate(L : L) = true [variant] .

endfm

Some terms have a finite set of most general variants modulo associativity.

Maude> get variants in VARIANT-UNIFICATION-ASSOC : head(prefix(tail(L))) .

Variant 1

Nat: head(prefix(tail(#1:NList)))

L --> #1:NList

Variant 2

Nat: head(prefix(%2:NList))

L --> %1:Nat : %2:NList

14.7. VARIANT GENERATION IN INCOMPLETE UNIFICATION EXAMPLES 355

Variant 3

Nat: head(#2:NList)

L --> #1:Nat : #2:NList : #3:Nat

Variant 4

Nat: %3:Nat

L --> %1:Nat : %3:Nat : %4:NList : %2:Nat

No more variants.

However, some terms may hit incomplete associative unification calls (see Section 13.4.6), and
an incompleteness warning for associative unification will be printed.

Maude> get variants in VARIANT-UNIFICATION-ASSOC :

duplicate(prefix(L) : tail(L)) .

Variant 1

[Bool]: duplicate(prefix(#1:NList) : tail(#1:NList))

L --> #1:NList

Variant 2

[Bool]: duplicate(%1:NList : tail(%1:NList : %2:Nat))

L --> %1:NList : %2:Nat

Variant 3

[Bool]: duplicate(prefix(%1:Nat : %2:NList) : %2:NList)

L --> %1:Nat : %2:NList

Variant 4

[Bool]: duplicate(#1:Nat : #2:NList : #2:NList : #3:Nat)

L --> #1:Nat : #2:NList : #3:Nat

Variant 5

[Bool]: duplicate(#1:Nat : #2:Nat)

L --> #1:Nat : #2:Nat

Warning: Unification modulo the theory of operator _:_ has encountered

an instance for which it may not be complete.

Variant 6

Bool: true

L --> %1:Nat : %1:Nat : %1:Nat

Variant 7

Bool: true

L --> %1:Nat : %1:Nat

No more variants.

Warning: Some variants may have been missed due to incomplete unification algorithm(s).

Note that the term duplicate(prefix(L) : tail(L)) has an infinite set of most general vari-
ants for the case of returning the variant term true, i.e., the family of substitutions {L:NList 7→
N:Nat : · · · : N:Nat}. This is due to the associative unification call (N:Nat : L:NList) =?

(L:NList : N:Nat) invoked internally by the variant generation process (see Section 13.4.6 for
a similar associative unification problem with an infinite set of most general unifiers).

356 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

14.8 Variant-based equational order-sorted unification

The intimate connection between E,Ax-variants and E ∪Ax-unification is as follows. Suppose
that we extend the equational theory (Σ, E ∪ Ax) to (Σ̂, Ê ∪ Ax) by adding to Σ a new sort
Truth, not related to any sort in Σ, with a constant tt, and, for each top sort of a connected
component [s], an operator eq : [s] [s] -> Truth; and where Ê is the result of adding for
each top sort [s] an extra (oriented) equation eq(x,x) = tt (where x is a variable of sort
[s]) to E. Then, given any two terms t, t′, if θ is an E ∪ Ax-unifier of t and t′, then the
E,Ax-canonical forms of θ(t) and θ(t′) must be Ax-equal and therefore the pair (tt, θ) must be
a variant of the term eq(t, t′). Furthermore, if the term eq(t, t′) has a finite set of most general
variants, then we are guaranteed that the set of most general E∪Ax-unifiers of t and t′ is finite.

At a practical level, variants are generated using narrowing (see Chapter 15 for narrowing
capabilities in Maude). Narrowing with oriented equations E (with or without modulo Ax)
enjoys well-known completeness results, including the generation of complete sets of unifiers
and covering all rewriting sequences from instances of a term using normalized substitutions
(i.e., variants). For instance, [84] showed that narrowing with E without axioms enjoyed
good completeness results, and [85] showed that narrowing with E modulo axioms Ax enjoyed
also good completeness results. But narrowing can be quite inefficient, generating a huge
search space, and different narrowing strategies have been devised to reduce the search space
while remaining complete, specially for unification purposes (see [5] for a survey on narrowing
termination). The basic narrowing strategy of [84] provided a restriction of narrowing that,
while being complete, it was terminating for specific classes of theories. However, very little
was known about effective narrowing strategies in the modulo case, and some of the known
anomalies ring a cautionary note, to the effect that the naive extensions of standard narrowing
strategies, for example basic narrowing modulo AC, were incomplete [137, 36], although a recent
variation of the basic narrowing strategy has been proved complete in [88]. In [71], the folding
variant narrowing strategy is defined for the modulo case and it is proved to be complete for
variants and with good termination properties, providing a finitary and complete unification
algorithm for equational unification for the theories described in Section 14.3 that also satisfy
the finite variant property. Moreover, it is even better than the basic narrowing strategy in
the case without axioms, since it can terminate for equational theories where basic narrowing
cannot (see [71]).

In Maude 2.6, variant generation and variant-based equational unification were implemented
in Maude and made available in Full Maude. Instead, since Maude 2.7 variant generation and
variant-based equational unification are implemented in Core Maude’s C++ level for efficiency
purposes and using the Ax-unification algorithm described in Section 13.4. Furthermore, the
variant generation and variant-based equational unification available in Maude 2.6 were accept-
ing only equational theories where the righthand side of the equations was a strongly irreducible
term (e.g., a variable or a constant), while the current version implements the folding variant
narrowing strategy in full generality. By “full generality” we mean not just any equational
theory (Σ, E ∪ Ax) having the finite variant property with Ax satisfying the requirements in
Section 13.3 (so that unification is finitary), but any confluent, coherent, and terminating mod-
ulo Ax decomposition (Σ, Ax,E), thus obtaining an incremental generation for the (in general
infinite) set of E ∪Ax-unifiers in that case.

The key distinction, now supported for the first time in Maude in full generality, is one
between dedicated unification algorithms for a limited set of axioms Ax and generic unification
algorithms which can be applied to a much wider range of user-definable theories and can even
deal with incremental generation of infinite sets of unifiers.

14.9. THE VARIANT UNIFY COMMAND 357

14.9 The variant unify command

Given a module 〈ModId 〉, of the general form mod (Σ, G ∪ E ∪Ax,R) endm where (Σ, E ∪Ax)
satisfies the requirements of Section 14.3 and satisfies also the finite variant property, Maude
provides a command for E ∪ Ax-equational unification based on variant generation of the
following two forms:

variant unify [n] in 〈ModId〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k〉 =? 〈Term’-k〉 .

filtered variant unify [n] in 〈ModId〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k〉 =? 〈Term’-k〉 .

where k ≥ 1; n is an optional argument providing a bound on the number of unifiers requested,
so that if the cardinality of the set of unifiers is greater than the specified bound, the unifiers
beyond that bound are omitted; and, as usual, if no module is mentioned, the current module
is used. The second command

Consider again the module VARIANT-VENDING-MACHINE introduced in Section 14.4. We can
ask whether there is an E ∪Ax-equational unifier of two configurations, one containing at least
two quarters, and another containing at least one dollar, by invoking the following command:

Maude> variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ %1:Marking

Y:Marking --> q q %1:Marking

Unifier 2

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

It may not be obvious that this is not the minimal set of most general unifiers, but the filtered
version returns only one unifier.

Maude> filtered variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

The first unifier is an instance of the second unifier by applying #1:Marking --> q q and
simplifying q q q q into $. Instead, the second unifier is not an instance of the first unifier
because the $ in normal form disables any possibility.

Note that there are equational theories where two unifiers are comparable in both directions,
i.e. unifier σ1 is an instance of unifier σ2 modulo the equational theory and viceversa. In such
a case, Maude arbitrarily returns one of them. For instance, it is well-known that unification in
the exclusive-or theory is unitary [86] and, for the following unification problem, the variant

unify command returns 57 unifiers whereas the filtered variant unify command returns
just one, but several could be appropriate candidates for most general unifier.

Maude> filtered variant unify in EXCLUSIVE-OR : X * Y =? Z * W .

Unifier 1

X --> %1:[NatSet] * %3:[NatSet]

358 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

Y --> %2:[NatSet] * %4:[NatSet]

Z --> %1:[NatSet] * %2:[NatSet]

W --> %3:[NatSet] * %4:[NatSet]

14.10 Variant-based unification with irreducibility con-
straints

Similarly to Section 14.5, we may need to perform variant-based unification but with some
irreducibility conditions. The irreducibility condition is appended by using the keywords
such that T1, T2, T3, ... irreducible.

For example, we may reconsider the unification problem of terms < q q X:Marking > and
< $ Y:Marking > above but assuming that different subterms separated by commas are irre-
ducible.

variant unify in VARIANT-VENDING-MACHINE : < q q X:Marking > =? < $ Y:Marking >

such that q q X:Marking, q X:Marking, X:Marking irreducible .

Unifier 1

rewrites: 0 in 0ms cpu (0ms real) (0 rewrites/second)

X:Marking --> $ %1:Marking

Y:Marking --> q q %1:Marking

This command clearly discards the second unifier where X:Marking is mapped to q q %1:Marking,
since violates the condition that q q X:Marking must be irreducible under substitution.

14.11 Incremental variant unification

Similarly to the incremental generation of variants in Section 14.6, one can obtain an incremen-
tal number of unifiers for a given unification problem. Let us consider again the NAT-VARIANT

module in Section 14.1 that does not have the finite variant property. On the one hand, it is
possible to have a finite number of most general unifiers for a unification problem although the
theory does not have the finite variant property. For instance, the unification problem between
s(0) + X and s(s(s(0))) returns just one unifier.

Maude> variant unify in NAT-VARIANT : s(0) + X:Nat =? s(s(s(0))) .

Unifier 1

X:Nat --> s(s(0))

No more unifiers.

On the other hand, we can approximate the number of unifiers of a unification problem that
we suspect does not have a finite number of most general unifiers. For instance, the unification
problem between terms X + s(0) and s(s(s(0))) has only one solution X 7→ s(s(0)) and we
can obtain that solution by including a bound in the command, as it is also done for variant
generation.

Maude> variant unify [1] in NAT-VARIANT : X:Nat + s(0) =? s(s(s(0))) .

Unifier 1

X:Nat --> s(s(0))

14.12. VARIANT UNIFICATION IN INCOMPLETE UNIFICATION EXAMPLES 359

However, if we tried to obtain two unifiers, Maude would not stop because it would keep trying
to generate a second unifier for a unification problem that has only one unifier, without knowing
that it could stop. This differs from the incremental generation of variants (Section 14.6), where
we can incrementally increase the bound even if the theory does not have the finite variant
property and Maude will always stop with a new variant. The problem here is due to the fact
that Maude needs to compute the set of variants before computing the set of unifiers; when
the equational theory does not have the finite variant property, such a set of variants can be
infinite and Maude is not able to complete this computation, even when the user provides a
bound, because such a bound refers to the number of requested unifiers, but not to the number
of variants, which in this process is just part of the internal process for computing unifiers. As
in the example above, this can happen even when there are no further unifiers.

14.12 Variant unification in incomplete unification exam-
ples

Similarly to the incomplete variant generation in Section 14.7, we can have variant unification
calls that cannot provide a finitary set of most general unifiers. Let us consider again the
VARIANT-UNIFICATION-ASSOC theory of Section 14.7.

We can force unification calls, within variant unification, to an associative unification
problem with an infinite set of most general unifiers, e.g., the previously described associa-
tive unification problem N:Nat : L:NList =? L:NList : N;Nat with the family of substitutions
{L:NList 7→ N:Nat : · · · : N:Nat}:
Maude> variant unify in VARIANT-UNIFICATION-ASSOC :

head(L) =? last(L) /\ prefix(L) =? tail(L) .

Warning: Unification modulo the theory of operator _:_ has encountered

an instance for which it may not be complete.

Unifier 1

L --> %1:Nat : %1:Nat : %1:Nat

Unifier 2

L --> %1:Nat : %1:Nat

No more unifiers.

Warning: Some unifiers may have been missed due to incomplete unification algorithm(s).

Notice that the unification problem head(L) =? last(L) /\ prefix(L) =? tail(L) has the
same solutions as the unification problem N : L =? L : N.

14.13 The variant match command

Given a module 〈ModId 〉, of the general form mod (Σ, G ∪ E ∪Ax,R) endm where (Σ, E ∪Ax)
satisfies the requirements of Section 14.3 and has also the finite variant property, Maude provides
a command for E ∪Ax-equational matching based on variant generation of the form:

variant match [n] in 〈ModId〉 :

〈Term-1 〉 <=? 〈Term’-1 〉 /\ ... /\ 〈Term-k〉 <=? 〈Term’-k〉 .

where k ≥ 1; n is an optional argument providing a bound on the number of matches requested
and, as usual, if no module is mentioned, the current module is used.

360 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

Variant matching works like variant unification, except that the right hand side of each
matching problem is considered as a ground term, with variables treated as constants. Op-
erationally, a slightly different algorithm to that for variant unification is used and variant
generation is never applied to the right hand sides of the matching problems.

Consider again the module VARIANT-VENDING-MACHINE introduced in Section 14.4. We
can ask whether a configuration containing at least two quarters can match a configuration
containing at least one dollar, by invoking the following command:

Maude> variant match in VARIANT-VENDING-MACHINE :

< q q X:Marking > <=? < $ Y:Marking > .

Matcher 1

X:Marking --> q q Y:Marking

Chapter 15

Narrowing

15.1 Introduction

Narrowing is a generalization of term rewriting that allows logical variables in terms (as in logic
programming) and replaces pattern matching by unification in order to symbolically evaluate
these terms with given rewrite rules. Narrowing is a simple, precise answer to the question:

Given a term t with variables x1, . . . , xn, what are the most general instances of t
that can be rewritten by the given rules?

For example, t can be n+m, and the rewrite rules can be 0 + y → y and s(x) + y → s(x+ y).
The term n + m cannot be rewritten because of the variable n and finding the most general
instances becomes interesting; note that if + is commutative, then either n or m stop t from
being rewritten.

Narrowing was originally introduced as a mechanism for solving equational unification prob-
lems [73]. It was later generalized to solve the more general problem of symbolic reacha-
bility [114]. The narrowing mechanism has a number of important applications, including
automated proofs of termination [7], execution of functional-logic programming languages
[77, 39, 80, 126, 103], partial evaluation [4], verification of cryptographic protocols [114], and
equational unification [84], to mention just a few.

At each rewriting step one must choose which subterm of the subject term and which rule of
the specification are going to be considered. Similarly, at each narrowing step one must choose
which subterm of the subject term, which rule of the specification, and which instantiation
on the variables of the subject term and the rule’s lefthand side are going to be considered.
The narrowing relation is formally defined as follows. Let R = (Σ, E ∪ Ax,R) be an order-
sorted rewrite theory where R is a set of unconditional rewrite rules specified with the rl

keyword, E is a set of unconditional equations specified with the eq keyword, and Ax is a set of
commonly occurring axioms declared in Maude as equational attributes (see Section 4.4.1) such
that an E ∪ Ax-unification procedure is available in Maude.1 Let CSUE∪Ax(u = u′) provide2

1 E∪Ax-unification is available via the variant-based equational unification explained in Section 14.9. Note,
however, that Maude will only perform E ∪Ax-unification with those equations E that have been declared with
the variant attribute. In particular, if no equation in E has the variant attribute, Maude will only perform
the Ax-unification explained in Section 13.4.

2Although Sections 13.4 and 14.9 provide a command for computing minimal sets of, respectively, unifiers
modulo axioms or modulo a convergent equational theory, at present the complete sets of unifiers used by the
narrowing commands are not minimal. Support for narrowing with a minimal set of unifiers is planned for a
future release.

361

362 CHAPTER 15. NARROWING

a finitary and complete set of unifiers for any pair of terms u, u′ with the same top sort. The
R,E∪Ax-narrowing relation on TΣ(X) is defined as t;σ,p,R,E∪Ax t′ (or ;σ when p,R,E∪Ax
are understood) if there is a non-variable position p of t, a (possibly renamed) rule l→ r in R,
and a unifier σ ∈ CSUE∪Ax(t|p = l) such that t′ = σ(t[r]p). We denote by t;+

σ,R,E∪Ax t
′ (resp.

t;∗σ,R,E∪Ax t
′) the transitive (resp. reflexive-transitive) closure of the narrowing relation, where

σ is obtained as the composition of the substitutions for each narrowing step in the sequence.
The difference between a rewriting step and a narrowing step is that in both cases we use

a rewrite rule l → r to rewrite t at a position p in t, but narrowing unifies the lefthand side l
and the chosen subject term t|p before actually performing the rewriting step. Also, narrowing
is usually3 restricted to non-variable positions of t, whereas rewriting does not require such a
restriction.

Consider the following system module defining the addition function _+_ on natural numbers
built from 0 and s:

mod NAT-NARROWING is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

rl [base] : 0 + Y => Y .

rl [ind] : s(X) + Y => s(X + Y) .

endm

Consider the term X + s(0) and the two rules base and ind. Narrowing will instantiate
variable X with 0 and s(X’) respectively in order to be able to apply each of these rules, i.e.,
the following two narrowing steps are generated:

X + s(0) ;{X7→0},base s(0)

X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

Note that, for simplicity, we show only the bindings of the unifier that affect the input term.
There are infinitely many narrowing derivations starting at the input expression X + s(0) (at
each step the reduced subterm is underlined):

1. X + s(0) ;{X7→0},base s(0)

2. X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

;{#1:Nat7→0},base s(s(0))

3. X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

;{#1:Nat7→s(#2:Nat)},ind s(s(#2:Nat + s(0)))

;{#2:Nat7→0},base s(s(s(0)))

and so on.
The following infinite narrowing derivation resulting from applying rule ind infinitely many

times can also be shown:

X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

;{#1:Nat7→s(#2:Nat)},ind s(s(#2:Nat + s(0)))

;{#2:Nat7→s(#3:Nat)},ind s(s(s(#3:Nat + s(0))))

. . .
3The paramodulation inference rule used in paramodulation-based theorem proving [117] is similar to nar-

rowing and does not require non-variable positions.

15.2. APPLICATIONS 363

15.2 Applications

The classical application of narrowing modulo an equational theory is to perform E ∪ Ax-
unification by ~E,Ax-narrowing when the equations E are oriented into sort-decreasing, con-
fluent, terminating, and coherent modulo Ax rules ~E. Indeed the variant-based equational
order-sorted unification algorithm of Section 14.8 is based on an E,Ax-narrowing strategy,
called folding variant narrowing [71], that terminates when E ∪Ax has the finite variant prop-
erty [36], even though full E,Ax-narrowing typically does not terminate when Ax contains AC
axioms [36, 71].

Instead, when the rules R are understood as transition rules, a completely different applica-
tion of R,E ∪Ax-narrowing is that of symbolic reachability analysis [114] (see Section 13.5.2).
Specifically, we will consider the case of transition systems specified by order-sorted rewrite
theories of the form R = (Σ, E ∪ Ax,R) where: (i) E ∪ Ax has a finite and complete E ∪ Ax-
unification algorithm (see the requirements of Section 14.1), and (ii) the transition rules R are
E ∪Ax-coherent and topmost (so that rewriting is always done at the top of the term). Then,
narrowing is a complete deductive method [114] for symbolic reachability analysis, that is, for
solving existential queries of the form ∃x t(x)→∗ t′(x) in the sense that the formula holds for
R iff there is a narrowing sequence t;∗R,E∪Ax u such that u and t′ have an E ∪Ax-unifier.

Furthermore, in symbolic reachability analysis we may be interested in verifying properties
more general than existential questions of the form ∃X t −→∗ t′. One can also generalize the
above reachability question to questions of the form R, t |= ϕ, with ϕ a temporal logic formula.
The papers [68, 8] show how narrowing can be used (again, both at the level of transitions
with rules R and at the level of equations E) to perform logical model checking to verify such
temporal logic formulas; this is a kind of symbolic model checking not in the binary decision
diagram sense of “symbolic,” which still remains finite-state, but in a much more general sense
in which possibly infinite sets of states are finitely described by patterns with logical variables.
Two distinctive features are: (i) the term t does not describe a single initial state, but a possibly
infinite set of instances of t (i.e., a possibly infinite set of initial states4); and (ii) the set of
reachable states does not have to be finite. Therefore, standard model-checking techniques may
not be usable, because of a possible double infinity: in the number of initial states, and in the
number of states reachable from each of those initial states.

15.3 Completeness of narrowing

Due to nontermination, narrowing behaves as a semi-decision procedure for equational unifica-
tion and for reachability analysis in a wide variety of theories. However, for some particular
subject terms narrowing may terminate, providing a complete set of solutions. For instance, in
the Maude module NAT-NARROWING above, narrowing computes the solution {X 7→ s(Y)} for the
reachability problem ∃X, Y 0 + X →∗ s(Y) and it terminates with no more solutions. Instead,
for the reachability problem ∃X, Z X + s(0) →∗ s(s(Z)), narrowing computes the solution
{X 7→ s(0), Z 7→ 0} but it cannot terminate because of the above infinite narrowing sequence
using ind. Moreover, narrowing cannot prove that the reachability problem ∃X X + s(0)→∗ 0
does not have a solution, again because of the above infinite narrowing sequence using ind.

Note that for any narrowing sequence t ;∗σ,R,E∪Ax s, we have a corresponding rewrite
sequence σ(t) →∗R/E∪Ax s′, where, by definition, the rewrite relation →R/E∪Ax is the relation

composition: →R/E∪Ax=def (=E∪Ax);→R; (=E∪Ax), i.e., the transition relation between states

4In general, a set of initial states may not be describable by a single pattern t, but may have a description as
a finite collection of patterns t1, . . . , tn. There is no problem in handling this more general case: the narrowing-
based symbolic model checking can just take a tuple 〈t1, . . . , tn〉.

364 CHAPTER 15. NARROWING

in the given rewrite theory R = (Σ, E ∪ Ax,R). However, only under appropriate conditions
is narrowing complete as an equational unification algorithm [84, 85], or as a procedure to
solve reachability problems [114]. That is, given a reachability problem5 ∃x1, . . . , xk : s →∗ t,
completeness of narrowing for reachability analysis means that for each possible substitution ρ
such that ρ(s)→∗R/E∪Ax ρ(t), and for all the substitutions σ1, . . . , σn, . . ., provided by narrowing
from s, there is an index i and a term ui such that, if s;σ1,R,E∪Ax u1 · · ·ui−1 ;σi,R,E∪Ax ui,
then there is a E ∪Ax-unifier τ of the equation ui = t, and therefore there is a rewrite sequence
τ(σ(s)) →∗R/E∪Ax τ(ui), showing that a instance of s reaches an instance of t modulo the
equations E ∪Ax. Essentially, completeness holds under the following conditions:

1. for (R,E∪Ax)-normalized substitutions ρ above [114] (a stronger condition is (R∪E,Ax)-
normalized substitutions);

2. for topmost rewrite theories6;

3. for right-linear theories and linear reachability goals7;

4. in particular for theories that are confluent, terminating, and coherent modulo axioms Ax,
as the equational theories in Maude functional modules with such properties restricted to
unconditional equations.

15.4 Narrowing with simplification

As pointed out in Footnote 1, given a rewrite theory R = (Σ, E ∪G∪Ax,R), where Ax are the
axioms, and E ∪G the equations orientable as rewrite rules, if only the equations E have the
variant attribute, Maude will not perform narrowing with R modulo E ∪ G ∪ Ax, but only
modulo E ∪ Ax. This gives Maude users more flexibility, since the equations G may play a
useful, auxiliary role in the applications they have in mind. In particular, a concrete, practical
reason for using the decomposition E ∪ G is that E ∪ Ax may be FVP, but G may not be,
so that variant E ∪ Ax-unification is finitary, whereas variant E ∪ G ∪ Ax-unification will be
infinitary and undecidable. Note that the standard case of narrowing with R modulo E∪G∪Ax
is just the special case G = ∅, which may be particularly attractive if E∪Ax is FVP. The basic
intuition is that, in the most general version of narrowing supported by Maude that we now
explain, we narrow with R modulo E ∪ Ax, and we normalize with oriented equations ~E ∪ ~G
modulo Ax.

Each equation in E (used for variant computation) must include the variant attribute.
Note that equations in G do not contain the variant attribute and do not have any restric-
tion, i.e., they can be conditional equations, with the owise attribute, etc. Each narrowing
step of the form t;σ,p,R,E∪Ax t′ is followed by simplification using the relation →!

G∪E,Ax,

i.e., the combined relation (;σ,p,R,E∪Ax;→!
G∪E,Ax) is defined as t;σ,p,R,E∪Ax;→!

G∪E,Ax t
′′

iff t;σ,p,R,E∪Ax t′, t′ →∗G∪E,Ax t′′, and t′′ is G ∪ E,Ax-irreducible. Note that this combined

5Equational unification can be represented in terms of a reachability problem [85] (see Section 13.5.1) and,
therefore, we do not consider completeness results for equational unification here; see [5] for a survey on ter-
mination of narrowing and completeness results for equational unification and reachability problems in the free
case.

6That is, theories where every rewrite step is performed only at the top position of the term. In such theories
completeness can be simplified as follows: given ∃X1, . . . , Xk s→∗ t, for each ρ such that ρ(s)→∗R,Ax ρ(t), and
for all the substitutions σ1, . . . , σn, . . . provided by narrowing from s, there is an index i and a substitution τ
such that ρ =Ax σi; τ .

7A reachability goal of the form ∃X1, . . . , Xk s→∗ t is linear if s is linear and s and t do not have variables
in common.

15.5. THEORIES SUPPORTED FOR NARROWING REACHABILITY 365

relation (;σ,p,R,E∪Ax;→!
G∪E,Ax) may be incomplete, i.e., given a reachability problem of the

form t→∗ t′ and a solution σ (i.e., σ(t)→∗R,G∪E∪Ax σ(t′)), the relation ;σ,p,R,E∪Ax;→!
G∪E,Ax

may not be able to find a more general solution. The reason is that the equations G should
also be executed by narrowing instead of rewriting to ensure completeness under appropriate
conditions (see [114] and Section 15.3). However, the combination of narrowing using rules,
equations, and axioms with simplification using additional equations can be quite helpful to
allow built-in Maude functions such as addition or multiplication, which cannot be executed
by narrowing in their predefined form. It can also be useful in other applications where specific
combinations of narrowing and simplification are needed.

15.5 Theories supported for narrowing reachability

The narrowing relation is defined on top of the order-sorted variant-based unification procedure
described in Section 14.8. In order to avoid clashing of algorithms and notions, we have decided
that the rules used for narrowing should be identifiable, as the equations for variant unification,
and clearly distinguished from standard rules in Maude. For this purpose we have defined a
new attribute for equations: the keyword narrowing.

Let mod (Σ, G∪E ∪Ax,R∪H) endm be an order-sorted system module where R is a set of
rewrite rules specified with the rl keyword and the attribute narrowing, H are the remaining
rewrite rules specified with the rl or crl keywords but without the attribute narrowing, Ax
is a set of commonly occurring axioms (declared in Maude as equational attributes, see Sec-
tion 4.4.1), E is a set of equations specified with the eq keyword and the attribute variant

such that (Σ, E ∪ Ax) satisfies the restrictions mentioned in Section 14.8, and G are the re-
maining equations specified with the eq or ceq keywords but without the attribute variant.
Furthermore, the rules R must satisfy the following extra conditions:

• R cannot contain conditional rules specified with the crl keyword.

• The lefthand side of a rule in R cannot be a variable. If a variable is needed, one should
instead specify a new kind with an extra unary symbol grabbing the whole system’s state
(which would before have been matched by a single variable lefthand side). In this way,
the problem of having a variable lefthand side can often be solved.

• The rules in R must be explicitly Ax-coherent (see Section 5.3). If they are not, the
coherence completion algorithm of Section 21.5 should be used.

We recall again that the rules H are disregarded for narrowing modulo E ∪ Ax, and the
oriented equations G are disregarded for folding variant narrowing modulo Ax in the associated
task of variant unification. However, the equations G are applied for simplification after each
narrowing step (see Section 15.4), as it is performed in Maude for rewriting. Recall, again, that
this combination of one narrowing step followed by equational simplification is not complete. A
full treatment of rules, equations, and axioms for narrowing is outside the scope of the present
implementation and is left for future work.

Furthermore, frozen arguments (see Section 4.4.9) are allowed for narrowing, as for rewriting;
see the rewrite theory LAST-APPEND of page 372 below for the functions append and last written
in a functional-logic style. They are given the standard meaning of not allowing any narrowing
step below such frozen arguments, just as in the context-sensitive narrowing of [93].

Finally, we do not consider any narrowing strategy at all for solving reachability problems,
i.e., all positions in a term with an admissible R,E ∪Ax-narrowing step are explored.

366 CHAPTER 15. NARROWING

15.6 The vu-narrow command

Given a system module 〈ModId 〉, the user can give to Maude a narrowing-based search command
of the form (the prefix vu denotes that uses variant-based unification at each step):

vu-narrow [n, m] in 〈ModId〉 : 〈Term-1 〉 〈SearchArrow〉 〈Term-2 〉 .

where

• n is an optional argument providing a bound on the number of desired solutions;

• m is another optional argument stating the maximum depth of the search;

• the module 〈ModId 〉 where the search takes place can be omitted;

• 〈Term-1 〉 is the starting term, which typically will contain variables;

• 〈Term-2 〉 is the pattern that has to be reached, which may share variables with the
starting term (note that terms in the narrowing sequence will be unified with this target
pattern, in contrast to the search command of Section 5.4.3);

• 〈SearchArrow 〉 is an arrow indicating the form of the rewriting proof from 〈Term-1 〉 until
〈Term-2 〉:

– =>1 means a rewriting proof consisting of exactly one step,

– =>+ means a rewriting proof consisting of one or more steps,

– =>* means a proof consisting of none, one, or more steps, and

– =>! indicates that only narrowing sequences ending in terms describing sets of final
states are allowed. Such terms describing sets of final states are called strongly
irreducible in the sense that they cannot be further narrowed; note that this is
stronger than requiring states that cannot be rewritten as in the search command
of Section 5.4.3.

The one step arrow =>1 is an abbreviation of the one-or-more steps arrow =>+ with the
depth bound m set to 1.

Consider, for example, the following new version of the vending machine to buy apples (a)
or cakes (c) with dollars ($) and/or quarters (q). The reader can check that the only difference
with the VARIANT-VENDING-MACHINE module in Section 14.4 is the addition of the narrowing

attribute to the rules.

mod NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > [narrowing] .

rl [buy-a] : < M $ > => < M a q > [narrowing] .

eq [change] : q q q q M = $ M [variant] .

endm

15.6. THE VU-NARROW COMMAND 367

We can use the narrowing search command to answer the question:

Is there any combination of one or more coins that returns exactly an apple and a
cake?

This can be done by searching for states that are reachable from a term < M:Money > and
match the desired pattern at the end.

Maude> vu-narrow [1] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

Solution 1

state: < a c #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

The narrowing-based search returns the substitution accumulated along the narrowing sequence
and the variant unifier resulting from the unification of the target term and the last expression
in the narrowing sequence. Indeed both unifiers must be combined by hand in order to have
an actual solution to the symbolic reachability problem, as shown for the previous example.

Solution 1

state: < a c >

accumulated substitution:

M:Money --> $ q q q

Note that _ _ is an ACU symbol and that such an ACU symbol appears in the equation change,
disallowing the basic narrowing strategy [84] to be used for equational unification and requiring
the folding variant narrowing [71] to be used for equational unification.

Note that we have restricted the previous reachability problem to just one solution. Narrow-
ing does not terminate for this reachability problem even though the above solution is indeed
the only solution. The problem is that narrowing follows a breadth-first exploration and does
not stop until the whole narrowing tree demanded by the search command is created, even
though this infinite search may not yield any further solutions. The very same problem hap-
pens for the standard search command (see Section 5.4.3). If we increase the depth of the
narrowing tree, we can experimentally observe that there are no more solutions than the one
shown before.

Maude> vu-narrow [,5] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

Solution 1

state: < a c #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

The narrowing-based search version does not provide paths to solutions but there is a metalevel
command, described in Section 17.6.11, that does provide paths.

In the previous reachability problem we can change the arrow =>* for reachability in zero
or more steps by the arrow =>! for reachability in zero or more steps including only states that
cannot be narrowed any more.

Maude> vu-narrow [,5] in NARROWING-VENDING-MACHINE : < M:Money > =>! < a c > .

No solution.

368 CHAPTER 15. NARROWING

And surprisingly we do not find the previous solution. The reason is that the transition rules
of the vending machine are not terminating for narrowing and for rewriting, so it is impossible
to find a state that cannot be narrowed any more. However, if we replace the variable M:Money

by variables of sort Coin, we are able to find appropriate solutions. That is, we formulate the
following interesting question:

Is there any combination of four coins that returns an apple and a cake and is such
that some extra money is left but that extra money cannot be used to buy anything
else?

The fact that some money may be left is characterized by including a variable of sort Money in
the final state, and the fact that nothing else can be bought is characterized by using the =>!

arrow instead of =>*.

vu-narrow [,10] in NARROWING-VENDING-MACHINE :

< C1:Coin C2:Coin C3:Coin C4:Coin > =>! < M:Money a c > .

Solution 1

state: < a c >

accumulated substitution:

C1:Coin --> q

C2:Coin --> q

C3:Coin --> q

C4:Coin --> $
variant unifier:

M:Money --> empty

Solution 2

state: < a c >

accumulated substitution:

C1:Coin --> q

C2:Coin --> q

C3:Coin --> $
C4:Coin --> q

variant unifier:

M:Money --> empty

Solution 3

state: < a c >

accumulated substitution:

C1:Coin --> q

C2:Coin --> $
C3:Coin --> q

C4:Coin --> q

variant unifier:

M:Money --> empty

Solution 4

state: < a c >

accumulated substitution:

C1:Coin --> $
C2:Coin --> q

C3:Coin --> q

C4:Coin --> q

15.7. THE FVU-NARROW COMMAND 369

variant unifier:

M:Money --> empty

No more solutions.

Another point of interest is the occurrence of variables of the form #n:Sort or %n:Sort,
which are called fresh and are described in Chapter 13. Unification modulo axioms usually
introduces fresh variables; furthermore, narrowing introduces many fresh variables because the
rule applied at each narrowing step is appropriately renamed so that no variable is shared
by it and the current term. Indeed, the standard solution used in logic and functional-logic
programming language implementations is to use a counter along each narrowing derivation to
ensure that fresh variables have never been used previously in that narrowing derivation. This
method is called standardized apart [6] and it is summarized by saying that a new version of a
rule, equation or axiom is always generated before being used for unification or narrowing by
renaming variables according to the counter, which is incremented afterwards. This method
makes the result of a computation independent of the choice of variable names.

15.7 The fvu-narrow command

We have motivated in the previous sections how narrowing can be used for symbolic reachability
analysis [114] using the vu-narrow command. However, narrowing builds a reachability tree
rather than a reachability graph, as the search command of Section 5.4.3 does for rewriting
with rules. We have endowed Maude with a different narrowing command, the fvu-narrow

command, that does fold some branches of the narrowing reachability tree in order to create
a graph, with the difference that the search command identifies states in the rewriting-based
reachability tree that are equal modulo axioms whereas the fvu-narrow command identifies
states in the narrowing-based reachability tree that are equal modulo axioms and equations
under instantiation8. This is similar in nature to the folding variant narrowing strategy [71] of
the variant generation command of Chapter 14 but using rules instead of equations. Indeed,
the logical model checking of [68, 8] is based on earlier versions of this fvu-narrow command.

Given a system module 〈ModId 〉, the user now can give to Maude a folding narrowing-based
search command of the form (the prefix f denotes folding):

fvu-narrow [n, m] in 〈ModId〉 : 〈Term-1 〉 〈SearchArrow〉 〈Term-2 〉 .

where

• n is an optional argument providing a bound on the number of desired solutions;

• m is another optional argument stating the maximum depth of the search;

• the module 〈ModId 〉 where the search takes place can be omitted;

• 〈Term-1 〉 is the starting term, which typically will contain variables;

• 〈Term-2 〉 is the pattern that has to be reached, which may share variables with the
starting term;

• 〈SearchArrow 〉 is an arrow indicating the form of the rewriting proof from 〈Term-1 〉 until
〈Term-2 〉:

8A new generated state s2 (possibly with variables) is folded into a previously generated state s1 (possibly
with variables, different from those of s2) if s2 is an instance of s1 modulo axioms and variant equations.

370 CHAPTER 15. NARROWING

– =>1 means a rewriting proof consisting of exactly one step,

– =>+ means a rewriting proof consisting of one or more steps,

– =>* means a proof consisting of none, one, or more steps, and

– =>! indicates that only terms describing sets of canonical final states are allowed
(see Section 15.6).

Consider again the NARROWING-VENDING-MACHINE module and the following question, both
in Section 15.6.

Is there any combination of one or more coins that returns exactly an apple and a
cake?

We can repeat, with the same result, the vu-narrow command but now with the f at the
beginning.

Maude> fvu-narrow [1] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

Solution 1

state: < a c #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

However, producing a reachability graph instead of a reachability tree may improve the chances
of having a finite search space. If we repeat the same command but without asking for the
first solution, Maude reports the unique solution but gets into a loop, since the fvu-narrow

command cannot produce a finite search graph. However, the reason is that we are giving
a logical variable of sort Money and any new state containing an apple or a cake cannot be
an instance of the initial state. Therefore, we can use a variable of sort Marking instead of
Money and the infinite narrowing-based reachability tree is folded into a finite narrowing-based
reachability graph.

Maude> fvu-narrow in NARROWING-VENDING-MACHINE : < M:Marking > =>* < a c > .

Solution 1

state: < #1:Marking >

accumulated substitution:

M:Marking --> #1:Marking

variant unifier:

#1:Marking --> a c

No more solutions.

But this is not the expected solution, since it is simply instantiating variable M:Marking to the
apple and the cake. The graph is finite, as we wanted, but there is only one state, the initial
one, and every other state is folded into it, since they are obviously instances of it.

What is actually happening is that this specification of the vending machine is not well
suited for taking advantage of this folding narrowing technique. Consider the following new
version of the vending machine. The reader can check that the only difference with the
NARROWING-VENDING-MACHINE module in Section 15.6 is that apples and cakes are not de-
posited in the bag but consumed. This is typical of a logic programming style, where computed
answers, rather than normal forms, are used.

15.7. THE FVU-NARROW COMMAND 371

mod FOLDING-NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ c > => < M > [narrowing] .

rl [buy-a] : < M $ a > => < M q > [narrowing] .

eq [change] : q q q q M = $ M [variant] .

endm

We can repeat the same command and now we get the expected result, while having a finite
narrowing-based reachability graph.

Maude> fvu-narrow in FOLDING-NARROWING-VENDING-MACHINE : < M:Marking a c > =>* < empty > .

Solution 1

state: < #1:Marking >

accumulated substitution:

M:Marking --> $ q q q #1:Marking

variant unifier:

#1:Marking --> empty

No more solutions.

The graph is finite, as we wanted, since, after two narrowing steps, a state of the form
< #1:Marking > is generated and, therefore, any other further state is folded into it. Note
that a similar vu-narrow command does not stop. Note also that if we use a variable of
sort Money, then the narrowing-based reachability tree is finite, since no more coins can be
introduced, and both the vu-narrow and fvu-narrow commands stop.

Maude> vu-narrow in FOLDING-NARROWING-VENDING-MACHINE : < M:Money a c > =>* < empty > .

Solution 1

state: < #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

No more solutions.

372 CHAPTER 15. NARROWING

15.8 Narrowing with extra variables in righthand sides of
rules

Although rewriting does not allow extra variables in the righthand side of rules9, extra variables
in righthand sides pose no problem for narrowing. Since rules having extra variables in the
righthand side are not allowed in Maude for rewriting purposes, the attribute nonexec (see
Section 4.5.3) must be added to such rules if one wants to use them for narrowing. The
nonexec attribute is not taken into account by narrowing: all unconditional rules with the
narrowing attribute, regardless of whether or not they include the nonexec attribute, are used
by narrowing. Extra variables in the righthand side are a common feature of programs using
narrowing as the operational evaluation mechanism, as in logic programming or functional-logic
programming [80]. For further details on how to write funcional-logic programs in Maude using
symbolic reachability, see [63, 64]. Let us motivate this feature with an example. Consider the
following program defining the function append for concatenating two lists and the function
last for returning the last element of a list:

mod LAST-APPEND is

sort Success .

op success : -> Success .

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

sort NatList .

op nil : -> NatList .

op _:_ : Nat NatList -> NatList .

vars XS YS : NatList .

vars N M X Y : Nat .

op append : NatList NatList -> [NatList] .

rl append(nil, YS) => YS [narrowing] .

rl append(N : XS, YS) => N : append(XS, YS) [narrowing] .

op last : NatList -> [Nat] .

rl last(XS) => append(YS, N : nil) =:= XS >> N [nonexec narrowing] .

op _>>_ : [Success] [Nat] -> [Nat] [frozen (2) strat (1 0)] .

eq success >> X:[Nat] = X:[Nat] .

op _=:=_ : Nat Nat -> [Success] [comm] .

rl N =:= N => success [narrowing] .

op _=:=_ : NatList NatList -> [Success] [comm] .

rl XS =:= XS => success [narrowing] .

endm

In the rule

rl last(XS) => append(YS, N : nil) =:= XS >> N [nonexec narrowing] .

9Except for the case of conditional rules, where such extra variables may be introduced in matching or
rewrite conditions (see Chapter 4). But conditional rules have been excluded from the present narrowing
implementation, as explained in Section 15.5.

15.8. NARROWING WITH EXTRA VARIABLES IN RIGHTHAND SIDES OF RULES373

we have used an extra variable N to denote the last element of the list, forcing the rule to
include the nonexec keyword. Furthermore, note the use of symbol _>>_ to denote a conditional
expression, instead of using the keyword crl, and the use of an auxiliary equality symbol _=:=_
to denote equational unification, rather than equality. Finally, all these new symbols use kinds
and a special sort Success in order to describe what a successful solution is; this follows a logic
programming approach (as in Prolog) to success and failure, see [63, 64]. When the following
expression, denoting the condition of the conditional expression,

append(YS, N : nil) =:= XS

is executed by narrowing, it will be solved by instantiating N in the proper way. The following
reachability problem is solved by narrowing but cannot be solved by rewriting due to the extra
variable in the last rule.10

Maude> vu-narrow [1] in LAST-APPEND : last(0 : s(0) : nil) =>! Z:Nat .

Solution 1

state: s(0)

accumulated substitution:

variant unifier:

Z:Nat --> s(0)

Another interesting example of narrowing with extra variables is the function member:

mod MEMBERSHIP is

protecting LAST-APPEND .

vars XS YS ZS : NatList .

vars N M X Y : Nat .

op member : Nat NatList -> [Success] .

rl member(N, XS) => append(YS, N : ZS) =:= XS [nonexec narrowing] .

endm

The following reachability problem is solved by narrowing but cannot be solved by rewriting
due to the extra variable in the rule defining the member function.

Maude> vu-narrow [1] in MEMBERSHIP : member(s(0), 0 : s(0) : nil) =>! success .

Solution 1

state: success

accumulated substitution:

variant unifier:

But the interesting application is to enumerate all the elements of a list by computing
different substitutions, as in logic programming.

Maude> vu-narrow [,5] in MEMBERSHIP : member(N, 0 : s(0) : nil) =>! success .

Solution 1

state: success

accumulated substitution:

N --> 0

variant unifier:

10Of course, one could specify the last function in a way not requiring the nonexec rule, for example by the
equations last(nil) = error, last(N : nil) = N, and last(N : (M : XS)) = last (M : XS). The point here
is to illustrate with a simple example the use of narrowing with rules having extra variables in their righthand
sides, which is typical of logic programming and functional-logic programming.

374 CHAPTER 15. NARROWING

Solution 2

state: success

accumulated substitution:

N --> s(0)

variant unifier:

No more solutions.

Note that we have to restrict the depth of the narrowing tree to five because there exists an
infinite number of narrowing sequences from the term member(N:Nat,0 : s(0): nil) even if
only two solutions exist.

Chapter 16

SMT Solving

Given a Σ-algebra A and a quantifier-free (QF) formula ϕ with variables Y , we say that ϕ is
satisfiable (resp. valid) in A iff there is an assignment map a : Y → A such that A, a |= ϕ
(resp. for all maps a : Y → A, A, a |= ϕ). Note that ϕ is valid in A iff ¬ϕ is unsatisfiable in
A. We say that satisfiability in A is decidable iff we have an algorithm such that given any QF
Σ-formula ϕ it can answer whether or not ϕ is satisfiable in A. Of course, this also means that
it can answer whether or not ϕ is valid in A.

Assuming that all sorts in Σ are nonempty, i.e., TΣ,s 6= ∅ for each sort s, we can view the
equational unification methods for theories (Σ, G) explained in Chapters 13 and 14, where G
can be either a set of axioms Ax , or a set of FVP equations E ∪ Ax , as providing a decision
procedure for satisfiability in the initial algebra TΣ/G for any positive (i.e., having no negations)
QF Σ-formula ϕ. This is so because any such positive ϕ can be put in disjunctive normal form
as ϕ ≡ ∨i∈I ∧Qi, with each

∧
Qi the conjunction of a set of equations Qi. Then ϕ is satisfiable

in TΣ/G iff there exists a j ∈ I such that
∧
Qj has at least one G-unifier, which we can decide

in Maude by asking for the first unifier of the system of equations
∧
Qj .

In this chapter we broaden the picture about satisfiability begun in Chapters 13 and 14
by explaining how satisfiability of QF formulas for several concrete Σ-algebras of interest is
directly supported in Core Maude by special modules and an interface of commands that
makes accessible to Maude users part of the functionality of the CVC4 and Yices2 SMT solvers.
The reader should note that a given Maude binary can only be connected to one of the two
SMT solvers, since the choice between Yices2 and CVC4 is made when building Maude. The
binaries distributed in the official website are linked with Yices2, but instructions on how to
compile Maude with CVC4 are available in the compilation guide that comes with the Maude
sources. In Section 16.6 we also briefly explain how satisfiability in initial algebras of the form
TΣ/E∪Ax , where (Σ, E ∪Ax) is FVP and satisfies one additional requirement, is also supported
by algorithms written in Maude that use the variant unification algorithm from Chapter 14 as
a subroutine.

The most basic type of satisfiability is that of formulas in propositional logic, that is, of
Boolean expressions, in the two-element Boolean algebra B. This is called the SAT problem,
and decision procedures solving it are called SAT solvers. By definition, a Boolean expression
β with propositional variables X is satisfiable in B iff there is an assignment a : X → B of
Boolean values for the propositional variables X of β such that β is true under the assignment
a.

But note that such a propositional SAT-solving problem for β in B is equivalent to the first-
order satisfiability in the initial algebra B of the equational theory of the Booleans—as specified,

375

376 CHAPTER 16. SMT SOLVING

for example, in the BOOL-OPS functional module of Chapter 7.1—of the equation β = true. In
fact, Maude provides three different methods for solving the SAT problem: (1) the BOOL-OPS

module can decide if β is satisfiable in B: it is so iff its canonical form in BOOL-OPS is different
from false;1 (2) the LTL SAT solver described in Section 12.4, since propositional formulas are
a special case of LTL formulas; and (3) the connections to the CVC4 and Yices SAT solvers
explained in this chapter, which is of course the most efficient method among those three.

Satisfiability modulo theories (SMT) solvers provide satisfiability procedures both for SAT-
solving and for various first-order theories T of interest. The theories discussed in this chapter
are all theories T associated to specific data types of interest in the following, precise sense:
given a Σ-algebra A its first-order theory th(A) is the theory th(A) = (Σ,Γ(A)), where Γ(A) =
{ϕ | A |= ϕ}. Specifically, we will consider satisfiability procedures for QF formulas in theories
of the form th(A) of A: (i) Presburger arithmetic on the integers (Z, 0, 1,+, >,≥), (ii) linear
arithmetic on the rationals (Q, Q,+, >,≥), where Q is the (infinite) set of rational numbers
interpreted by themselves as constants of the algebra Q;2 and (iii) linear arithmetic for both the
integers and the rationals, corresponding, essentially, to a subsort inclusion Z ⊂ Q. Therefore,
the intended model in this last case is in essence the linear arithmetic fragment of the initial
algebra of the theory RAT of rationals described in Section 7.6, which contains the sort Int

as a subsort. SMT solvers are called this way because they exploit the Boolean structure of
QF first-order formulas to perform SAT solving at the Boolean level in order to achieve more
efficient versions of satisfiability procedures for the theories T supported by the solver, using
the so-called DPLL(T) approach [116].

To make SMT solving for the above-described theories available to Maude users, we have
integrated within Maude, and have provided access to some of the decision procedures and
functionality of, two state-of-the-art SMT solvers, namely, CVC43 and Yices24. Maude’s con-
nection to both CVC4 and Yices2 relies on the standard SMT-LIB notation5 accepted by both
SMT solvers and allows for more connections to other SMT solvers to be added in the future.
As already mentioned, the specific theories currently supported in Maude are: (i) SAT-solving
for the Booleans, (ii) Presburger arithmetic for the integers, (iii) linear arithmetic for the ra-
tionals; and (iv) linear arithmetic for both the integers and the rationals. We describe below
the corresponding Maude modules allowing definition of QF formulas in those four theories.

16.1 Boolean formulas

The SMT interface is accessed by loading the file smt.maude. The SMT-LIB Core theory is
represented by the following signature.

fmod BOOLEAN is

sort Boolean .

op true : -> Boolean [special (id-hook SMT_Symbol (true))] .

1See [128] for several alternative equational specifications besides BOOL-OPS, as well as a detailed explanation
of how satisfying assignments for satisfiable expressions can be obtained in an equational manner.

2This theory is the same as that of linear arithmetic with rational coefficients for the real numbers. That
is, for the algebra (R, Q,+, >,≥). The key observation is that any system of linear equations with rational
coefficients has a solution in the real numbers if and only if it has a solution in the rational numbers. The real
numbers are relevant only in the case of non-linear equations not supported here. Therefore, in what follows
we will not make any distinction between these two identical linear arithmetic theories and will just talk about
“linear arithmetic on the rationals.” Likewise, the theory’s main sort can be called either Rat or Real, since this
makes no difference. Actually, we will use Real to avoid confusion with the already existing sort Rat in the RAT

module.
3Available at https://cvc4.github.io.
4Available at https://yices.csl.sri.com.
5See http://www.smtlib.org/

https://cvc4.github.io
https://yices.csl.sri.com
http://www.smtlib.org/

16.2. FORMULAS USING INTEGER LINEAR ARITHMETIC 377

op false : -> Boolean [special (id-hook SMT_Symbol (false))] .

op not_ : Boolean -> Boolean

[prec 53 special (id-hook SMT_Symbol (not))] .

op _and_ : Boolean Boolean -> Boolean

[gather (E e) prec 55 special (id-hook SMT_Symbol (and))] .

op _xor_ : Boolean Boolean -> Boolean

[gather (E e) prec 57 special (id-hook SMT_Symbol (xor))] .

op _or_ : Boolean Boolean -> Boolean

[gather (E e) prec 59 special (id-hook SMT_Symbol (or))] .

op _implies_ : Boolean Boolean -> Boolean

[gather (e E) prec 61 special (id-hook SMT_Symbol (implies))] .

op _===_ : Boolean Boolean -> Boolean

[gather (e E) prec 51 special (id-hook SMT_Symbol (===))] .

op _=/==_ : Boolean Boolean -> Boolean

[gather (e E) prec 51 special (id-hook SMT_Symbol (=/==))] .

op _?_:_ : Boolean Boolean Boolean -> Boolean

[gather (e e e) prec 71 special (id-hook SMT_Symbol (ite))] .

endfm

Here a different sort Boolean and constants true and false are used for true and false to
avoid immediately ambiguity with Maude’s Bool sort and its constants true and false. All
of the operators are inert at the Maude level, i.e., they have no built-in semantics in Maude.
The _?_:_ operator is the if-then-else operation and _===_ and _=/==_ are used to represent
equality and inequality, again to minimize syntactic ambiguity with Maude’s standard symbols.

16.2 Formulas using integer linear arithmetic

The SMT-LIB Ints theory is represented by the following signature.

fmod INTEGER is

protecting BOOLEAN .

sort Integer .

op <Integers> : -> Integer [special (id-hook SMT_NumberSymbol (integers))] .

op -_ : Integer -> Integer

[special (id-hook SMT_Symbol (-))] .

op _+_ : Integer Integer -> Integer

[gather (E e) prec 33 special (id-hook SMT_Symbol (+))] .

op _*_ : Integer Integer -> Integer

[gather (E e) prec 31 special (id-hook SMT_Symbol (*))] .

op _-_ : Integer Integer -> Integer

[gather (E e) prec 33 special (id-hook SMT_Symbol (-))] .

op _div_ : Integer Integer -> Integer

[gather (E e) prec 31 special (id-hook SMT_Symbol (div))] .

op _mod_ : Integer Integer -> Integer

[gather (E e) prec 31 special (id-hook SMT_Symbol (mod))] .

op _<_ : Integer Integer -> Boolean

[prec 37 special (id-hook SMT_Symbol (<))] .

op _<=_ : Integer Integer -> Boolean

[prec 37 special (id-hook SMT_Symbol (<=))] .

op _>_ : Integer Integer -> Boolean

378 CHAPTER 16. SMT SOLVING

[prec 37 special (id-hook SMT_Symbol (>))] .

op _>=_ : Integer Integer -> Boolean

[prec 37 special (id-hook SMT_Symbol (>=))] .

op _===_ : Integer Integer -> Boolean

[gather (e E) prec 51 special (id-hook SMT_Symbol (===))] .

op _=/==_ : Integer Integer -> Boolean

[gather (e E) prec 51 special (id-hook SMT_Symbol (=/==))] .

op _?_:_ : Boolean Integer Integer -> Integer

[gather (e e e) prec 71 special (id-hook SMT_Symbol (ite))] .

op _divisible_ : Integer Integer -> Boolean

[prec 51 special (id-hook SMT_Symbol (divisible))] .

endfm

Here a different sort Integer is given for the integer constants . . . ,−2,−1, 0, 1, 2, . . . to
avoid ambiguity with the integer constants of Maude’s Int sort. Note that _divisible_ has
the opposite argument order to Maude’s _divides_ operator on Int but it follows the SMT-LIB
convention.

16.3 Formulas using rational linear arithmetic

The SMT-LIB Reals theory is represented by the following signature:

fmod REAL is

protecting BOOLEAN .

sort Real .

op <Reals> : -> Real [special (id-hook SMT_NumberSymbol (reals))] .

op -_ : Real -> Real [special (id-hook SMT_Symbol (-))] .

op _+_ : Real Real -> Real

[gather (E e) prec 33 special (id-hook SMT_Symbol (+))] .

op _*_ : Real Real -> Real

[gather (E e) prec 31 special (id-hook SMT_Symbol (*))] .

op _-_ : Real Real -> Real

[gather (E e) prec 33 special (id-hook SMT_Symbol (-))] .

op _/_ : Real Real -> Real

[gather (E e) prec 31 special (id-hook SMT_Symbol (/))] .

op _<_ : Real Real -> Boolean

[prec 37 special (id-hook SMT_Symbol (<))] .

op _<=_ : Real Real -> Boolean

[prec 37 special (id-hook SMT_Symbol (<=))] .

op _>_ : Real Real -> Boolean

[prec 37 special (id-hook SMT_Symbol (>))] .

op _>=_ : Real Real -> Boolean

[prec 37 special (id-hook SMT_Symbol (>=))] .

op _===_ : Real Real -> Boolean

[gather (e E) prec 51 special (id-hook SMT_Symbol (===))] .

op _=/==_ : Real Real -> Boolean

[gather (e E) prec 51 special (id-hook SMT_Symbol (=/==))] .

op _?_:_ : Boolean Real Real -> Real

[gather (e e e) prec 71 special (id-hook SMT_Symbol (ite))] .

16.4. FORMULAS USING RATIONAL AND INTEGER LINEAR ARITHMETIC 379

endfm

Here a different sort Real is given for the rational constants that look like −1/1, −3/100,
0/1, 7/3, . . . to avoid ambiguity with the rational constants of Maude’s Rat sort. The / symbol is
mandatory and servers to distinguish the reals from the integers (which are completely different
types in SMT-LIB). Again all of the operators are inert, although currently, rational constants
are canonicalized (this may change).

16.4 Formulas using rational and integer linear arithmetic

Finally, the SMT-LIB Reals-Ints theory is represented by the following signature:

fmod REAL-INTEGER is

protecting INTEGER .

protecting REAL .

op toReal : Integer -> Real [special (id-hook SMT_Symbol (toReal))] .

op toInteger : Real -> Integer [special (id-hook SMT_Symbol (toInteger))] .

op isInteger : Real -> Boolean [special (id-hook SMT_Symbol (isInteger))] .

endfm

16.5 Satisfiability of formulas

The SMT solver is invoked internally using the check command. The syntax of this command
is:

check [in 〈ModId〉 :] 〈Term〉 .

where Term must only contain the constants and operators from the appropriate signatures
above, together with variables from the three sorts, Boolean, Integer and Real when these
are available. Adding any super or subsorts to these three sorts (or subsort relations between
them) will cause inconsistency issues, as will adding any additional operators.

Maude responds with whatever the SMT solver returns, typically sat for satisfiable or
unsat for unsatisfiable. Note that the current implementation is quite brittle. There is only
a cursory attempt to check that the query to the SMT solver makes sense and no attempt to
catch exceptions. Consider the following example.

fmod TEST-RI is

protecting REAL-INTEGER .

vars W X Y Z : Boolean .

vars I J K L : Integer .

vars P Q R S : Real .

endfm

Maude> check toInteger(R) + toInteger(P) === toInteger(R + P) .

Result from sat solver is: sat

Maude> check not(toInteger(R) + toInteger(P) === toInteger(R + P)) .

Result from sat solver is: sat

Maude> check -2 < I and -2 * I > -1 and I =/== -1 .

Result from sat solver is: sat

380 CHAPTER 16. SMT SOLVING

Maude> check -2 < I and -2 * I > -1 and I =/== -1 and I - I =/== I .

Result from sat solver is: unsat

16.6 A brief introduction to variant satisfiability

A current limitation of SMT solvers is that they only provide domain-specific satisfiability pro-
cedures for a fixed family T1, . . . , Tn of theories and their so-called Nelson-Oppen combinations
[115]. To verify programs in a conventional programming language with a fixed set of data
types this is quite reasonable. But in a language like Maude, where order-sorted data types
are user-definable as the initial models of functional modules, it would be highly desirable to
have theory-generic decision procedures for an infinite class of user-definable theories of the
form th(TΣ/E∪Ax), that is, for the theory of all inductive theorems true in the initial algebra
TΣ/E∪Ax , where (Σ, E ∪ Ax) belongs to an infinite class of theories specifiable as functional
modules in Maude. Specifically, such a class consists of equational theories that: (i) are FVP
and (ii) protect a constructor subspecification (Ω, EΩ ∪ AxΩ) satisfying the OS-compactness
property [109]. The OS-compactness requirement is quite mild in practice. For example, all
constructor theories where the constructors are free modulo axioms, i.e., of the form (Ω,AxΩ),
and where any associativity axiom in AxΩ has a corresponding commutative axiom also in
AxΩ is OS-compact, and so are as well various parameterized theories of interest for lists, com-
pact lists, multisets, sets, and hereditarily finite sets [109]. The theory-generic satisfiability
algorithm for theories in this class is called variant satisfiability [109]. Detailed algorithms for
variant satisfiability and its associated auxiliary functions (which invoke variant unification as
a subroutine) as well as a Maude prototype tool are described in [131]. This is a quite active
area of research with many applications. In the near future two important research objectives
are to: (i) improve and document the current variant satisfiability prototype; and (ii) combine
within Maude: (a) domain-specific decision procedures from state-of-the-art SMT solvers, (b)
order-sorted congruence closure modulo axioms [108], and (c) variant satisfiability.

Chapter 17

Reflection, Metalevel
Computation, and Internal
Strategies

Informally, a reflective logic is a logic in which important aspects of its metatheory can be
represented at the object level in a consistent way, so that the object-level representation
correctly simulates the relevant metatheoretic aspects. In other words, a reflective logic is a
logic which can be faithfully interpreted in itself. Maude’s language design and implementation
make systematic use of the fact that rewriting logic is reflective [32, 25, 33, 34]. This makes the
metatheory of rewriting logic accessible to the user in a clear and principled way. However, since
a naive implementation of reflection can be computationally expensive, a good implementation
must provide efficient ways of performing reflective computations. This chapter explains how
this is achieved in Maude through its predefined META-LEVEL module, that can be found in the
prelude.maude file.

17.1 Reflection and metalevel computation

Rewriting logic is reflective in a precise mathematical way, namely, there is a finitely presented
rewrite theory U that is universal in the sense that we can represent in U any finitely presented
rewrite theory R (including U itself) as a term R, any terms t, t′ in R as terms t, t′, and any
pair (R, t) as a term 〈R, t〉, in such a way that we have the following equivalence

R ` t −→ t′ ⇔ U ` 〈R, t〉 −→ 〈R, t′〉.

Since U is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection:

R ` t→ t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉 ⇔ U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

In this chain of equivalences we say that the first rewriting computation takes place at level
0, the second at level 1, and so on. In a naive implementation, each step up the reflective tower
comes at considerable computational cost, because simulating a single step of rewriting at one
level involves many rewriting steps one level up. It is therefore important to have systematic
ways of lowering the levels of reflective computations as much as possible, so that a rewriting
subcomputation happens at a higher level in the tower only when this is strictly necessary.

381

382CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

In Maude, key functionality of the universal theory U has been efficiently implemented in the
functional module META-LEVEL. This module includes the modules META-VIEW, META-MODULE,
META-STRATEGY, and META-TERM. As an overview,

• in the module META-TERM, Maude terms are metarepresented as elements of a data type
Term of terms;

• in the module META-STRATEGY, the Maude strategy language is metarepresented as terms
in a data type Strategy of strategy expressions;

• in the module META-MODULE, Maude modules are metarepresented as terms in a data type
Module of modules;

• in the module META-VIEW, Maude views are metarepresented as terms in a data type View
of views; and

• in the module META-LEVEL,

– operations upModule, upTerm, downTerm, and others allow moving between reflection
levels;

– the process of reducing a term to canonical form using Maude’s reduce command is
metarepresented by a built-in function metaReduce;

– the processes of rewriting a term in a system module using Maude’s rewrite and
frewrite commands are metarepresented by built-in functions metaRewrite and
metaFrewrite;

– the process of applying (without extension) a rule of a system module at the top of
a term is metarepresented by a built-in function metaApply;

– the process of applying (with extension) a rule of a system module at any position
of a term is metarepresented by a built-in function metaXapply;

– the process of matching (without extension) two terms at the top is reified by a
built-in function metaMatch;

– the process of matching (with extension) a pattern to any subterm of a term is reified
by a built-in function metaXmatch;

– the process of searching for a term satisfying some conditions starting in an initial
term is reified by built-in functions metaSearch and metaSearchPath;

– the processes of rewriting a term using Maude’s srewrite and dsrewrite commands
are metarepresented by built-in functions metaSrewrite and metaDsrewrite; and

– parsing and pretty-printing of a term in a module, as well as key sort operations such
as comparing sorts in the subsort ordering of a signature, are also metarepresented
by corresponding built-in functions.

The functions metaReduce, metaApply, metaXapply, metaRewrite, metaFrewrite, metaMatch,
metaXmatch, metaSrewrite, and metaDsrewrite are called descent functions, since they allow
us to descend levels in the reflective tower. The paper [28] provides a formal definition of the
notion of descent function, and a detailed explanation of how they can be used to achieve a
systematic, conservative way of lowering the levels of reflective computations.

The importation graph in Figure 17.1 shows the relationships between all the modules in the
metalevel. The modules NAT-LIST and QID-LIST provide lists of natural numbers and quoted
identifiers, respectively (see Section 7.13.1), and the module QID-SET provides sets of quoted
identifiers (see Section 7.13.2). Notice that QID-SET is imported (in protecting mode) with
renaming

17.2. THE META-TERM MODULE 383

META-LEVEL

META-VIEW

META-MODULE

NAT-LISTQID-LIST META-STRATEGY

META-CONDITIONMETA-TERMQID

QID-SET*(β)

QID-SET

_*(β)

Figure 17.1: Importation graph of metalevel modules

(op empty to none, op _,_ to _;_ [prec 43])

abbreviated to β in the figure.

17.2 The META-TERM module

17.2.1 Metarepresenting sorts and kinds

In the META-TERM module, sorts and kinds are metarepresented as data in specific subsorts of
the sort Qid of quoted identifiers.

A term of sort Sort is any quoted identifier not containing the following characters: ‘:’, ‘.’,
‘[’, and ‘]’. Moreover, the characters ‘{’, ‘}’, and ‘,’ can only appear in structured sort names
(see Section 3.3). For example, ’Bool, ’NzNat, a‘{X‘}, a‘{X‘,Y‘}, a‘{b‘,c‘{d‘}‘}‘{e‘},
and a‘{‘(‘} are terms of sort Sort.

An element of sort Kind is a quoted identifier of the form ’‘[SortList‘] where SortList is
a single identifier formed by a list of unquoted elements of sort Sort separated by backquoted
commas. For example, ’‘[Bool‘] and ’‘[NzNat‘,Zero‘,Nat‘] are valid elements of the sort
Kind. Note the use of backquotes to force them to be single identifiers.

Since commas and square brackets are used to metarepresent kinds, these characters are
forbidden in sort names, in order to avoid undesirable ambiguities. Periods and colons are also
forbidden, due to the metarepresentation of constants and variables, as explained in the next
section.

Since operator declarations can use both sorts and kinds, we denote by Type the union of
Sort and Kind.

384CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

sorts Sort Kind Type .

subsorts Sort Kind < Type < Qid.

op <Qids> : -> Sort [special (...)] .

op <Qids> : -> Kind [special (...)] .

Remember from the introduction of Chapter 7 that <Qids> is a special operator declaration
used to represent sets of constants that are not algebraically constructed, but are instead
associated with appropriate C++ code by “hooks” which are specified following the special

attribute; see the functional module META-TERM in file prelude.maude for the details omitted
here.

17.2.2 Metarepresenting terms

In the module META-TERM, terms are metarepresented as elements of the data type Term of
terms. The base cases in the metarepresentation of terms are given by subsorts Constant and
Variable of the sort Qid.

sorts Constant Variable Term .

subsorts Constant Variable < Qid Term .

op <Qids> : -> Constant [special (...)] .

op <Qids> : -> Variable [special (...)] .

Constants are quoted identifiers that contain the constant’s name and its type separated
by a ‘.’, e.g., ’0.Nat. Similarly, variables contain their name and type separated by a ‘:’, e.g.,
’N:Nat. Appropriate selectors then extract their names and types.

op getName : Constant -> Qid .

op getName : Variable -> Qid .

op getType : Constant -> Type .

op getType : Variable -> Type .

Since ‘.’ and ‘:’ are not allowed in sort names (see Section 3.3), the name and type of a
constant or variable can be calculated easily. Note that there is no restriction in operator or in
variable names, and thus the scanning for ‘.’ or ‘:’ is done from right to left in the identifier.
That is,

getName(’:-D:Smile) = ’:-D

getType(’:-.|.‘[Smile‘]) = ’‘[Smile‘]

A term different from a constant or a variable is constructed in the usual way, by applying
an operator symbol to a nonempty list of terms.

sorts NeTermList TermList .

subsorts Term < NeTermList < TermList .

op _,_ : TermList TermList -> TermList

[ctor assoc id: empty gather (e E) prec 121] .

op _,_ : NeTermList TermList -> NeTermList [ctor ditto] .

op _,_ : TermList NeTermList -> NeTermList [ctor ditto] .

op _[_] : Qid NeTermList -> Term [ctor] .

The actual sort infrastructure provided by the module META-TERM is a bit more complex,
because there are also subsorts and operators for the metarepresentation of ground terms and
the corresponding lists of ground terms that we do not describe here (see the file prelude.maude
for details).

Since terms in the module META-TERM can be metarepresented just as terms in any other
module, the metarepresentation of terms can be iterated.

17.3. THE META-STRATEGYMODULE: METAREPRESENTING THE STRATEGY LANGUAGE385

For example, the term c q M:Marking in the module VENDING-MACHINE in Section 5.1 is
metarepresented by

’__[’c.Item, ’__[’q.Coin, ’M:Marking]]

and meta-metarepresented by

’_‘[_‘][’’__.Qid,

’_‘,_[’’c.Item.Constant,

’_‘[_‘][’’__.Qid,

’_‘,_[’’q.Coin.Constant,

’’M:Marking.Variable]]]]

Note that the metarepresentation of a natural number such as, e.g., 42 is ’s_^42[’0.Zero]
instead of ’42.NzNat, since, as explained in Section 7.2, 42 is just syntactic sugar for s_^42(0).

17.3 The META-STRATEGY module: Metarepresenting the
strategy language

All components of the strategy language described in Section 10, including its modules and
views, can be manipulated at the metalevel. The META-STRATEGY module metarepresents all
the strategy combinators as terms of the sort Strategy, with two subsorts, RuleApplication
for rule applications, and CallStrategy for strategy calls.

ops fail idle all : -> Strategy [ctor] .

op _[_]{_} : Qid Substitution StrategyList -> RuleApplication [ctor prec 21] .

op top : RuleApplication -> Strategy [ctor] .

op match_s.t._ : Term EqCondition -> Strategy [ctor prec 21] .

op xmatch_s.t._ : Term EqCondition -> Strategy [ctor prec 21] .

op amatch_s.t._ : Term EqCondition -> Strategy [ctor prec 21] .

op _|_ : Strategy Strategy -> Strategy

[ctor assoc comm id: fail prec 41 gather (e E)] .

op _;_ : Strategy Strategy -> Strategy [ctor assoc id: idle prec 39 gather (e E)] .

op _+ : Strategy -> Strategy [ctor] .

op _?_:_ : Strategy Strategy Strategy -> Strategy [ctor prec 55] .

op matchrew_s.t._by_ : Term EqCondition VarStratList -> Strategy [ctor] .

op xmatchrew_s.t._by_ : Term EqCondition VarStratList -> Strategy [ctor] .

op amatchrew_s.t._by_ : Term EqCondition VarStratList -> Strategy [ctor] .

op _[[_]] : Qid TermList -> CallStrategy [ctor prec 21] .

op one : Strategy -> Strategy [ctor] .

The syntax is similar to that at the object level, including the strategy list for rule applications,
and the substrategies lists in the matchrew operator.

op empty : -> StrategyList [ctor] .

op _,_ : StrategyList StrategyList -> StrategyList [ctor assoc id: empty] .

op _using_ : Variable Strategy -> UsingPair [ctor prec 21] .

op _,_ : UsingPairSet UsingPairSet -> UsingPairSet [ctor assoc comm prec 61] .

eq U:UsingPair, U:UsingPair = U:UsingPair .

Conditions are described in the module META-CONDITION included by META-STRATEGY.

fmod META-CONDITION is

protecting META-TERM .

sorts EqCondition Condition .

386CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

subsort EqCondition < Condition .

op nil : -> EqCondition [ctor] .

op _=_ : Term Term -> EqCondition [ctor prec 71] .

op _:_ : Term Sort -> EqCondition [ctor prec 71] .

op _:=_ : Term Term -> EqCondition [ctor prec 71] .

op _=>_ : Term Term -> Condition [ctor prec 71] .

op _/_ : EqCondition EqCondition -> EqCondition

[ctor assoc id: nil prec 73] .

op _/_ : Condition Condition -> Condition

[ctor assoc id: nil prec 73] .

endfm

The derived strategy combinators, explained in the last part of Section 10.1, are also defined
as constructors. For efficiency purposes they are encoded internally in a special form, different
from the encoding of their equivalent expressions.

op _or-else_ : Strategy Strategy -> Strategy [ctor assoc prec 43 gather (e E)] .

op _* : Strategy -> Strategy [ctor] .

op _! : Strategy -> Strategy [ctor] .

op not : Strategy -> Strategy [ctor] .

op test : Strategy -> Strategy [ctor] .

op try : Strategy -> Strategy [ctor] .

For example, the metarepresentation of the strategy one(move * ; amatch (0)[nil]) for
the HANOI example in Section 10 is

one(’move[none]{empty} * ; amatch ’‘(_‘)‘[_‘][’0.Zero, ’nil.NatList] s.t. nil)

17.4 The META-MODULE module: Metarepresenting modules

In the module META-MODULE, which imports META-TERM, functional, system and strategy mod-
ules, as well as functional, system and strategy theories, are metarepresented in a syntax very
similar to their original user syntax.

The main differences are that:

1. terms in equations, membership axioms, and rules are now metarepresented as we have
already explained in Section 17.2.2;

2. in the metarepresentation of modules and theories we follow a fixed order in introducing
the different kinds of declarations for sorts, subsort relations, equations, etc., whereas in
the user syntax there is considerable flexibility for introducing such different declarations
in an interleaved and piecemeal way;

3. there is no need for variable declarations—in fact, there is no syntax for metarepresenting
them—and

4. sets of identifiers—used in declarations of sorts—are metarepresented as sets of quoted
identifiers built with an associative and commutative operator _;_.

The syntax for the top-level operators metarepresenting modules and theories is as follows,
where Header means just an identifier in the case of non-parameterized modules or an identifier
together with a list of parameter declarations in the case of a parameterized module.

17.4. THE META-MODULE MODULE: METAREPRESENTING MODULES 387

sorts FModule SModule StratModule FTheory STheory StratTheory Module .

subsorts FModule < SModule < Module .

subsorts FTheory < STheory < Module .

subsorts StratModule StratTheory < Module .

sort Header .

subsort Qid < Header .

op _{_} : Qid ParameterDeclList -> Header [ctor] .

op fmod_is_sorts_.____endfm : Header ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule

[ctor gather (& & & & & & &)] .

op mod_is_sorts_._____endm : Header ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet

-> SModule [ctor gather (& & & & & & & &)] .

op smod_is_sorts_._______endsm : Header ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet

StratDeclSet StratDefSet -> StratModule

[ctor gather (& & & & & & & & & &)] .

op fth_is_sorts_.____endfth : Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet -> FTheory

[ctor gather (& & & & & & &)] .

op th_is_sorts_._____endth : Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet RuleSet -> STheory

[ctor gather (& & & & & & & &)] .

op sth_is_sorts_._______endsth : Qid ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet

StratDeclSet StratDefSet -> StratTheory

[ctor gather (& & & & & & & & & &)] .

Appropriate selectors then extract from the metarepresentation of modules the metarepresen-
tations of their names, imported submodules, and declared sorts, subsorts, operators, member-
ships, equations, and rules.

op getName : Module -> Qid .

op getImports : Module -> ImportList .

op getSorts : Module -> SortSet .

op getSubsorts : Module -> SubsortDeclSet .

op getOps : Module -> OpDeclSet .

op getMbs : Module -> MembAxSet .

op getEqs : Module -> EquationSet .

op getRls : Module -> RuleSet .

op getStrats : Module -> StratDeclSet .

op getSds : Module -> StratDefSet .

Without going into all the syntactic details, we show only the operators used to metarep-
resent sets of sorts and kinds, equations, rules and strategies. The complete syntax used for
metarepresenting modules can be found in the module META-MODULE in the file prelude.maude.
Conditions are defined in the module META-CONDITION shown in Section 17.3.

sorts EmptyTypeSet NeSortSet NeKindSet

NeTypeSet SortSet KindSet TypeSet .

subsort EmptyTypeSet < SortSet KindSet < TypeSet < QidSet .

subsort Sort < NeSortSet < SortSet .

subsort Kind < NeKindSet < KindSet .

subsort Type NeSortSet NeKindSet < NeTypeSet < TypeSet NeQidSet .

op none : -> EmptyTypeSet [ctor] .

388CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

op _;_ : TypeSet TypeSet -> TypeSet

[ctor assoc comm id: none prec 43] .

op _;_ : SortSet SortSet -> SortSet [ctor ditto] .

op _;_ : KindSet KindSet -> KindSet [ctor ditto] .

sorts Equation EquationSet .

subsort Equation < EquationSet .

op eq_=_[_]. : Term Term AttrSet -> Equation [ctor] .

op ceq_=_if_[_]. : Term Term EqCondition AttrSet -> Equation

[ctor] .

op none : -> EquationSet [ctor] .

op __ : EquationSet EquationSet -> EquationSet

[ctor assoc comm id: none] .

sorts Rule RuleSet .

subsort Rule < RuleSet .

op rl_=>_[_]. : Term Term AttrSet -> Rule [ctor] .

op crl_=>_if_[_]. : Term Term Condition AttrSet -> Rule [ctor] .

op none : -> RuleSet [ctor] .

op __ : RuleSet RuleSet -> RuleSet [ctor assoc comm id: none] .

sorts StratDecl StratDeclSet .

subsort StratDecl < StratDeclSet .

op strat_:_@_[_]. : Qid TypeList Type AttrSet -> StratDecl [ctor] .

op none : -> StratDeclSet [ctor] .

op __ : StratDeclSet StratDeclSet -> StratDeclSet [ctor assoc comm id: none] .

sorts StratDefinition StratDefSet .

subsort StratDefinition < StratDefSet .

op sd_:=_[_]. : CallStrategy Strategy AttrSet -> StratDefinition [ctor] .

op csd_:=_if_[_]. : CallStrategy Strategy EqCondition AttrSet

-> StratDefinition [ctor] .

op none : -> StratDefSet [ctor] .

op __ : StratDefSet StratDefSet -> StratDefSet [ctor assoc comm id: none] .

For example, we show here the metarepresentations of the modules introduced in Section 5.1
VENDING-MACHINE-SIGNATURE and VENDING-MACHINE.

fmod ’VENDING-MACHINE-SIGNATURE is

nil

sorts ’Coin ; ’Item ; ’Marking .

subsort ’Coin < ’Marking .

subsort ’Item < ’Marking .

op ’__ : ’Marking ’Marking -> ’Marking

[assoc comm id(’null.Marking)] .

op ’a : nil -> ’Item [format(’b! ’o)] .

op ’null : nil -> ’Marking [none] .

op ’$: nil -> ’Coin [format(’r! ’o)] .

op ’q : nil -> ’Coin [format(’r! ’o)] .

op ’c : nil -> ’Item [format(’b! ’o)] .

none

none

endfm

mod ’VENDING-MACHINE is

17.4. THE META-MODULE MODULE: METAREPRESENTING MODULES 389

including ’VENDING-MACHINE-SIGNATURE .

sorts none .

none

none

none

none

rl ’M:Marking => ’__[’M:Marking, ’q.Coin] [label(’add-q)] .

rl ’M:Marking => ’__[’M:Marking, ’$.Coin] [label(’add-$)] .

rl ’$.Coin => ’c.Item [label(’buy-c)] .

rl ’$.Coin => ’__[’a.Item, ’q.Coin] [label(’buy-a)] .

rl ’__[’q.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]]

=> ’$.Coin [label(’change)] .

endm

Since VENDING-MACHINE-SIGNATURE has no list of imported submodules, no membership
axioms, and no equations, those fields are filled, respectively, with the constants nil of sort
ImportList, none of sort MembAxSet, and none of sort EquationSet. Similarly, since the mod-
ule VENDING-MACHINE has no subsort declarations and no operator declarations, those fields are
filled, respectively, with the constants none of sort SubsortDeclSet and none of sort OpDeclSet.
Variable declarations are not metarepresented, but rather each variable is metarepresented in
its “on the fly”-declaration form, i.e., with its sort or kind.

As mentioned above, parameterized modules are also metarepresented through the notion of
a header, which is either an identifier (for non-parameterized modules) or an identifier together
with a list of parameter declarations (for parameterized modules). Such parameter declarations
are metarepresented again with a syntax similar to the user syntax.

sorts ParameterDecl NeParameterDeclList ParameterDeclList .

subsorts ParameterDecl < NeParameterDeclList < ParameterDeclList .

op _::_ : Sort ModuleExpression -> ParameterDecl .

op nil : -> ParameterDeclList [ctor] .

op _,_ : ParameterDeclList ParameterDeclList -> ParameterDeclList

[ctor assoc id: nil prec 121] .

Module expressions involving renamings and summations can also be metarepresented with
the expected syntax:

sort ModuleExpression .

subsort Qid < ModuleExpression .

op _+_ : ModuleExpression ModuleExpression -> ModuleExpression

[ctor assoc comm] .

op _*(_) : ModuleExpression RenamingSet -> ModuleExpression

[ctor prec 39 format (d d s n++i n--i d)] .

sorts Renaming RenamingSet .

subsort Renaming < RenamingSet .

op sort_to_ : Qid Qid -> Renaming [ctor] .

op op_to_[_] : Qid Qid AttrSet -> Renaming

[ctor format (d d d d s d d d)] .

op op_:_->_to_[_] : Qid TypeList Type Qid AttrSet -> Renaming

[ctor format (d d d d d d d d s d d d)] .

op label_to_ : Qid Qid -> Renaming [ctor] .

op strat_to_ : Qid Qid -> Renaming [ctor] .

op strat_:_@_to_ : Qid TypeList Type Qid -> Renaming [ctor] .

op _,_ : RenamingSet RenamingSet -> RenamingSet

[ctor assoc comm prec 43 format (d d ni d)] .

390CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Finally, the instantiation of a parameterized module is metarepresented as follows:

op _{_} : ModuleExpression ParameterList -> ModuleExpression

[ctor prec 37].

sort EmptyCommaList NeParameterList ParameterList .

subsorts Sort < NeParameterList < ParameterList .

subsort EmptyCommaList < GroundTermList ParameterList .

op empty : -> EmptyCommaList [ctor] .

op _,_ : ParameterList ParameterList -> ParameterList [ctor ditto] .

The rules for constructing parameterized metamodules and instantiating parameterized
modules existing in the database reflect the object-level rules. In particular, bound param-
eters are permitted; for example, the following term metarepresents a parameterized module:

fmod ’PARMODEX{’X :: ’TRIV} is

including ’MAP{’String, ’X} .

sorts ’Foo .

none

none

none

none

endfm

Although, as we will see in the following section, views can be metarepresented as terms
of the View sort, it is not possible to use the views constructed at the metalevel in module
expressions. The views used in the module expressions occurring in metamodules must have
been declared at the object level, so that they are present in the database of modules and
views declared in the given session. Such views are written in quoted form within metamodule
expressions, like ’String in ’MAP{’String, ’X} in the example above.

Note that terms of sort Module can be metarepresented again, yielding then a term of sort
Term, and this can be iterated an arbitrary number of times. This is in fact necessary when a
metalevel computation has to operate at higher levels.

17.5 The META-VIEW module: Metarepresenting views

In the module META-VIEW, which imports META-MODULE, views are metarepresented in a syntax
very similar to their original user syntax.

sort View .

op view_from_to_is___endv : Header ModuleExpression ModuleExpression

SortMappingSet OpMappingSet StratMappingSet -> View [ctor gather (& & & & & &)

format (d d d d d d d n++i ni ni n--i d)] .

The first argument corresponds to the name of the view, while the second and third are
module expressions corresponding to the source (usually a theory) and target (usually a module)
of the view, respectively. The fourth, fifth and sixth arguments are the sort, operator and
strategy mappings defining the view.

The following syntax defines sets of sort mappings in a way completely similar to the user
syntax.

sorts SortMapping SortMappingSet .

subsort SortMapping < SortMappingSet .

op sort_to_. : Sort Sort -> SortMapping [ctor] .

op none : -> SortMappingSet [ctor] .

17.5. THE META-VIEW MODULE: METAREPRESENTING VIEWS 391

op __ : SortMappingSet SortMappingSet -> SortMappingSet

[ctor assoc comm id: none format (d ni d)] .

eq S:SortMapping S:SortMapping = S:SortMapping .

Analogously, the following syntax is used to define set of operator mappings and strategy
mappings.

sorts OpMapping OpMappingSet .

subsort OpMapping < OpMappingSet .

op (op_to_.) : Qid Qid -> OpMapping [ctor] .

op (op_:_->_to_.) : Qid TypeList Type Qid -> OpMapping [ctor] .

op (op_to term_.) : Term Term -> OpMapping [ctor] .

op none : -> OpMappingSet [ctor] .

op __ : OpMappingSet OpMappingSet -> OpMappingSet

[ctor assoc comm id: none format (d ni d)] .

eq O:OpMapping O:OpMapping = O:OpMapping .

sorts StratMapping StratMappingSet .

subsort StratMapping < StratMappingSet .

op (strat_to_.) : Qid Qid -> StratMapping [ctor] .

op (strat_:_@_to_.) : Qid TypeList Type Qid -> StratMapping [ctor] .

op (strat_to-expr_.) : CallStrategy Strategy -> StratMapping [ctor] .

op none : -> StratMappingSet [ctor] .

op __ : StratMappingSet StratMappingSet -> StratMappingSet

[ctor assoc comm id: none format (d ni d)] .

eq S:StratMapping S:StratMapping = S:StratMapping .

Finally, appropriate selectors are used to extract from the metarepresentation of a view the
corresponding components, namely, the metarepresentations of its name, of its source, of its
target, of its set of sort mappings, and of its set of operator mappings.

op getName : View -> Qid .

op getFrom : View -> ModuleExpression .

op getTo : View -> ModuleExpression .

op getSortMappings : View -> SortMappingSet .

op getOpMappings : View -> OpMappingSet .

op getStratMappings : View -> StratMappingSet .

For example, the metarepresentation of the view RingToRat (see Section 6.3.2) from the
theory RING to the predefined RAT module is as follows:

view ’RingToRat from ’RING to ’RAT is

sort ’Ring to ’Rat .

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

none

endv

Then, we can extract some components of this metarepresented view:

Maude> reduce in META-VIEW :

getFrom(view ’RingToRat from ’RING to ’RAT is

sort ’Ring to ’Rat .

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

none

endv) .

392CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

result Sort: ’RING

Maude> reduce in META-VIEW :

getOpMappings(view ’RingToRat from ’RING to ’RAT is

sort ’Ring to ’Rat .

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

none

endv) .

result OpMappingSet:

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

17.6 The META-LEVEL module: Metalevel operations

The META-LEVEL module, which imports META-VIEW, has several built-in descent functions that
provide useful and efficient ways of reducing metalevel computations to object-level ones, as
well as several useful operations on sorts and kinds. Since, in general, these operations take
among their arguments the metarepresentations of modules, sorts, kinds, terms, and so on, the
META-LEVEL modules also provides several built-in functions for moving conveniently between
reflection levels. Notice that most of the operations in the module META-LEVEL are partial (as
explicitly stated by using the arrow ~> in the corresponding operator declaration). This is due
to the fact that they do not make sense on terms that, although may be of the correct sort,
for example, Module or Term, either are not correct metarepresentations of modules or are not
correct metarepresentations of terms in the module provided as another argument.

Concerning partial operations, the criteria used to choose between using a supersort for the
result and having an operator map to a kind is as follows.

If the error return value is built from constructors, say

op noParse : Nat -> ResultPair? [ctor] .

op ambiguity : ResultPair ResultPair -> ResultPair? [ctor] .

it goes to a supersort. In some sense these are not errors, but merely exceptions or out-of-band
results for which there is a carefully defined semantics.

The kind is reserved for nonconstructors which may not be able to reduce at all on illegal
arguments, like, for example, in the function (notice the form of the arrow)

op metaParse : Module QidList Type? ~> ResultPair? [special (...)] .

In this second case, an expression that does not evaluate to the appropriate sort represents a
real error.

So, for example, a call to metaParse with an ill-formed module would produce an unreduced
term metaParse(...) in the kind, whereas a call to metaParse with valid arguments but a
list of tokens that could not be parsed to a term of the desired type in the metamodule would
produce a term noParse(...) of sort ResultPair? indicating where the parse first failed.

17.6.1 Moving between reflection levels: upModule, upTerm, downTerm,
and others

For a moduleR that has already been loaded into Maude, the operations upSorts, upSubsortDecl,
upOpDecls, upMbs, upEqs, upRls, upStratDecls, upSds, and upModule take as arguments the
metarepresentation of the name of R and a Boolean value b, and return, respectively, the

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 393

metarepresentations of the module R, of its sorts, subsort declarations, operator declarations,
membership axioms, equations, and rules. If the second argument of these functions is true,
then the resulting metarepresentations will include the corresponding statements that R im-
ports from its submodules; but if the second argument is false, the resulting metarepresenta-
tions will only contain the metarepresentations of the statements explicitly declared in R.

op upModule : Qid Bool ~> Module [special (...)] .

op upSorts : Qid Bool ~> SortSet [special (...)] .

op upSubsortDecls : Qid Bool ~> SubsortDeclSet [special (...)] .

op upOpDecls : Qid Bool ~> OpDeclSet [special (...)] .

op upMbs : Qid Bool ~> MembAxSet [special (...)] .

op upEqs : Qid Bool ~> EquationSet [special (...)] .

op upRls : Qid Bool ~> RuleSet [special (...)] .

op upStratDecls : Qid Bool ~> StratDeclSet [special (...)] .

op upSds : Qid Bool ~> StratDefSet [special (...)] .

We give below simple examples of using these functions. Note that, since BOOL is automati-
cally imported by all modules, its equations are shown when upEqs is called with true as its sec-
ond argument. For the same reason, the metarepresentation of the VENDING-MACHINE-SIGNATURE
module includes an including declaration that was not explicit in that module. Here, and in
the rest of this section, we assume that the modules NUMBERS and SIEVE from Chapter 4, as
well as the modules VENDING-MACHINE-SIGNATURE and VENDING-MACHINE from Chapter 5, have
already been loaded into Maude.

Maude> reduce in META-LEVEL :

upModule(’VENDING-MACHINE-SIGNATURE, false) .

result FModule:

fmod ’VENDING-MACHINE-SIGNATURE is

including ’BOOL .

sorts ’Coin ; ’Item ; ’Marking .

subsort ’Coin < ’Marking .

subsort ’Item < ’Marking .

op ’$: nil -> ’Coin [format(’r! ’o)] .

op ’__ : ’Marking ’Marking -> ’Marking

[assoc comm id(’null.Marking)] .

op ’a : nil -> ’Item [format(’b! ’o)] .

op ’c : nil -> ’Item [format(’b! ’o)] .

op ’null : nil -> ’Marking [none] .

op ’q : nil -> ’Coin [format(’r! ’o)] .

none

none

endfm

Maude> reduce in META-LEVEL : upEqs(’VENDING-MACHINE, true) .

result EquationSet:

eq ’_and_[’true.Bool, ’A:Bool] = ’A:Bool [none] .

eq ’_and_[’A:Bool, ’A:Bool] = ’A:Bool [none] .

eq ’_and_[’A:Bool, ’_xor_[’B:Bool, ’C:Bool]]

= ’_xor_[’_and_[’A:Bool, ’B:Bool], ’_and_[’A:Bool, ’C:Bool]]

[none] .

eq ’_and_[’false.Bool, ’A:Bool] = ’false.Bool [none] .

eq ’_or_[’A:Bool,’B:Bool]

= ’_xor_[’_and_[’A:Bool, ’B:Bool],’_xor_[’A:Bool, ’B:Bool]]

[none] .

eq ’_xor_[’A:Bool, ’A:Bool] = ’false.Bool [none] .

394CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

eq ’_xor_[’false.Bool, ’A:Bool] = ’A:Bool [none] .

eq ’not_[’A:Bool] = ’_xor_[’true.Bool, ’A:Bool] [none] .

eq ’_implies_[’A:Bool, ’B:Bool]

= ’not_[’_xor_[’A:Bool, ’_and_[’A:Bool, ’B:Bool]]] [none] .

Maude> reduce in META-LEVEL : upEqs(’VENDING-MACHINE, false) .

result EquationSet: (none).EquationSet

Maude> reduce in META-LEVEL : upRls(’VENDING-MACHINE, true) .

result RuleSet:

rl ’$.Coin => ’c.Item [label(’buy-c)] .

rl ’$.Coin => ’__[’q.Coin,’a.Item] [label(’buy-a)] .

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .

rl ’M:Marking => ’__[’q.Coin,’M:Marking] [label(’add-q)] .

rl ’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin] => ’$.Coin
[label(’change)] .

In addition to the upModule operator, there is another operator allowing the use of an
already loaded module at the metalevel. This operator is defined in the module META-MODULE

as follows:

op [_] : Qid -> Module .

eq [Q:Qid] = (sth Q:Qid is including Q:Qid .

sorts none . none none none none none none none endsth) .

This operator is just syntactic sugar for accessing the corresponding module. Notice that
the module is not moved up to the metalevel as upModule does, it is just a way of referring to
it, and therefore more efficient.

The META-LEVEL module also provides a function upImports that takes as argument the
metarepresentation of the name of a module R . When R is already in the Maude module
database, then upImports returns the metarepresentation of its list of imported submodules.
The function upImports does not take a Boolean argument, as the previous up-functions, since
it is not useful to ask for the list of imported submodules of a flattened module.

op upImports : Qid ~> ImportList [special (...)] .

In the same way, the META-LEVEL module provides a function upView that takes as argument
the metarepresentation of the name of a view; when such a view is in the Maude view database,
then upView returns the corresponding metarepresentation.

op upView : Qid ~> View [special (...)] .

As a simple example, let us consider the view String0 from the predefined theory DEFAULT

to the predefined module STRING, all of them provided in prelude.maude; then,

Maude> reduce in META-LEVEL : upView(’String0) .

result View:

view ’String0 from ’DEFAULT to ’STRING is

sort ’Elt to ’String .

op ’0.Elt to term ’"".String .

endv

Finally, the META-LEVEL module introduces two polymorphic functions. The function upTerm

takes a term t and returns the metarepresentation of its canonical form. The function downTerm

takes the metarepresentation of a term t as its first argument and a term t′ as its second ar-
gument, and returns the canonical form of t, if t is a term in the same kind as t′; otherwise, it
returns the canonical form of t′.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 395

op upTerm : Universal -> Term [poly (1) special (...)] .

op downTerm : Term Universal -> Universal

[poly (2 0) special (...)] .

As simple examples, we can use the function upTerm to obtain the metarepresentation of
the term f(a, f(b, c)) in the module UP-DOWN-TEST below, and the function downTerm to
recover the term f(a, f(b, c)) from its metarepresentation.

fmod UP-DOWN-TEST is

protecting META-LEVEL .

sort Foo .

ops a b c d : -> Foo .

op f : Foo Foo -> Foo .

op error : -> [Foo] .

eq c = d .

endfm

Maude> reduce in UP-DOWN-TEST : upTerm(f(a, f(b, c))) .

result GroundTerm: ’f[’a.Foo,’f[’b.Foo,’d.Foo]]

Notice in the previous example that the given argument has been reduced before obtaining
its metarepresentation, more specifically, the subterm c has become d. In the following examples
we can observe the same behavior with respect to downTerm.

Maude> reduce in UP-DOWN-TEST :

downTerm(’f[’a.Foo,’f[’b.Foo,’c.Foo]], error) .

result Foo: f(a, f(b, d))

Maude> reduce in UP-DOWN-TEST :

downTerm(upTerm(f(a, f(b, c))), error) .

result Foo: f(a, f(b, d))

In our last example, we show the result of downTerm when its first argument does not cor-
respond to the metarepresentation of a term in the module UP-DOWN-TEST; notice the constant
e in the metarepresented term that does not correspond to a declared constant in the module.

Maude> reduce in UP-DOWN-TEST :

downTerm(’f[’a.Foo,’f[’b.Foo,’e.Foo]], error) .

Advisory: could not find a constant e of

sort Foo in meta-module UP-DOWN-TEST.

result [Foo]: error

Due to the failure in moving down the metarepresented term given as first argument, the
result is the term given as second argument, namely, error, which was declared in the module
UP-DOWN-TEST as a constant of kind [Foo].

17.6.2 Simplifying: metaReduce and metaNormalize

metaReduce

The (partial) operation metaReduce takes as arguments the metarepresentation of a module R
and the metarepresentation of a term t.

sort ResultPair .

op {_,_} : Term Type -> ResultPair [ctor] .

op metaReduce : Module Term ~> ResultPair [special (...)] .

396CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

When t is a term in R, metaReduce(R,t) returns the metarepresentation of the canonical
form of t, using the equations in R, together with the metarepresentation of its corresponding
sort or kind. The reduction strategy used by metaReduce coincides with that of the reduce

command (see Sections 4.9 and 23.2).
As said above, in general, when either the first argument of metaReduce is a term of sort

Module but not a correct metarepresentation R of an object module R, or the second argument
is not the correct metarepresentation t of a term t in R, the operation metaReduce is undefined,
that is, the term metaReduce(u,v) does not reduce and it does not get evaluated to a term of
sort ResultPair, but only to an expression in the kind [ResultPair].

Appropriate selectors extract from the result pairs their two components:

op getTerm : ResultPair -> Term .

op getType : ResultPair -> Type .

Using metaReduce we can simulate at the metalevel the primes computation example at the
end of Section 4.4.7.

Maude> reduce in META-LEVEL :

metaReduce(upModule(’SIEVE, false),

’show_upto_[’primes.NatList, ’s_^10[’0.Zero]]) .

result ResultPair:

{’_._[’s_^2[’0.Zero], ’s_^3[’0.Zero], ’s_^5[’0.Zero],

’s_^7[’0.Zero], ’s_^11[’0.Zero], ’s_^13[’0.Zero],

’s_^17[’0.Zero], ’s_^19[’0.Zero], ’s_^23[’0.Zero],

’s_^29[’0.Zero]],

’NatList}

We can also insert a new element into an empty map of the type declared in the module
PARMODEX at the end of Section 17.4 as follows:

Maude> red in META-LEVEL :

metaReduce(

fmod ’PARMODEX{’X :: ’TRIV} is

including ’MAP{’String, ’X} .

sorts ’Foo .

none

none

none

none

endfm,

’insert[’"foo".String, ’A:X$Elt,
’empty.Map‘{String‘,X‘}]) .

result ResultPair:

{’_|->_[’"foo".String,’A:X$Elt],’Entry‘{String‘,X‘}}

Notice that the module expression ’MAP{’String, ’X} has a bound parameter X, which appears
also in the sort X$Elt in the on-the-fly declaration of the variable A:X$Elt.

metaNormalize

The (partial) operation metaNormalize takes as arguments the metarepresentation of a module
R and the metarepresentation of a term t.

op metaNormalize : Module Term ~> ResultPair [special (...)] .

When t is a term in R, metaNormalize(R,t) returns the metarepresentation of the normal
form of t with respect to the equational theory consisting of the equational attributes of the

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 397

operators in t, without doing any simplification or rewriting with respect to equations or rules
in R, together with the metarepresentation of its corresponding sort or kind. For example,
from the declarations in the predefined NAT module

op s_ : Nat -> NzNat [ctor iter special (...)] .

op _+_ : NzNat Nat -> NzNat [assoc comm prec 33 special (...)] .

op _+_ : Nat Nat -> Nat [ditto] .

we know that the successor operator satisfies the iter theory (see Section 4.4.2) and that the
addition operator is associative and commutative (see Section 4.4.1). With this information it
is easy to make sense of the following results:

Maude> red in META-LEVEL :

metaNormalize(upModule(’NAT, false), ’s_[’s_[’0.Zero]]) .

result ResultPair: {’s_^2[’0.Zero],’NzNat}

Maude> red in META-LEVEL :

metaNormalize(upModule(’NAT, false),

’_+_[’s_[’s_[’0.Zero]],’0.Zero]) .

result ResultPair: {’_+_[’0.Zero,’s_^2[’0.Zero]],’NzNat}

Maude> red in META-LEVEL :

metaNormalize(upModule(’NAT, false),

’_+_[’0.Zero,’_+_[’s_[’s_[’0.Zero]],’0.Zero]]) .

result ResultPair: {’_+_[’0.Zero,’0.Zero,’s_^2[’0.Zero]],’NzNat}

Notice that associative terms are flattened and, if they are also commutative, the subterms are
sorted with respect to an internal order. Notice also that in the last two examples the subterm
’0.Zero does not disappear. This is because 0 is not declared as an identity element for _+_.

17.6.3 Rewriting: metaRewrite and metaFrewrite

metaRewrite

The (partial) operation metaRewrite takes as arguments the metarepresentation of a module
R, the metarepresentation of a term t, and a value b of the sort Bound, i.e., either a natural
number or the constant unbounded.

sort Bound .

subsort Nat < Bound .

op unbounded :-> Bound [ctor] .

op metaRewrite : Module Term Bound ~> ResultPair [special (...)] .

The operation metaRewrite is entirely analogous to metaReduce, but instead of using only
the equational part of a module it now uses both the equations and the rules to rewrite the term.
The reduction strategy used by metaRewrite coincides with that of the rewrite command (see
Sections 5.4 and 23.2). That is, the result of metaRewrite(R, t, b) is the metarepresentation
of the term obtained from t after at most b applications of the rules in R using the rewrite

strategy, together with the metarepresentation of its corresponding sort or kind. When the value
unbounded is given as the third argument, no bound is imposed to the number of rewrites, and
rewriting proceeds to the bitter end.

Using metaRewrite we can redo at the metalevel the examples in Section 5.4.

Maude> reduce in META-LEVEL :

metaRewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]], 1) .

398CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

result ResultPair:

{’__[’$.Coin, ’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin], ’Marking}

Maude> reduce in META-LEVEL :

metaRewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]], 2) .

result ResultPair:

{’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin],

’Marking}

metaFrewrite

Position fair rewriting, which was described in Section 5.4, is metarepresented by the operation
metaFrewrite. This (partial) operation takes as arguments the metarepresentation of a module,
the metarepresentation of a term, a value of sort Bound, and a natural number.

op metaFrewrite : Module Term Bound Nat ~> ResultPair

[special (...)] .

The reduction strategy used by metaFrewrite coincides with that of the frewrite command
in Maude, except that a final (semantic) sort calculation is performed at the end in order to
produce a correct ResultPair. That is, frewrite(R, t, b, n) results in the metarepresen-
tation of the term obtained from t after at most b applications of the rules in R using the
frewrite strategy, with at most n rewrites at each entitled position on each traversal of a
subject term, together with the metarepresentation of its corresponding sort or kind. When
the value unbounded is given as the third argument, no bound is imposed to the number of
rewrites.

Using metaFrewrite we can redo at the metalevel the examples in Section 5.4.

Maude> reduce in META-LEVEL :

metaFrewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]],

1, 1) .

result ResultPair:

{’__[’$.Coin, ’q.Coin, ’q.Coin, ’c.Item], ’Marking}

Maude> reduce in META-LEVEL :

metaFrewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]],

12, 1) .

result ResultPair:

{’__[’$.Coin, ’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin, ’q.Coin,

’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin,

’q.Coin,’a.Item,’c.Item],

’Marking}

17.6.4 Applying rules: metaApply and metaXapply

metaApply

The (partial) operation metaApply takes as arguments the metarepresentation of a module, the
metarepresentation of a term, the metarepresentation of a rule label, the metarepresentation
of a set of assignments (possibly empty) defining a partial substitution, and a natural number.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 399

sorts Assignment Substitution .

subsort Assignment < Substitution .

op _<-_ : Variable Term -> Assignment [ctor prec 63] .

op none : -> Substitution [ctor] .

op _;_ : Substitution Substitution -> Substitution

[assoc comm id: none prec 65] .

sort ResultTriple ResultTriple? .

subsort ResultTriple < ResultTriple? .

op {_,_,_} : Term Type Substitution -> ResultTriple [ctor] .

op failure : -> ResultTriple? [ctor] .

op metaApply : Module Term Qid Substitution Nat ~> ResultTriple?

[special (...)] .

The operation metaApply(R, t, l, σ, n) is evaluated as follows:

1. the term t is first fully reduced using the equations in R;

2. the resulting term is matched at the top against all rules with label l in R partially
instantiated with σ, with matches that fail to satisfy the condition of their rule discarded;

3. the first n successful matches are discarded; if there is an (n + 1)th match, its rule is
applied using that match and the steps 4 and 5 below are taken; otherwise failure is
returned;

4. the term resulting from applying the given rule with the (n+ 1)th match is fully reduced
using the equations in R;

5. the triple formed by the metarepresentation of the resulting fully reduced term, the
metarepresentation of its corresponding sort or kind, and the metarepresentation of the
substitution used in the reduction is returned.

The failure value should not be confused with the “undefined” value for the metaApply

operation. As already mentioned before for descent functions in general, this operation is partial
because it does not make sense on some nonvalid arguments that are terms of the appropriate
sort but are not correct metarepresentations. However, even if all arguments are valid in this
sense, the intended rule application may fail, either because there is no match or because the
match does not satisfy the corresponding rule condition, and then failure is used to represent
this situation, which is important to distinguish from ill-formed invocations, for example, for
error recovery purposes.

Note also that, according to the information in step 3 above, the last argument of metaApply
is a natural number used to enumerate (starting from 0) all the possible solutions of the intended
rule application. For efficiency, the different solutions should be generated in order, that is,
starting with the argument 0 and increasing it until a failure is obtained, indicating that there
are no more solutions.

Appropriate selectors extract from the result triples their three components:

op getTerm : ResultTriple -> Term .

op getType : ResultTriple -> Type .

op getSubstitution : ResultTriple -> Substitution .

As an example, we can force at the metalevel the rewriting of the term $ in the module
VENDING-MACHINE, so that only the rule buy-c is used, and only once.

400CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Maude> reduce in META-LEVEL :

metaApply(upModule(’VENDING-MACHINE, false),

’$.Coin, ’buy-c, none, 0) .

result ResultTriple: {’c.Item, ’Item, none}

Similarly, we can force the rewriting of the same term so that this time only the rule add-$
is applied.

Maude> reduce in META-LEVEL :

metaApply(upModule(’VENDING-MACHINE, false),

’$.Coin, ’add-$, none, 0) .

result ResultTriple:

{’__[’$.Coin, ’$.Coin], ’Marking, ’M:Marking <- ’$.Coin}

However, using metaApply, we cannot force the term q $ to be rewritten with the rule
buy-c, since its lefthand side, $, does not match (without extension) this term. In this case,
we should use instead the metaXapply operation described below.

Maude> reduce in META-LEVEL :

metaApply(upModule(’VENDING-MACHINE, false),

’__[’q.Coin, ’$.Coin], ’buy-c, none, 0) .

result ResultTriple?: (failure).ResultTriple?

metaXapply

The (partial) operation metaXapply takes as arguments the metarepresentation of a module,
the metarepresentation of a term, the metarepresentation of a rule label, the metarepresentation
of a set of assignments (possibly empty) defining a partial substitution, a natural number, a
Bound value, and another natural number.

The operation metaXapply(R, t, l, σ, n, b, m) is evaluated as the function metaApply

but using extension (see Section 4.8) and in any possible position, not only at the top. The
arguments n and b can be used to localize the part of the term where the rule application can
take place:

• n is the lower bound on depth in terms of nested operators, and should be set to 0 to
start searching from the top, while

• the Bound argument b indicates the upper bound, and should be set to unbounded to have
no cut off.

Notice that nested occurrences of an operator with the assoc attribute are counted as a
single operator for depth purposes, that is, matching takes place on the flattened term (see
Section 4.8). The same idea applies to iter operators (see section 4.4.2): a whole stack of an
iter operator counts as a single operator. Furthermore, because of matching with extension,
the solution may have an extra layer, as illustrated in the matching examples at the end of
Section 17.6.5.

The last Nat argument m in metaXapply(R, t, l, σ, n, b, m), as in the case of the
operation metaApply, is the solution number, used to enumerate multiple solutions. The first
solution is 0, and they should again be generated in order for efficiency.

The result of metaXapply has an additional component, giving the context (a term with a
single “hole”, represented []) inside the given term t, where the rewriting has taken place. The
sort NeCTermList represents nonempty lists of terms with exactly one “hole,” that is, exactly
one term of sort Context, the rest being of sort Term. The sort GTermList is the supersort of
NeCTermList and TermList needed for the assoc attribute (hidden in the following declarations
in the ditto attribute) to make sense.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 401

sorts Context NeCTermList GTermList .

subsorts Context < NeCTermList < GTermList .

subsort TermList < GTermList .

op [] : -> Context [ctor] .

op _,_ : TermList NeCTermList -> NeCTermList [ctor ditto] .

op _,_ : NeCTermList TermList -> NeCTermList [ctor ditto] .

op _,_ : GTermList GTermList -> GTermList [ctor ditto] .

op _[_] : Qid NeCTermList -> Context [ctor] .

sorts Result4Tuple Result4Tuple? .

subsort Result4Tuple < Result4Tuple? .

op {_,_,_,_} : Term Type Substitution Context -> Result4Tuple

[ctor] .

op failure : -> Result4Tuple? [ctor] .

op metaXapply :

Module Term Qid Substitution Nat Bound Nat ~> Result4Tuple?

[special (...)] .

Appropriate selectors extract from the result 4-tuples their four components:

op getTerm : Result4Tuple -> Term .

op getType : Result4Tuple -> Type .

op getSubstitution : Result4Tuple -> Substitution .

op getContext : Result4Tuple -> Context .

As an example, we can force at the metalevel the rewriting of the term $ q in the mod-
ule VENDING-MACHINE so that only the rule buy-c is used (compare with the last metaApply

example).

Maude> reduce in META-LEVEL :

metaXapply(upModule(’VENDING-MACHINE, false),

’__[’q.Coin, ’$.Coin], ’buy-c, none, 0, unbounded, 0) .

result Result4Tuple:

{’__[’q.Coin, ’c.Item], ’Marking, none, ’__[’q.Coin, []]}

Notice the fragment ’__[’q.Coin, []] of the result, providing the context where the rule
has been applied. Since this is the only possible solution, if we request the “next” solution (by
increasing to 1 the last argument), the result will be a failure.

Maude> reduce in META-LEVEL :

metaXapply(upModule(’VENDING-MACHINE, false),

’__[’q.Coin, ’$.Coin], ’buy-c, none, 0, unbounded, 1) .

result Result4Tuple?: (failure).Result4Tuple?

17.6.5 Matching: metaMatch and metaXmatch

The (partial) operation metaMatch takes as arguments the metarepresentation of a module,
the metarepresentations of two terms, the metarepresentation of a condition, and a natural
number.

sort Substitution? .

subsort Substitution < Substitution? .

op noMatch : -> Substitution? [ctor] .

op metaMatch : Module Term Term Condition Nat ~> Substitution?

[special (...)] .

402CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

The operation metaMatch(R, t, t′, Cond, n) tries to match at the top the terms t and
t′ in the module R in such a way that the resulting substitution satisfies the condition Cond .
The last argument is used to enumerate possible matches. If the matching attempt is successful,
the result is the corresponding substitution; otherwise, noMatch is returned. The generalization
to metaXmatch follows exactly the same ideas as for metaXapply. Notice that the operation
metaMatch provides the metalevel counterpart of the object-level command match, while the
operation metaXmatch provides a generalization of the object-level command xmatch (see Sec-
tions 4.7, 4.8, and 23.3) in that it is possible to specify min and max depths (in terms of
theory layers) and search for proper subterms that do not belong to the top theory layer. The
object-level behavior of the xmatch command is obtained by setting both min and max depth
to 0.

sorts MatchPair MatchPair? .

subsort MatchPair < MatchPair? .

op {_,_} : Substitution Context -> MatchPair [ctor] .

op noMatch : -> MatchPair? [ctor] .

op metaXmatch :

Module Term Term Condition Nat Bound Nat ~> MatchPair?

[special (...)] .

Appropriate selectors extract from the result pairs their two components:

op getSubstitution : MatchPair -> Substitution .

op getContext : MatchPair -> Context .

In the following examples, we try to match the pattern M:Marking $ with the term $ q c

a in several different ways:

• at the top, asking for the first solution,

Maude> reduce in META-LEVEL :

metaMatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],
’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 0) .

result Assignment:

’M:Marking <- ’__[’q.Coin, ’a.Item, ’c.Item]

• at the top, asking for the second solution (that does not exist in this example)

Maude> reduce metaMatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],
’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 1) .

result Substitution?: (noMatch).Substitution?

• anywhere, asking for the first solution,

Maude> reduce metaXmatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],
’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 0, unbounded, 0) .

result MatchPair:

{’M:Marking <- ’__[’q.Coin, ’a.Item, ’c.Item], []}

• anywhere, asking for the second solution,

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 403

Maude> reduce metaXmatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],
’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 0, unbounded, 1) .

result MatchPair:

{’M:Marking <- ’__[’a.Item, ’c.Item], ’__[’q.Coin, []]}

• at the top, asking for the first solution satisfying a given condition (that again does not
exist),

Maude> reduce metaMatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],
’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

’M:Marking = ’a.Item, 0) .

result Substitution?: (noMatch).Substitution?

• anywhere, asking for the first solution satisfying a given condition,

Maude> reduce metaXmatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],
’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

’M:Marking = ’a.Item, 0, unbounded, 0) .

result MatchPair:

{’M:Marking <- ’a.Item, ’__[’__[’q.Coin, ’c.Item], []]}

As mentioned in the previous section, when matching with extension, the solution may have
an extra layer. Let us consider, for example, the following module:

fmod METAXMATCH-EX is

pr META-LEVEL .

op foo : QidSet ~> QidSet .

endfm

Then we take at the metalevel the pattern _;_(’A, QS:QidSet) and the (flattened) subject
term foo(_;_(’A, ’B, ’C)), and ask for matches with extension under at most 1 theory layer,
as shown in the following reductions:

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 0) .

result MatchPair: {’QS:QidSet <- ’_;_[’’B.Sort, ’’C.Sort], ’foo[[]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 1) .

result MatchPair: {’QS:QidSet <- ’’C.Sort, ’foo[’_;_[’’B.Sort, []]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 2) .

result MatchPair: {’QS:QidSet <- ’’B.Sort, ’foo[’_;_[’’C.Sort, []]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 3) .

result MatchPair?: (noMatch).MatchPair?

404CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Obviously, there is no match at the top, but under one theory layer (the foo operator) we
have _;_(’A, ’B, ’C). The first solution is the expected one, with the variable QS:QidSet

matching the subterm _;_(’B, ’C). However, in the next two solutions we see that we also
have the variable QS:QidSet matching either the fragment ’C or ’B while the other fragment
goes into the extension. Then the context in the solution has 2 theory layers but this is just a
feature of matching with extension: some solutions will have an extra layer.

As another example of this situation, let us consider the following reductions:

Maude> reduce in META-LEVEL :

metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm(s N:Nat), upTerm(prec(s_^2(0))), nil, 0, 1, 0) .

result MatchPair: {’N:Nat <- ’s_[’0.Zero], ’prec[[]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm(s N:Nat), upTerm(prec(s_^2(0))), nil, 0, 1, 1) .

result MatchPair: {’N:Nat <- ’0.Zero, ’prec[’s_[[]]]}

Here the context in the first solution has one theory layer while the context in the second
has two, but the actual matching problem solved (with extension), namely, s N <=? s_^2(0)

under the single theory layer provided by the operator prec is the same in both reductions.

17.6.6 Searching: metaSearch and metaSearchPath

metaSearch

The operation metaSearch takes as arguments the metarepresentation of a module, the meta-
representation of the starting term for search, the metarepresentation of the pattern to search
for, the metarepresentation of a condition to be satisfied, the metarepresentation of the kind of
search to carry on, a Bound value, and a natural number.

op metaSearch :

Module Term Term Condition Qid Bound Nat ~> ResultTriple?

[special (...)] .

The searching strategy used by metaSearch coincides with that of the object-level search
command in Maude (see Sections 5.4 and 23.4). The Qid values that are allowed as arguments
are: ’* for a search involving zero or more rewrites (corresponding to =>* in the search

command), ’+ for a search consisting in one or more rewrites (=>+), and ’! for a search that
only matches canonical forms (=>!). The Bound argument indicates the maximum depth of the
search, and the Nat argument is the solution number. To indicate a search consisting in exactly
one rewrite, we set the maximum depth of the search to the number 1.

Using metaSearch we can redo at the metalevel the last example in Section 5.4. The results
give us the answer to the question: if I have already inserted one dollar and three quarters in
the vending machine, can I get two cakes and an apple? The answer is yes; in fact, there are
several ways.

Maude> reduce in META-LEVEL :

metaSearch(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin,’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 0) .

result ResultTriple:

{’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin,’a.Item,’c.Item,’c.Item],

’Marking,

’M:Marking <- ’__[’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin]}

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 405

Maude> reduce in META-LEVEL :

metaSearch(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 1) .

result ResultTriple:

{’__[’a.Item, ’c.Item, ’c.Item],

’Marking,

’M:Marking <- ’null.Marking}

metaSearchPath

The operation metaSearchPath is complementary to metaSearch and carries out the same
search, but instead of returning the final state and matching substitution it returns the sequence
of states and rules on a path starting with the reduced initial state and leading to (but not
including) the final state.

op metaSearchPath :

Module Term Term Condition Qid Bound Nat ~> Trace?

[special (...)] .

The sort Trace is used to represent the path as a list of triples by means of the following
syntax:

sorts TraceStep Trace Trace? .

subsorts TraceStep < Trace < Trace? .

op {_,_,_} : Term Type Rule -> TraceStep [ctor] .

op nil : -> Trace [ctor] .

op __ : Trace Trace -> Trace [ctor assoc id: nil format (d n d)] .

op failure : -> Trace? [ctor] .

We run again the same two examples as above, with the following results.

Maude> reduce in META-LEVEL :

metaSearchPath(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin,’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 0) .

result Trace:

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin],
’Marking,

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .}

{’__[’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin],
’Marking,

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .}

{’__[’$.Coin,’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin],
’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

{’__[’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin,’c.Item],
’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin,’c.Item,’c.Item],
’Marking,

rl ’$.Coin => ’__[’q.Coin,’a.Item] [label(’buy-a)] .}

406CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Maude> reduce in META-LEVEL :

metaSearchPath(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 1) .

result Trace:

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin],
’Marking,

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .}

{’__[’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin],
’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin,’c.Item],
’Marking,

rl ’$.Coin => ’__[’q.Coin,’a.Item] [label(’buy-a)] .}

{’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin,’a.Item,’c.Item],

’Marking,

rl ’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin] => ’$.Coin
[label(’change)] .}

{’__[’$.Coin,’a.Item,’c.Item],
’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

The operations metaSearchPath and metaSearch share caching, so calling one after the
other on the same arguments only performs a single search.

17.6.7 Rewriting using strategies: metaSrewrite

The operation metaSrewrite rewrites a metaterm according to a metastrategy in a given
metamodule.

op metaSrewrite :

Module Term Strategy SrewriteOption Nat ~> ResultPair? [special (...)] .

It is the metarepresentation of the srewrite and dsrewrite commands, depending on whether
the SrewriteOption parameter is breadthFirst or depthFirst respectively. Like similar
descent functions, the last parameter allows enumerating the strategy solutions, and evaluates
to the constant failure when the given index is higher than the number of solutions.

For example, in the QUEENS-STRAT module of Section 10.3, we can obtain all possible ways
of extending the partial solution 1 3 5, by enumerating the solutions of the expand strategy
defined in QUEENS-STRAT:

Maude> red in META-LEVEL : metaSrewrite([’QUEENS-STRAT], upTerm(1 3 5),

’expand[[empty]], breadthFirst, 0) .

result ResultPair:

{’__[’s_[’0.Zero],’s_^3[’0.Zero],’s_^5[’0.Zero],’s_^2[’0.Zero]],’NeList‘{Nat‘}}

Maude> red metaSrewrite([’QUEENS-STRAT], upTerm(1 3 5),

’expand[[empty]], breadthFirst, 1) .

result ResultPair:

{’__[’s_[’0.Zero],’s_^3[’0.Zero],’s_^5[’0.Zero],’s_^7[’0.Zero]],’NeList‘{Nat‘}}

Maude> red metaSrewrite([’QUEENS-STRAT], upTerm(1 3 5),

’expand[[empty]], breadthFirst, 2) .

result ResultPair:

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 407

{’__[’s_[’0.Zero],’s_^3[’0.Zero],’s_^5[’0.Zero],’s_^8[’0.Zero]],’NeList‘{Nat‘}}

Maude> red metaSrewrite([’QUEENS-STRAT], upTerm(1 3 5),

’expand[[empty]], breadthFirst, 3) .

result ResultPair?:

failure

17.6.8 Unification: metaUnify, metaIrredundantUnify, metaDisjointUnify
and metaIrredundantDisjointUnify

The unification command of Section 13.4 is reflected in the META-LEVEL module by two descent
functions:

op metaUnify :

Module UnificationProblem Nat Nat ~> UnificationPair? [special (...)] .

op metaDisjointUnify :

Module UnificationProblem Nat Nat ~> UnificationTriple? [special (...)] .

These two metalevel functions work on unification problems constructed by means of the fol-
lowing signature:

sorts UnificandPair UnificationProblem .

subsort UnificandPair < UnificationProblem .

op _=?_ : Term Term -> UnificandPair [ctor prec 71] .

op _/_ : UnificationProblem UnificationProblem -> UnificationProblem

[ctor assoc comm prec 73] .

The key difference between metaUnify and metaDisjointUnify is that the latter assumes
that the variables in the left and righthand unificands are to be considered disjoint even when
they are not so, and it generates each solution to the given unification problem not as a single
substitution, but as a pair of substitutions, one for left unificands and the other for right
unificands. This functionality is very useful for applications, such as critical-pair checking or
narrowing, where a disjoint copy of the terms or rules involved must always be computed before
unification is performed. Indeed, what the metaDisjointUnify operation avoids is precisely
the need for explicitly computing such disjoint copies. The need for two substitutions in each
solution is then obvious, since the terms in the given unification problem need not be made
explicitly disjoint, but their (accidentally) common variables must be treated differently, as if
they were disjoint.

Since it is convenient to reuse variable names from unifiers in new problems, for example
in narrowing, this is allowed via the third argument, which is the largest number n appearing
in a unificand variable of the form #n:Sort (see Section 13.4). The latest version of Maude
includes an alternative interface to variable reuse by using a Qid instead of a natural number
in the third argument, which is the identifier ξ used in unificand variables of the form ξn:Sort
.

op metaUnify :

Module UnificationProblem Qid Nat ~> UnificationPair? [special (...)] .

op metaDisjointUnify :

Module UnificationProblem Qid Nat ~> UnificationTriple? [special (...)] .

This avoids variable name clashes with the previous variable families ’#, ’% and ’@ provided
for, respectively, unification modulo axioms in Chapter 13, variant unification in Chapter 14,
and narrowing in Chapter 15.

408CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

When we are interested in the minimal set of most general unifiers modulo axioms, we
should use the following two descent functions, which are defined only for the alternative of
using a Qid instead of a natural number in the third argument:

op metaIrredundantUnify :

Module UnificationProblem Qid Nat ~> UnificationPair? [special (...)] .

op metaIrredundantDisjointUnify :

Module UnificationProblem Qid Nat ~> UnificationTriple? [special (...)] .

As is usual for descent functions, the last argument in the function is used to select which
result is wanted, starting from 0. Caching is used so that if unifier i has just been returned,
requesting unifier i+ 1 gives rise to an incremental computation.

Results are returned using the following constructors when a natural number is used for the
third argument:

subsort UnificationPair < UnificationPair? .

subsort UnificationTriple < UnificationTriple? .

op {_,_} : Substitution Nat -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Nat -> UnificationTriple [ctor] .

as appropriate for the descent function. The final Nat component is the largest n occurring in
a fresh metavariable of the form #n:Sort. In this way, when we want to reuse variable names
from unifiers, the next invocation of the function can use this parameter to make sure that the
new variables generated are always fresh.

In the case where a call to metaUnify or metaDisjointUnify is invoked with a Qid in the
third argument, the following different constructors are used:

op {_,_} : Substitution Qid -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Qid -> UnificationTriple [ctor] .

and now they return the Qid specifying a variable family instead of the largest natural number
used. Note that such Qid will indeed be different to the Qid given in the third argument.

When no unifier with a given index exists, the constant

op noUnifier : -> UnificationPair? [ctor] .

or, respectively, the constant

op noUnifier : -> UnificationTriple? [ctor] .

is returned as appropriate for the corresponding descent function.
Recall that for unification modulo associative symbols no finite set of unifiers may exist, yet

a finite set is returned with a warning if the set may be incomplete (see Section 13.4.6). At the
metalevel, the role of this warning is played by the constant:

op noUnifierIncomplete : -> UnificationPair? [ctor] .

or, respectively, the constant

op noUnifierIncomplete : -> UnificationTriple? [ctor] .

which is returned when a finite set of most general unifiers cannot be ensured.
We can illustrate the use of these metalevel functions with a few examples. The first one

comes from the previous section, but moved up at the metalevel:

Maude> reduce in META-LEVEL :

metaUnify(upModule(’UNIFICATION-EX1, false),

’f[’X:Nat, ’Y:NzNat] =? ’f[’Z:NzNat, ’U:Nat] /\

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 409

’V:NzNat =? ’f[’X:Nat, ’U:Nat], 0, 0) .

result UnificationPair:

{’U:Nat <- ’#1:NzNat ;

’V:NzNat <- ’f[’#2:NzNat, ’#1:NzNat] ;

’X:Nat <- ’#2:NzNat ;

’Y:NzNat <- ’#1:NzNat ;

’Z:NzNat <- ’#2:NzNat, 2}

The second example shows that we can request fresh variables with arbitrarily large num-
bering:

Maude> reduce in META-LEVEL :

metaUnify(upModule(’NAT, false),

’_+_[’X:Nat,’Y:Nat] =? ’_+_[’A:Nat,’B:Nat],

100000000000000000000, 0) .

result UnificationPair:

{’A:Nat <- ’_+_[’#100000000000000000001:Nat,

’#100000000000000000002:Nat] ;

’B:Nat <- ’_+_[’#100000000000000000003:Nat,

’#100000000000000000004:Nat] ;

’X:Nat <- ’_+_[’#100000000000000000001:Nat,

’#100000000000000000003:Nat] ;

’Y:Nat <- ’_+_[’#100000000000000000002:Nat,

’#100000000000000000004:Nat],

100000000000000000004}

The following example shows a similar unification problem but with much smaller number-
ings in fresh variables, and now involving an invocation of metaDisjointUnify.

Maude> reduce in META-LEVEL :

metaDisjointUnify(upModule(’NAT, false),

’_+_[’X:Nat, ’Y:Nat] =? ’_+_[’X:Nat, ’B:Nat], 0, 0) .

result UnificationTriple: {

’X:Nat <- ’_+_[’#1:Nat, ’#2:Nat] ;

’Y:Nat <- ’_+_[’#3:Nat, ’#4:Nat],

’B:Nat <- ’_+_[’#1:Nat, ’#3:Nat] ;

’X:Nat <- ’_+_[’#2:Nat, ’#4:Nat], 4}

Yet another example shows how using variable names in unification problems with larger
numbers than declared by the third argument generates a warning and no reduction.

Maude> reduce in META-LEVEL :

metaUnify(upModule(’NAT, false),

’_+_[’X:Nat,’Y:Nat] =? ’_+_[’#1:Nat,’Y:Nat], 0, 0) .

Warning: unsafe variable name #1:Nat in unification problem.

result [UnificationPair?]:

metaUnify(th ’NAT is

including ’NAT .

sorts none .

none

none

410CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

none

none

none

endth,

’_+_[’X:Nat, ’Y:Nat] =? ’_+_[’#1:Nat, ’Y:Nat], 0, 0)

Similarly, the following example shows how using a variable of the form ξn:Sort for ξ being
a different Qid to that given in the third argument generates a warning and no reduction.

Maude> reduce in META-LEVEL :

metaUnify(upModule(’NAT, false),

’_+_[’X:Nat,’Y:Nat] =? ’_+_[’#1:Nat,’Y:Nat], ’%, 0) .

Warning: unsafe variable name #1:Nat in unification problem.

result [UnificationPair?]:

metaUnify(th ’NAT is

including ’NAT .

sorts none .

none

none

none

none

none

endth,

’_+_[’X:Nat, ’Y:Nat] =? ’_+_[’#1:Nat, ’Y:Nat], ’%, 0)

And finally an example of incomplete unification for the associative case. If we move to the
metalevel the unification problem with an infinite set of most general unifiers, 0 : X =? X : 0,
we get the first unifier of the family:

Maude> reduce in META-LEVEL :

metaUnify(upModule(’UNIFICATION-EX4, true),

’_:_[’0.Nat,’X:NList] =? ’_:_[’X:NList,’0.Nat], 0, 0) .

Warning: Unification modulo the theory of operator _:_ has encountered

an instance for which it may not be complete.

result UnificationPair: {

’X:NList <- ’0.Zero,0}

but successive calls for unifiers get the constant noUnifierIncomplete:

Maude> reduce in META-LEVEL :

metaUnify(upModule(’UNIFICATION-EX4, true),

’_:_[’0.Nat,’X:NList] =? ’_:_[’X:NList,’0.Nat], 0, 1) .

result UnificationPair?: (noUnifierIncomplete).UnificationPair?

Note that we got the constant noUnifierIncomplete instead of the noUnifier constant, which
is the output for the case of a finitary set of most general unifiers.

Several auxiliary functions have been defined by equations, allowing easy extraction of
information.

op getSubstitution : UnificationPair -> Substitution .

op getVariableFamily : UnificationPair -> Qid .

op getLhsSubstitution : UnificationTriple -> Substitution .

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 411

op getRhsSubstitution : UnificationTriple -> Substitution .

op getVariableFamily : UnificationTriple -> Qid .

Since it is quite common to apply a substitution to a term, we have included such feature
as a function defined by equations

op applySubstitution : Module Term Substitution -> Term .

17.6.9 Variants: metaGetVariant

The procedure for variant generation of Section 14.4 is also available at the metalevel of Maude
thanks to the metaGetVariant and metaGetIrredundantVariant functions provided in the
META-LEVEL module.

op metaGetVariant : Module Term TermList Nat Nat ~> Variant?

[special (...)] .

op metaGetIrredundantVariant : Module Term TermList Nat Nat ~> Variant?

[special (...)] .

The third argument allows a list of irreducible terms, see Section 14.5 for details. As in Sec-
tion 17.6.8, it is convenient to reuse variable names from terms; this is allowed via the fourth
argument, which is the largest number n appearing in fresh variables of the form #n:Sort or
%n:Sort. The latest version of Maude includes an alternative interface to these two functions
using a Qid instead of a natural number in the fourth argument, which is the identifier ξ used
in unificand variables of the form ξn:Sort .

op metaGetVariant : Module Term TermList Qid Nat ~> Variant?

[special (...)] .

op metaGetIrredundantVariant : Module Term TermList Qid Nat ~> Variant?

[special (...)] .

This avoids variable name clashes with the previous variable families ’#, ’% and ’@ provided
for, respectively, unification modulo axioms in Chapter 13, variant unification in Chapter 14,
and narrowing in Chapter 15.

As usual for descent functions, the last argument in the function is used to select which
result is wanted, starting from 0. Caching is used so that if variant i has just been returned,
requesting unifier i+ 1 gives rise to an incremental computation.

The result sort is defined by means of the following data:

sorts Variant Variant? .

subsort Variant < Variant? .

op {_,_,_,_,_} : Term Substitution Nat Parent Bool -> Variant [ctor] .

op noVariant : -> Variant? [ctor] .

op noVariantIncomplete : -> Variant? [ctor] .

Again, the third argument denotes the largest number n used in the fresh variables appearing in
the solutions. The fourth and fifth arguments are useful for applications based on the execution
narrowing tree rather than the set of variants, see the example below.

In the case where a call to metaGetVariant or metaGetIrredundantVariant is invoked
with a Qid in the fourth argument, the following different constructor is used:

op {_,_,_,_,_} : Term Substitution Qid Parent Bool -> Variant [ctor] .

and now it returns the Qid specifying a variable family instead of the largest natural number
used. Note that such Qid will indeed be different to the Qid given in the fourth argument.

We can illustrate the use of this metalevel function with the variant generation of the
configuration < $ q q X:Marking Y:Marking> for the first variant.

412CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]], empty, 0, 0) .

result Variant: {’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’#1:Marking,’#2:Marking]],
’X:Marking <- ’#1:Marking ;

’Y:Marking <- ’#2:Marking,2,none,false}

Then the second possible variant:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]], empty, 0, 1) .

result Variant: {’<_>[’__[’$.Coin,’$.Coin,’%1:Marking,’%2:Marking]],
’X:Marking <- ’__[’q.Coin,’q.Coin,’%1:Marking] ;

’Y:Marking <- ’%2:Marking,2,0,true}

Then the third possible variant:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]], empty, 0, 2) .

result Variant: {’<_>[’__[’$.Coin,’$.Coin,’%1:Marking,’%2:Marking]],
’X:Marking <- ’__[’q.Coin,’%1:Marking] ;

’Y:Marking <- ’__[’q.Coin,’%2:Marking],2,0,true}

Then the fourth possible variant:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]], empty, 0, 3) .

result Variant: {’<_>[’__[’$.Coin,’$.Coin,’%1:Marking,’%2:Marking]],
’X:Marking <- ’%1:Marking ;

’Y:Marking <- ’__[’q.Coin,’q.Coin,’%2:Marking],2,0,false}

Then the fifth possible variant:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]], empty, 0, 4) .

result Variant: {’<_>[’__[’$.Coin,’$.Coin,’$.Coin,’#1:Marking,’#2:Marking]],
’X:Marking <- ’__[’q.Coin,’q.Coin,’q.Coin,’#1:Marking] ;

’Y:Marking <- ’__[’q.Coin,’q.Coin,’q.Coin,’#2:Marking],2,1,false}

And there are no more variants.

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]], empty, 0, 5) .

result Variant?: noVariant

Using the fourth and fifth arguments of each returned variant, we can reconstruct the
execution narrowing tree of Figure 17.2. The fourth argument of each variant is the identifier
of the parent variant; the identifier of each variant is indeed the last argument of its associated
call to metaGetVariant. The fifth argument is a Boolean: true meaning that there is at least
one other variant in that level of the narrowing tree, and false meaning that this is the last one
in that level of the narrowing tree. Note that variants return the whole composed substitution
and the intermediate unifier shown in Figure 17.2 between variants 1 and 4 has to be extracted
manually.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 413

< $ q q X Y >

< $ $ X1 Y1 >

< $ $ $ X4 Y4 >

{X1 7→ q X4,
Y1 7→ q q q X4}

{X 7→ q q X1,
Y 7→ Y1}

< $ $ X2 Y2 >

{X 7→ q X2,
Y 7→ q Y2}

< $ $ X3 Y3 >

{X 7→ X3,
Y 7→ q q Y3}

0

1 2 3

4

Figure 17.2: Folding variant narrowing tree for the term < $ q q X Y >.

We can reproduce the example of the vending machine using irreducible terms showed in
Section 14.5 as follows.

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]],
(’__[’q.Coin,’q.Coin,’X:Marking],’__[’q.Coin.’X:Marking], ’X:Marking),

0, 0) .

result Variant: {’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’#1:Marking,’#2:Marking]],
’X:Marking <- ’#1:Marking ;

’Y:Marking <- ’#2:Marking,2,none,false}

The command prints only three of the five variants returned by the previous call without any ir-
reducible term. The variants where X:Marking is mapped to q q %1:Marking or q q q %1:Marking

are discarded, since they violate the condition that q q X:Marking must be irreducible under
substitution.

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking,’Y:Marking]],
(’__[’q.Coin,’q.Coin,’X:Marking],’__[’q.Coin.’X:Marking], ’X:Marking),

0, 3) .

result Variant?: noVariant

Let us also show an example of an incomplete variant generation at the metalevel. If we move
to the metalevel the incomplete variant generation for term duplicate(prefix(L) : tail(L))

of Section 14.7, we get the first variant:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-UNIFICATION-ASSOC, true),

’duplicate[’_:_[’prefix[’L:NList],’tail[’L:NList]]], empty, 0, 0) .

result Variant: {’duplicate[’_:_[’prefix[’#1:NList],’tail[’#1:NList]]],

’L:NList <- ’#1:NList,1,none,false}

And when we ask for the eighth variant, we get the constant noVariantIncomplete:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-UNIFICATION-ASSOC, true),

’duplicate[’_:_[’prefix[’L:NList],’tail[’L:NList]]], empty, 0, 7) .

result Variant?: noVariantIncomplete

414CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Note that we got the constant noVariantIncomplete instead of the noVariant constant, which
is the output for the case of a finitary set of variants.

17.6.10 Variant Matching and Unification: metaVariantUnify,
metaVariantDisjointUnify, and metaVariantMatch

The procedure for variant-based equational unification of Section 14.9 is also available at the
metalevel by means of the following functions provided in the META-LEVEL module.

op metaVariantUnify :

Module UnificationProblem TermList Nat Nat ~> UnificationPair?

[special (...)] .

op metaVariantDisjointUnify :

Module UnificationProblem TermList Nat Nat ~> UnificationTriple?

[special (...)] .

The unification problems and the result sort are the same as in Section 17.6.8. The third
argument allows a list of irreducible terms, see Section 14.10 for details.

sorts UnificandPair UnificationProblem .

subsort UnificandPair < UnificationProblem .

op _=?_ : Term Term -> UnificandPair [ctor prec 71] .

op _/_ : UnificationProblem UnificationProblem -> UnificationProblem

[ctor assoc comm prec 73] .

subsort UnificationPair < UnificationPair? .

subsort UnificationTriple < UnificationTriple? .

op {_,_} : Substitution Nat -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Nat -> UnificationTriple [ctor] .

The latest version of Maude includes an alternative interface to these two functions using
a Qid instead of a natural number in the fourth argument, which is the identifier ξ used in
unificand variables of the form ξn:Sort .

op metaVariantUnify :

Module UnificationProblem TermList Qid VariantOptionSet Nat ~> UnificationPair?

[special (...)] .

op metaVariantDisjointUnify :

Module UnificationProblem TermList Qid VariantOptionSet Nat ~> UnificationTriple?

[special (...)] .

In the case where a call to metaVariantUnify or metaVariantDisjointUnify is invoked with
a Qid in the fourth argument, the following different constructors are used:

op {_,_} : Substitution Qid -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Qid -> UnificationTriple [ctor] .

and now they return the Qid specifying a variable family instead of the largest natural number
used. Note that such Qid will indeed be different to the Qid given in the third argument.

When we are interested in the minimal set of most general unifiers, there is no alternative
command, as in Section 17.6.8, and the option filter must be used in the fifth argument of
the commands:

sorts VariantOption VariantOptionSet .

subsort VariantOption < VariantOptionSet .

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 415

ops delay filter : -> VariantOption [ctor] .

op none : -> VariantOptionSet [ctor] .

op __ : VariantOptionSet VariantOptionSet -> VariantOptionSet

[ctor assoc comm id: none] .

Note that the version of the command with a counter for new variables does not include this
fifth argument for options and, thus, cannot return the minimal set of unifiers.

We can illustrate the use of this metalevel function with the variant unification of the two
terms of Section 14.9: < q q X:Marking > and < $ Y:Marking >:

Maude> reduce in META-LEVEL :

metaVariantUnify(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’q.Coin,’q.Coin,’X:Marking]] =?

’<_>[’__[’$.Coin,’Y:Marking]],
empty, ’@, 0) .

result UnificationPair: {

’X:Marking <- ’__[’$.Coin,’%1:Marking] ;

’Y:Marking <- ’__[’q.Coin,’q.Coin,’%1:Marking],’%}

Let us also illustrate the use of incomplete variant unification by moving to the metalevel
the incomplete unification problem of Section 14.12: head(L:NList) =? last(L:NList) /\

prefix(L:NList) =? tail(L:NList).

Maude> reduce in META-LEVEL :

metaVariantUnify(upModule(’VARIANT-UNIFICATION-ASSOC, true),

’head[’L:NList] =? ’last[’L:NList] /\

’prefix[’L:NList] =? ’tail[’L:NList], empty, 0, 0) .

Warning: Unification modulo the theory of operator _:_ has encountered

an instance for which it may not be complete.

result UnificationPair: {

’L:NList <- ’_:_[’%1:Nat,’%1:Nat,’%1:Nat],1}

And when we try to obtain the third unifier we get the constant noUnifierIncomplete.

Maude> reduce in META-LEVEL :

metaVariantUnify(upModule(’VARIANT-UNIFICATION-ASSOC, true),

’head[’L:NList] =? ’last[’L:NList] /\

’prefix[’L:NList] =? ’tail[’L:NList], empty, 0, 2) .

result UnificationPair?: (noUnifierIncomplete).UnificationPair?

Several auxiliary functions have been defined by equations, allowing easy extraction of
information.

op getTerm : Variant -> Term .

op getSubstitution : Variant -> Substitution .

op getVariableFamily : Variant -> Qid .

op getParent : Variant -> Parent .

op getMoreVariantsInLayerFlag : Variant -> Bool .

The procedure for variant-based equational matching of Section 14.13 is also available at
the metalevel by means of the following function provided in the META-LEVEL module.

op metaVariantMatch :

Module MatchingProblem TermList Qid VariantOptionSet Nat ~> Substitution?

416CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

The new matching problems are as follows.

sorts PatternSubjectPair MatchingProblem .

subsort PatternSubjectPair < MatchingProblem .

op _<=?_ : Term Term -> PatternSubjectPair [ctor prec 71] .

op _/_ : MatchingProblem MatchingProblem -> MatchingProblem [ctor assoc comm prec 73] .

We can illustrate the use of this metalevel function with the variant matching of the two
terms of Section 14.13: < q q X:Marking > and < $ Y:Marking >:

Maude> reduce in META-LEVEL :

metaVariantMatch(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’q.Coin,’q.Coin,’X:Marking]] <=?

’<_>[’__[’$.Coin,’Y:Marking]],
empty, ’@, none, 0) .

result Assignment:

’X:Marking <- ’__[’q.Coin,’q.Coin,’Y:Marking]

Note that the delay and filter constants of the sort VariantOptionSet have no effect for
variant matching and we should always use none.

17.6.11 Narrowing: metaNarrowingApply, metaNarrowingSearch and
metaNarrowingSearchPath

Narrowing is also available at the metalevel by using the functions metaNarrowingApply,
metaNarrowingSearch and metaNarrowingSearchPath. Note that there is no user level com-
mand associated to the metalevel function metaNarrowingApply.

The invocation of just one narrowing step is reproduced by function metaNarrowingApply:

op metaNarrowingApply :

Module Term TermList Qid Nat -> NarrowingApplyResult?

[special ...] .

The result sort is defined by means of the following data:

sorts NarrowingApplyResult NarrowingApplyResult? .

subsort NarrowingApplyResult < NarrowingApplyResult? .

op {_,_,_,_,_,_,_} : Term Type Context Qid Substitution Substitution Qid

-> NarrowingApplyResult

[ctor format (d n++i d d d ni d ni d d d d d ni n--i d)] .

op failure : -> NarrowingApplyResult? [ctor] .

op failureIncomplete : -> NarrowingApplyResult? [ctor] .

The third argument allows a list of irreducible terms, as in Sections 17.6.9 and 17.6.10.
The fourth argument provides the identifier ξ used in variables of the form ξn:Sort appearing
in the given term, again as in Sections 17.6.9 and 17.6.10. The last argument is the chosen
narrowing step. If there is no solution, the failure constant is returned if no incompleteness
situation related to associative unification has been found; otherwise, the failureIncomplete

constant is returned.
For the NARROWING-VENDING-MACHINE system module introduced at the beginning of Sec-

tion 15.6, the following one-step narrowing command can be given

Maude> reduce in META-LEVEL :

metaNarrowingApply(upModule(’NARROWING-VENDING-MACHINE, false),

’<_>[’M:Money], empty, ’@, 0) .

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 417

result NarrowingApplyResult: {

’<_>[’__[’a.Item,’q.Coin,’%1:Money]],’State,

[],

’buy-a,

’M:Money <- ’__[’$.Coin,’%1:Money],
’M:Marking <- ’%1:Money,

’%

}

Note that two substitutions are returned, one for the input term and another for the lefthand
side of the applied rule.

The narrowing-based reachability analysis of Section 15.6 is available at the metalevel by
using the function metaNarrowingSearch:

op metaNarrowingSearch :

Module Term Term Qid Bound Qid Nat -> NarrowingSearchResult?

[special ...] .

The result sort is defined by means of the following data:

sorts NarrowingSearchResult NarrowingSearchResult? .

subsort NarrowingSearchResult < NarrowingSearchResult? .

op {_,_,_,_,_,_} : Term Type Substitution Qid Substitution Qid

-> NarrowingSearchResult

[ctor format (d n++i d d d d d ni d d d ni n--i d)] .

op failure : -> NarrowingSearchResult? [ctor] .

op failureIncomplete : -> NarrowingSearchResult? [ctor] .

The first Qid argument metarepresents the appropriate search arrow, similar to the metaSearch
command (see Section 17.6.6). The second Qid determines whether folding is applied or not,
see Section 15.7. The constant ’none indicates that standard narrowing without any folding
is applied, as the vu-narrow command of Section 15.6. The constant ’match indicates that
folding narrowing is applied, as the fvu-narrow command of Section 15.7. For the bounds, the
Bound one is the maximum length of the narrowing sequences, whereas the Nat is the chosen
solution (in order to provide all solutions in a sequential way, as many metalevel commands
in Maude do). If there is no solution, the failure constant is returned if no incompleteness
situation related to associative unification has been found; otherwise, the failureIncomplete

constant is returned.
For the NARROWING-VENDING-MACHINE system module introduced at the beginning of Sec-

tion 15.6, the following search command considered above

Maude> vu-narrow [1] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

can be specified at the metalevel as follows, where ’<_>[’M:Money] is the metarepresentation of
the state < M:Money >, ’<_>[’__[’a.Item,’c.Item]] is the metarepresentation of the state
< a c >, and we use the coherence completion of the NARROWING-VENDING-MACHINE module
given above.

Maude> reduce in META-LEVEL :

metaNarrowingSearch(

upModule(’NARROWING-VENDING-MACHINE, false),

’<_>[’M:Money], ’<_>[’__[’a.Item,’c.Item]], ’*, unbounded, ’match, 0) .

result NarrowingSearchResult: {

’<_>[’__[’a.Item,’c.Item,’#1:Money]],’State,

’M:Money <- ’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin,’#1:Money],

418CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

’#,

’#1:Money <- ’empty.Money,

’@

}

Note that we obtain the very same solution, where the output contains the actual output term,
its type, the accumulated substitution, the identifier used for creating fresh variables (# in this
example), and the variant-unifier.

Moreover, we can also obtain the narrowing sequence associated to a narrowing-based reach-
ability command with the function metaNarrowingSearchPath:

op metaNarrowingSearchPath :

Module Term Term Qid Bound Qid Nat -> NarrowingSearchPathResult?

[special ...] .

The result sort is defined by means of the following data:

sorts NarrowingSearchPathResult NarrowingSearchPathResult? .

subsort NarrowingStep < NarrowingTrace .

subsort NarrowingSearchPathResult < NarrowingSearchPathResult? .

op {_,_,_,_,_,_,_} : Context Qid Substitution Qid Term Type Substitution

-> NarrowingStep

[ctor format (ni n++i d ni d d d ni d ni d d d d n--i d)] .

op nil : -> NarrowingTrace [ctor] .

op __ : NarrowingTrace NarrowingTrace -> NarrowingTrace [ctor assoc id: nil] .

op {_,_,_,_,_,_} : Term Type Substitution NarrowingTrace Substitution Qid

-> NarrowingSearchPathResult

[ctor format (d n++i d d d d d d d d d ni n--i d)] .

op failure : -> NarrowingSearchPathResult? [ctor] .

op failureIncomplete : -> NarrowingSearchPathResult? [ctor] .

It works in exactly the same way as metaNarrowingSearch but providing as a result a more
detailed data structure. If we redo the previous metaNarrowingSearch computation but using
this time the metaNarrowingSearchPath function, we obtain:

Maude> reduce in META-LEVEL :

metaNarrowingSearchPath(

upModule(’NARROWING-VENDING-MACHINE, false),

’<_>[’M:Money], ’<_>[’__[’a.Item,’c.Item]], ’*, unbounded, ’none, 0) .

result NarrowingSearchPathResult: {

’<_>[’#1:Money],’State,

’M:Money <- ’#1:Money,

{

[],

’buy-a,

’#1:Money <- ’__[’$.Coin,’@1:Money] ;

’M:Marking <- ’@1:Money,

’@,

’<_>[’__[’a.Item,’q.Coin,’@1:Money]],’State,

’M:Money <- ’__[’$.Coin,’@1:Money]
}

{

[],

’buy-c,

’@1:Money <- ’__[’q.Coin,’q.Coin,’q.Coin,’#1:Money] ;

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 419

’M:Marking <- ’__[’a.Item,’#1:Money],

’#,

’<_>[’__[’a.Item,’c.Item,’#1:Money]],’State,

’M:Money <- ’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin,’#1:Money]
},

’#1:Money <- ’empty.Money,

’@

}

The data structure NarrowingStep, which is the basic element of NarrowingStepSet, is very
similar to the data structure ResultTriple but it contains a sequence of narrowing results
instead of only the final result, each one together with the rule that has been used in that
narrowing step.

Several auxiliary functions have been defined by equations, allowing easy extraction of
information.

op getTerm : NarrowingApplyResult -> Term .

op getType : NarrowingApplyResult -> Type .

op getContext : NarrowingApplyResult -> Context .

op getLabel : NarrowingApplyResult -> Qid .

op getTermSubstitution : NarrowingApplyResult -> Substitution .

op getRuleSubstitution : NarrowingApplyResult -> Substitution .

op getVariableFamily : NarrowingApplyResult -> Qid .

op getTerm : NarrowingSearchResult -> Term .

op getType : NarrowingSearchResult -> Type .

op getAccumulatedSubstitution : NarrowingSearchResult -> Substitution .

op getStateVariableFamily : NarrowingSearchResult -> Qid .

op getUnifier : NarrowingSearchResult -> Substitution .

op getUnifierVariableFamily : NarrowingSearchResult -> Qid .

op getInitialTerm : NarrowingSearchPathResult -> Term .

op getInitialType : NarrowingSearchPathResult -> Type .

op getInitialSubstitution : NarrowingSearchPathResult -> Substitution .

op getTrace : NarrowingSearchPathResult -> NarrowingTrace .

op getUnifier : NarrowingSearchPathResult -> Substitution .

op getUnifierVariableFamily : NarrowingSearchPathResult -> Qid .

op getContext : NarrowingStep -> Context .

op getLabel : NarrowingStep -> Qid .

op getUnifier : NarrowingStep -> Substitution .

op getUnifierVariableFamily : NarrowingStep -> Qid .

op getTerm : NarrowingStep -> Term .

op getType : NarrowingStep -> Type .

op getAccumulatedSubstitution : NarrowingStep -> Substitution .

420CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

17.6.12 Checking satisfiability modulo theories: metaCheck

The SMT check command of Chapter 16 is also available at the metalevel by using the function
metaCheck:

op metaCheck : Module Term ~> Bool [special (...)] .

The reflection of the SMT signatures follows the normal Maude metalevel conventions, e.g.,
2 becomes ’2.Integer and 1/3 becomes ’1/3.Real.

Consider the following example.

fmod META-CHECK is

pr META-LEVEL .

pr REAL-INTEGER .

vars W X Y Z : Boolean .

vars I J K L : Integer .

vars P Q R S : Real .

endfm

Maude> red in META-LEVEL :

metaCheck([’META-CHECK],

upTerm((I > J ? I : J) === I or (I > J ? I : J) === J)) .

rewrites: 3 in 6ms cpu (6ms real) (456 rewrites/second)

result Bool: (true).Bool

Maude> red in META-LEVEL :

metaCheck([’META-CHECK],

upTerm(not((I > J ? I : J) === I or (I > J ? I : J) === J))) .

rewrites: 3 in 0ms cpu (0ms real) (13824 rewrites/second)

result Bool: (false).Bool

Maude> red in META-LEVEL :

metaCheck([’META-CHECK],

upTerm((I > J ? I : J) =/== I and (I > J ? I : J) =/== J)) .

rewrites: 3 in 0ms cpu (0ms real) (13698 rewrites/second)

result Bool: (false).Bool

Maude> red in META-LEVEL :

metaCheck([’META-CHECK],

upTerm((I > J ? I : J) =/== I or (I > J ? I : J) =/== J)) .

rewrites: 3 in 0ms cpu (0ms real) (12931 rewrites/second)

result Bool: (true).Bool

Here metaCheck returns true if the SMT solver responds with sat and false otherwise;
it can occasionally produce results other than sat and unsat, for example if it cannot decide
satisfiability and Maude’s response may change in the future.

Examples of the use of metaCheck in the analysis of time aware security protocols to reduce
infinite search to a finite one can be found in [118, 119].

17.6.13 Parsing and pretty-printing: metaParse and metaPrettyPrint

metaParse

The (partial) operation metaParse takes as arguments the metarepresentation of a module, a
list of quoted identifiers metarepresenting a list of tokens, and a value of the sort Type?, i.e.,
either the metarepresentation of a component or the constant anyType.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 421

sort Type? .

subsort Type < Type? .

op anyType : -> Type? [ctor] .

sort ResultPair? .

subsort ResultPair < ResultPair? .

op noParse : Nat -> ResultPair? [ctor] .

op ambiguity : ResultPair ResultPair -> ResultPair? [ctor] .

op metaParse : Module QidList Type? ~> ResultPair? [special (...)] .

The operation metaParse reflects the parse command in Maude (see Section 3.9.4); that
is, it tries to parse the given list of tokens as a term of the given type in the module given as
first argument; the constant anyType allows any component. If metaParse succeeds, it returns
the metarepresentation of the parsed term with its corresponding sort or kind. Otherwise, it
returns:

• noParse(n) if there was no parse, where n is the index of the first bad token (counting
from 0), or the number of tokens in the case of unexpected end of input; or

• ambiguity(r1, r2) if there were multiple parses, where r1 and r2 are the result pairs
corresponding to two distinct parses.

These are simple examples of using metaParse:

Maude> reduce in META-LEVEL :

metaParse(upModule(’VENDING-MACHINE, false),

’$ ’q ’q ’q, ’Marking) .

result ResultPair:

{’__[’$.Coin,’__[’q.Coin,’__[’q.Coin,’q.Coin]]],’Marking}

Maude> reduce in META-LEVEL :

metaParse(upModule(’VENDING-MACHINE, false),

’$ ’q ’d ’q, ’Marking) .

result ResultPair?: noParse(2)

metaPrettyPrint

The (partial) operation metaPrettyPrint takes as arguments the metarepresentations of a
module R and of a term t together with a set of printing options, and it returns a list of quoted
identifiers that metarepresents the string of tokens produced by pretty-printing the term t in
the signature of R. In the event of an error an empty list of quoted identifiers is returned.

op metaPrettyPrint : Module Term PrintOptionSet ~> QidList

[special (...)] .

Pretty-printing a term involves more than just naively using the mixfix syntax for operators.
Precedence and gathering information and the relative positions of underscores in an operator
and its parent in the term must be considered to determine whether parentheses need to be
inserted around any given subterm to avoid ambiguity. If there is ad-hoc overloading in the
module, additional checks must be done to determine if and where sort disambiguation syntax
is needed.

The print options argument is built with the following syntax:

sorts PrintOption PrintOptionSet .

subsort PrintOption < PrintOptionSet .

ops mixfix with-parens flat format number rat : -> PrintOption

[ctor] .

422CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

op none : -> PrintOptionSet [ctor] .

op __ : PrintOptionSet PrintOptionSet -> PrintOptionSet

[ctor assoc comm id: none] .

The available print options form a subset of the global print options described in Section 23.10,
which are ignored by this operation.

As an example, we can use metaPrettyPrint to pretty print the result of parsing at the
metalevel the list of tokens $ q q q in the module VENDING-MACHINE, first with prefix syntax,
then with mixfix syntax, and finally with mixfix syntax and taking into account the format

attribute.

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]],

none) .

result NeQidList:

’__ ’‘(’$ ’‘, ’__ ’‘(’q ’‘, ’__ ’‘(’q ’‘, ’q ’‘) ’‘) ’‘)

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]],

mixfix) .

result NeTypeList: ’$ ’q ’q ’q

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]],

mixfix format) .

result NeTypeList:

’\r ’\! ’$ ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o

It is important to notice that metaPrettyPrint uses the information provided by the format at-
tribute in the last reduction above. For example, the operator $ in the module VENDING-MACHINE-SIGNATURE
in Section 5.1 was declared with attribute format (r! o), and therefore it is meta-pretty-
printed as ’\r ’\! ’$ ’\o.

For backwards compatibility there is available the following variation of the metaPrettyPrint
operation, which provides a set of default print options.

op metaPrettyPrint : Module Term ~> QidList .

eq metaPrettyPrint(M:Module, T:Term)

= metaPrettyPrint(M:Module, T:Term,

mixfix flat format number rat) .

For example,

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]]) .

result NeTypeList:

’\r ’\! ’$ ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o

Parsing and pretty-printing strategy expression is also available by means of two analogous
descent functions.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 423

metaParseStrategy

The function metaParseStrategy is the counterpart of metaParse for strategy expressions.

op metaParseStrategy : Module QidSet QidList ~> Strategy? [special (...)] .

It takes the metarepresentation of a module along with a set of quoted identifiers representing
variable declarations of the form X:S, and a list of quoted identifiers. It tries to parse the given
tokens as a strategy expression and return its metarepresentation.

subsort Strategy < Strategy? .

op noStratParse : Nat -> Strategy? [ctor] .

op ambiguity : Strategy Strategy -> Strategy? [ctor] .

However, if there was no parse, it returns the term noStratParse(n), where n is the index
of the first bad token (counting from 0), or the number of tokens in the case of unexpected
end of input. If there are multiple parses, two of them are returned as an ambiguity(s1, s2)

term. As an example, we can parse the definition of the expand strategy in the QUEENS-STRAT

module:

Maude> red in META-LEVEL : metaParseStrategy(upModule(’QUEENS-STRAT, false), none,

’top ’‘(’next ’‘) ’;

’match ’L:List‘{Nat‘} ’such ’that ’isOk ’‘(’L:List‘{Nat‘} ’‘)) .

rewrites: 2 in 6ms cpu (6ms real) (301 rewrites/second)

result Strategy: top(’next[none]{empty}) ;

match ’L:NatList s.t. (’isOk[’L:NatList] = ’true.Bool)

Instead of writing the sort of the variable explicitly as ’L:NatList in the input, we may pass
a variable declaration for L to metaParseStrategy:

Maude> red metaParseStrategy(upModule(’QUEENS-STRAT, false), ’L:List‘{Nat‘},

’top ’‘(’next ’‘) ’; ’match ’L ’such ’that ’isOk ’‘(’L ’‘)) .

rewrites: 2 in 3ms cpu (4ms real) (300 rewrites/second)

result Strategy: top(’next[none]{empty}) ;

match ’L:NatList s.t. (’isOk[’L:NatList] = ’true.Bool)

metaPrettyPrintStrategy

The function metaPrettyPrintStrategy is the counterpart of metaPrettyPrint for strategy
expressions and the opposite of metaParseStrategy.

op metaPrettyPrintStrategy : Module Strategy PrintOptionSet

~> QidList [special (...)] .

It takes as arguments the metarepresentation of a module and of a strategy together with a
set of printing options, and returns a list of quoted identifiers that represents the string of
tokens produced by pretty-printing the given strategy. The printing options are the same as
for metaPrettyPrint. For example, the pretty-printing of the application of the rule next in
QUEENS-STRAT can be obtained with:

Maude> red in META-LEVEL : metaPrettyPrintStrategy(

upModule(’QUEENS-STRAT, false), ’next[none]{empty}, none) .

rewrites: 2 in 46ms cpu (45ms real) (43 rewrites/second)

result Sort: ’next

424CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

17.6.14 Sort operations

The META-LEVEL module also provides in a built-in way commonly needed operations on the
poset of sorts of a given module.

All these operations, related to sorts and kinds, take as first argument a term of sort Module.
Assuming that this term is indeed the metarepresentation of a module, the remaining arguments
might be terms representing sorts or kinds that do not correspond to sorts or kinds declared in
such a module; in this case, the operation is undefined.

In the following we include descriptions together with simple examples of using these oper-
ations.

sortLeq

The operation sortLeq takes as arguments the metarepresentation of a module R and the
metarepresentations of two types, that is, either sorts or kinds.

op sortLeq : Module Type Type ~> Bool [special (...)] .

According to whether the types passed to sortLeq as arguments are metarepresented sorts
or kinds, we can distinguish the following cases:

• Assume first that both types given as arguments are two sorts s and s′. Let S be the set
of sorts in R and let ≤R be its subsort relation. When s, s′ ∈ S, sortLeq returns true if
s ≤R s′ and false otherwise. For example,

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’Zero, ’Nat) .

result Bool: true

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’Zero, ’NzNat) .

result Bool: false

• If both types given as arguments are kinds in R, then sortLeq returns false when both
kinds are different and true when they are equal. For example,

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’‘[Zero‘], ’‘[Nat‘]) .

result Bool: true

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’‘[Zero‘], ’‘[Bool‘]) .

result Bool: false

• If one type is one sort in R and the other one is a kind in R, then sortLeq checks whether
the given sort belongs to the given kind or not. For example,

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’‘[Zero‘], ’Bool) .

result Bool: false

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’Zero, ’‘[NatSet‘]) .

result Bool: true

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 425

sameKind

The operation sameKind takes as arguments the metarepresentation of a module R and the
metarepresentations of two types, that is, either sorts or kinds.

op sameKind : Module Type Type ~> Bool [special (...)] .

Let S be the set of sorts in R and let ≤R be its subsort relation. When the two types passed
as arguments to sameKind are sorts s, s′ ∈ S, the operation sameKind returns true if s and s′

belong to the same connected component in the subsort ordering ≤R, that is, if they belong
to the same kind, and false otherwise. When the two arguments are kinds in R, sameKind
returns true when they are indeed the same, and false otherwise. Finally, when one argument
is one sort and the other is a kind, this operation ckecks whether the sort belongs to the kind.

For example, we have the following reductions about sorts and kinds in the module NUMBERS.

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’Zero, ’NzNat) .

result Bool: true

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’Zero, ’Nat3) .

result Bool: false

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’‘[Zero‘], ’‘[NzNat‘]) .

result Bool: true

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’‘[Zero‘], ’NzNat) .

result Bool: true

completeName

The operation completeName takes as arguments the metarepresentation of a moduleR and the
metarepresentation of a sort s or a kind k. When its second argument is the metarepresentation
of a sort s, it returns the same metarepresentation of s. But if its second argument is the
metarepresentation of a kind k, then it returns the metarepresentation of the complete name
of k in R, i.e., the metarepresentation of the comma-separated list of the maximal elements of
the corresponding connected component.

op completeName : Module Type ~> Type [special (...)] .

For example,

Maude> reduce in META-LEVEL :

completeName(upModule(’NUMBERS, false), ’Zero) .

result Sort: ’Zero

Maude> reduce in META-LEVEL :

completeName(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result Kind: ’‘[NatSeq‘,NatSet‘]

426CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

getKind and getKinds

The operation getKind takes as arguments the metarepresentation of a module R and the
metarepresentation of a type, i.e., a sort or a kind. When its second argument is the metarep-
resentation of a type in R, it returns the metarepresentation of the complete name of the
corresponding kind.

op getKind : Module Type ~> Kind [special (...)] .

For example,

Maude> reduce in META-LEVEL :

getKind(upModule(’NUMBERS, false), ’Zero) .

result Kind: ’‘[NatSeq‘,NatSet‘]

Maude> reduce in META-LEVEL :

getKind(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result Kind: ’‘[NatSeq‘,NatSet‘]

The operation getKinds takes as its only argument the metarepresentation of a module R
and returns the metarepresentation of the set of kinds declared inR, with kinds metarepresented
using their complete names.

op getKinds : Module ~> KindSet [special (...)] .

For example,

Maude> reduce in META-LEVEL : getKinds(upModule(’NUMBERS, false)) .

result NeKindSet: ’‘[Bool‘] ; ’‘[Nat3‘] ; ’‘[NatSeq‘,NatSet‘]

lesserSorts

The operation lesserSorts takes as arguments the metarepresentation of a module R and the
metarepresentation of a type, i.e., a sort or a kind.

op lesserSorts : Module Type ~> SortSet [special (...)] .

Let S be the set of sorts in R. When s ∈ S, lesserSorts returns the metarepresentation
of the set of sorts strictly smaller than s in S. For example,

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’Nat) .

result NeSortSet: ’NzNat ; ’Zero

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’Zero) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’NatSeq) .

result NeSortSet: ’Nat ; ’NzNat ; ’Zero

When the second argument of lesserSorts metarepresents a kind in R, this operation
returns the metarepresentation of the set of all sorts in such kind. For example,

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’‘[NatSeq‘]) .

result NeSortSet: ’Nat ; ’NatSeq ; ’NatSet ; ’NzNat ; ’Zero

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’‘[Bool‘]) .

result Sort: ’Bool

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 427

leastSort

The operation leastSort takes as arguments the metarepresentation of a module R and the
metarepresentation of a term t, and it returns the metarepresentation of the least sort or kind
of t in R, obtained without reducing the term, that is, the memberships in the module are used
to get the information, but equations are not used to reduce the term.

op leastSort : Module Term ~> Type [special (...)] .

For example,

Maude> reduce in META-LEVEL :

leastSort(upModule(’NUMBERS, false), ’p[’s_[’zero.Zero]]) .

result Sort: ’Nat

glbSorts

The operation glbSorts takes as arguments the metarepresentation of a module R and the
metarepresentations of two types, that is, either sorts or kinds.

op glbSorts : Module Type Type ~> TypeSet [special (...)] .

According to whether the types passed to glbSorts as arguments are metarepresented sorts
or kinds, we can distinguish the following cases:

• If both types given as arguments are sorts in R, then glbSorts returns the metarepre-
sentation of the set (which can be empty) consisting of the largest sorts that are common
subsorts of the two given sorts, that is, the set of maximal lower bounds of the two sorts;
when this set is a singleton set {s}, then s will be the greatest lower bound of the two
sorts, thus the operation name glbSorts.

For example, we have the following reductions concerning sorts in the module NUMBERS.

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’Zero, ’Nat) .

result Sort: ’Zero

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NatSet, ’NatSeq) .

result Sort: ’Nat

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NzNat, ’NzNat) .

result Sort: ’NzNat

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’Zero, ’NzNat) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NzNat, ’Bool) .

result EmptyTypeSet: (none).EmptyTypeSet

• If both types given as arguments are kinds in R, then glbSorts returns the empty
set when both kinds are different, and the metarepresentation of the kind (using the
corresponding complete name) when both kinds are equal. For example,

428CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’‘[Nat‘], ’‘[Bool‘]) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false),’‘[Nat‘],’‘[NatSeq‘]) .

result Kind: ’‘[NatSeq‘,NatSet‘]

• If one type is one sort in R and the other one is a kind in R, then glbSorts returns
the metarepresentation of the sort when the sort belongs to the kind, and the empty set
otherwise. For example,

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’‘[Nat‘], ’Bool) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’‘[NatSeq‘], ’Zero) .

result Sort: ’Zero

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NzNat, ’‘[NatSet‘]) .

result Sort: ’NzNat

maximalSorts and minimalSorts

The operations maximalSorts and minimalSorts take as arguments the metarepresentation of
a module R and the metarepresentation of a kind k. If k is a kind in R, maximalSorts returns
the metarepresentation of the set of the maximal sorts in the connected component of k, while
minimalSorts returns the metarepresentation of the set of its minimal sorts.

op maximalSorts : Module Kind ~> SortSet [special (...)] .

op minimalSorts : Module Kind ~> SortSet [special (...)] .

For example,

Maude> reduce in META-LEVEL :

maximalSorts(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result NeSortSet: ’NatSeq ; ’NatSet

Maude> reduce in META-LEVEL :

minimalSorts(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result NeSortSet: ’Zero ; ’NzNat

maximalAritySet

The operation maximalAritySet takes as arguments the metarepresentation of a module R,
the metarepresentation of an operator f in R, the metarepresentation of an arity (list of types)
for f and the metarepresentation of a sort s, and then computes the set of maximal arities
(lists of types) that f could take and have a sort s′ ≤R s. This result might be the empty set
if s is small or f is only defined at the kind level.

Notice that the result of this operation is a set of lists of types, which is built by means
of the following syntax, extending the syntax for building lists of types that we only show
partially here and whose full specification can be found in the module META-MODULE in the file
prelude.maude available with the Maude distribution.

17.6. THE META-LEVEL MODULE: METALEVEL OPERATIONS 429

sort NeTypeList TypeList .

op nil : -> TypeList [ctor] .

op __ : TypeList TypeList -> TypeList [ctor ditto] .

sort TypeListSet .

subsort TypeList TypeSet < TypeListSet .

op _;_ : TypeListSet TypeListSet -> TypeListSet [ctor ditto] .

eq T:TypeList ; T:TypeList = T:TypeList .

op maximalAritySet : Module Qid TypeList Sort ~> TypeListSet

[special (...)] .

Let us consider for example the operator _+_ in the module NUMBERS, where it is overloaded
by means of the following declarations:

op _+_ : Nat Nat -> Nat [assoc comm].

op _+_ : NzNat Nat -> NzNat [ditto] .

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

With this information, we obtain the following reductions concerning this operator:

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’NzNat ’NzNat, ’NzNat) .

result TypeListSet: ’Nat ’NzNat ; ’NzNat ’Nat

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat ’Nat, ’NzNat) .

result TypeListSet: ’Nat ’NzNat ; ’NzNat ’Nat

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat ’Nat, ’Nat) .

result NeTypeList: ’Nat ’Nat

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat3 ’Nat3, ’Nat3) .

result NeTypeList: ’Nat3 ’Nat3

Notice that if the operator f and the list of types passed as arguments to maximalAritySet

do not match, then the result is an error, which is represented as a non-reduced term in a
metalevel kind. We have for instance the following example where we have omitted the lengthy
metarepresentation of the NUMBERS module.

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat3 ’Nat3, ’NzNat) .

result [GTermList,ParameterList,QidList,

TypeListSet,Type?,ModuleExpression,Header]:

maximalAritySet(fmod ’NUMBERS is ... endfm,

’_+_, ’Nat3 ’Nat3, ’NzNat)

430CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

17.6.15 Other metalevel operations: wellFormed

The operation wellFormed can take as arguments the metarepresentation of a module R, or
the metarepresentation of a module R and a term t, or the metarepresentation of a module
R and a substitution σ. In the first case, it returns true if R is a well-formed module, and
false otherwise. In the second case, if t is a well-formed term in R, it returns true; otherwise,
it returns false. Finally, in the third case, if σ is a well-formed substitution in R, it returns
true; otherwise, it returns false.

op wellFormed : Module -> Bool [special (...)] .

op wellFormed : Module Term ~> Bool [special (...)] .

op wellFormed : Module Substitution ~> Bool [special (...)] .

Note that the first operation is total, while the other two are partial (notice the form of
the arrow in the declarations). The reason is that the last two are not defined when the term
given as first argument does not represent a module, and then it does not make sense to check
whether a term or substitution is well formed with respect to such a wrong “module.” For
example,

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false)) .

result Bool: true

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false), ’p[’zero.Zero]) .

result Bool: true

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’s_[’zero.Zero, ’zero.Zero]) .

Advisory: could not find an operator s_ with appropriate domain

in meta-module NUMBERS when trying to interprete metaterm

’s_[’zero.Zero,’zero.Zero].

result Bool: false

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’N:Zero <- ’zero.Zero) .

result Bool: true

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’N:Nat <- ’p[’zero.Zero]) .

result Bool: false

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’N:Zero <- ’s_[’zero.Zero,’zero.Zero]) .

Advisory: could not find an operator s_ with appropriate domain

in meta-module NUMBERS when trying to interprete metaterm

’s_[’zero.Zero,’zero.Zero].

result Bool: false

17.7. INTERNAL STRATEGIES 431

17.7 Internal strategies

System modules in Maude are rewrite theories that do not need to be Church-Rosser and
terminating. Therefore, we need to have good ways of controlling the rewriting inference
process—which in principle could not terminate or go in many undesired directions—by means
of adequate strategies, as already explained in Chapter 10.

In Maude, thanks to its reflective capabilities, strategies can be made internal to the system.
That is, they can be defined using statements in a normal module in Maude, and can be reasoned
about as with statements in any other module. In general, strategies are defined in extensions
of the META-LEVEL module by using metaReduce, metaApply, metaXapply, etc., as building
blocks.

We illustrate some of these possibilities by implementing the following strategies for con-
trolling the execution of the rules in the VENDING-MACHINE module in Section 5.1:

1. insert either a dollar or a quarter in the vending machine;

2. only buy cakes, and buy as many cakes as possible, with the coins already inserted;

3. only buy either cakes or apples, and buy at most n of them, with the coins already
inserted;

4. buy the same number of apples and cakes, and buy as many as possible, with the coins
already inserted.

Consider the module BUYING-STRATS below, which imports the META-LEVEL module.

fmod BUYING-STRATS is

protecting META-LEVEL .

The function insertCoin below defines the strategy (1): it expects as first argument either
’add-q or ’add-$, for inserting a quarter or a dollar, respectively, and as second argument
the metarepresentation of the marking of a vending machine, and it applies once the rule
corresponding to the given label. The rules add-q and add-$ are applied using the descent
function metaXapply. A rule cannot be applied when the result of metaXapply-ing the rule
is not a term of sort Result4Tuple. Note the use of a matching equation in the condition to
simplify the presentation of the righthand side of the equation (see Section 4.3), as well as the
use of the statement attribute owise (see Section 4.5.4) to define the function insertCoin for
unexpected cases.

var T : Term .

var Q : Qid .

var N : Nat .

vars BuyItem? BuyCake? Change? : [Result4Tuple].

op insertCoin : Qid Term -> Term .

ceq insertCoin(Q, T)

= if BuyItem? :: Result4Tuple

then getTerm(BuyItem?)

else T

fi

if (Q == ’add-q or Q == ’add-$)
/\ BuyItem? := metaXapply(upModule(’VENDING-MACHINE, false),

T, Q, none, 0, unbounded, 0) .

eq insertCoin(Q, T) = T [owise] .

432CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

The function onlyCakes below defines the strategy (2): it applies the rule buy-c as many
times as possible, applying the rule change whenever it is necessary. In particular, if the rule
buy-c can be applied, then there is a recursive call to the function onlyCakes with the term
resulting from its application. If the rule buy-c cannot be applied, then the application of the
rule change is attempted. If the rule change can be applied, then there is a recursive call to
the function onlyCakes with the term resulting from the change rule application. Otherwise,
the argument is returned unchanged. The rules buy-c and change are also applied using the
descent function metaXapply.

op onlyCakes : Term -> Term .

ceq onlyCakes(T)

= if BuyCake? :: Result4Tuple

then onlyCakes(getTerm(BuyCake?))

else (if Change? :: Result4Tuple

then onlyCakes(getTerm(Change?))

else T

fi)

fi

if BuyCake? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’buy-c, none, 0, unbounded, 0)

/\ Change? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’change, none, 0, unbounded, 0) .

The function onlyNitems defines the strategy (3): it applies either the rule buy-c or buy-a
(but not both) at most n times. As expected, the rules are applied using the descent function
metaXapply. Note the use of the symmetric difference operator sd (see Section 7.2) to decrement
N.

op onlyNitems : Term Qid Nat -> Term .

ceq onlyNitems(T, Q, N)

= if N == 0

then T

else (if BuyItem? :: Result4Tuple

then onlyNitems(getTerm(BuyItem?), Q, sd(N, 1))

else (if Change? :: Result4Tuple

then onlyNitems(getTerm(Change?), Q, N)

else T

fi)

fi)

fi

if (Q == ’buy-c or Q == ’buy-a)

/\ BuyItem? := metaXapply(upModule(’VENDING-MACHINE, false),

T, Q, none, 0, unbounded, 0)

/\ Change? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’change, none, 0, unbounded, 0) .

eq onlyNitems(T, Q, N) = T [owise] .

Finally, the function cakesAndApples defines the strategy (4): it applies the rule buy-c as
many times as the rule buy-a. To define this function, we use an auxiliary Boolean function
buyItem? that determines whether a given rule (buy-c or buy-a) can be applied. In the
definition of cakesAndApples the Boolean function buyItem? is used to check if the rule
buy-a can be applied after applying the rule buy-c. When the answer is true, then buy-c and

17.7. INTERNAL STRATEGIES 433

buy-a are applied once, using the function onlyNitems with the appropriate arguments, and
the function cakesAndApples is applied again to the result.

op cakesAndApples : Term -> Term .

op buyItem? : Term Qid -> Bool .

ceq buyItem?(T, Q)

= if BuyItem? :: Result4Tuple

then true

else (if Change? :: Result4Tuple

then buyItem?(getTerm(Change?), Q)

else false

fi)

fi

if (Q == ’buy-c or Q == ’buy-a)

/\ BuyItem? := metaXapply(upModule(’VENDING-MACHINE, false),

T, Q, none, 0, unbounded, 0)

/\ Change? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’change, none, 0, unbounded, 0) .

eq buyItem?(T, Q) = false [owise] .

eq cakesAndApples(T)

= if buyItem?(T, ’buy-a)

then (if buyItem?(onlyNitems(T, ’buy-a, 1), ’buy-c)

then cakesAndApples(onlyNitems(onlyNitems(T, ’buy-a, 1),

’buy-c, 1))

else T

fi)

else T

fi .

endfm

As examples, we apply below the buying strategies (2–4) to spend in different ways the
same amount of money: three dollars and a quarter.

Maude> reduce in BUYING-STRATS :

onlyCakes(’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin]) .

result GroundTerm: ’__[’q.Coin, ’c.Item, ’c.Item, ’c.Item]

Maude> reduce in BUYING-STRATS :

onlyNitems(’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin],

’buy-a, 3) .

result GroundTerm:

’__[’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin, ’a.Item, ’a.Item, ’a.Item]

Maude> reduce in BUYING-STRATS :

cakesAndApples(’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin]) .

result GroundTerm: ’__[’$.Coin, ’q.Coin, ’q.Coin, ’a.Item, ’c.Item]

There is in fact great freedom for defining many different types of strategies, or even many
different strategy languages inside Maude. As illustrated above with simple examples, this can
be done in a completely user-definable way, so that users are not limited by a fixed and closed
particular strategy language. Another example is presented in Section 22.6. See [25] for a
general methodology for defining internal strategy languages using reflection, and [26, 28] for
other examples of rewriting strategies defined in Maude.

434CHAPTER 17. REFLECTION, METALEVEL COMPUTATION, AND INTERNAL STRATEGIES

However, the great freedom of defining internal strategies at the metalevel is purchased at
some cost. First, some familiarity with Maude’s metalevel features is required; and second,
some cost in performance is incurred in comparison with what might be possible in a direct
implementation using Maude’s rewrite engine. To address these two issues, a strategy language
for Maude, that can be used entirely at the object level, has been designed and implemented,
as described in Chapter 10. For example, the strategy for buying the same number of apples
and cakes can be written in this language as

((buy-a or-else change ; buy-a) ; (buy-c or-else change ; buy-c)) !

Chapter 18

User Interfaces and
Metalanguage Applications

This chapter explains how to use the facilities provided by the predefined modules META-LEVEL,
STD-STREAM, and LEXICAL for constructing user interfaces and metalanguage applications, in
which Maude is used not only to define a domain-specific language or tool, but also to build
an environment for the given language or tool. In such applications, the STD-STREAM module
can be used to handle the input/output and to maintain the persistent state of the language
environment or tool.1

18.1 User interfaces

In order to generate in Maude an interface for an application P, the first thing we need to
do is to define the language for interaction. This can be done by defining the datatype of its
commands and other constructs by means of a signature SignP .

As a running example for this chapter, we will specify a basic interface for the vending
machine introduced in Section 5.1. First, we define in the module VENDING-MACHINE-GRAMMAR

a language for interacting with the vending machine. The signature of this module extends
the signature of VENDING-MACHINE-SIGNATURE with operators to represent the valid actions,
namely: insert $ and insert q for inserting a dollar or a quarter in the machine; show

basket and show credit for showing the items already bought or the remaining credit; and
buy (s) for buying a number of pieces of the same item.

fmod VENDING-MACHINE-GRAMMAR is

protecting VENDING-MACHINE-SIGNATURE .

protecting NAT .

sort Action .

op insert $: -> Action .

op insert q : -> Action .

op show basket : -> Action .

op show credit : -> Action .

op buy__(s) : Nat Item -> Action .

endfm

1Maude’s prelude also includes the module LOOP-MODE, which was the main tool to create interactive appli-
cations in previous releases of Maude. The functionality in STD-STREAM is more general and flexible, and the
LOOP-MODE has been deprecated. It is included in the current release for backwards compatibility.

435

436 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

The interaction with the standard IO streams is performed using objects and messages.
The next step is therefore to define the objects that will keep the state of the system and will
interact with the IO streams. Our goal is to have a loop between the system and the user in
which the vending machine asks for input, and then, depending on the specific action, performs
one task or another, and gives its response to the user.

In the module VENDING-MACHINE-IO below, we introduce the necessary declarations to use
objects of a class VM with attributes action, to keep the last action requested from the user
(inserting a coin, showing information about the remaining credit or the items already bought,
or buying one or more items), and marking, to keep the state of the machine (the marking
of the vending machine, that is, the remaining credit plus the items already bought). The
constants vm and idle are introduced for convenience to denote the identifier of the vending
machine object and to denote the idle action in which the system is waiting for input from the
user once the actual action is processed.

mod VENDING-MACHINE-IO is

including STD-STREAM .

including VENDING-MACHINE-GRAMMAR .

protecting BUYING-STRATS .

protecting CONVERSION .

protecting LEXICAL .

sort VM .

subsort VM < Cid .

op VM : -> VM .

op action :_ : Action -> Attribute .

op marking :_ : Marking -> Attribute .

op vm : -> Oid .

op idle : -> Action .

To operate on the system we introduce two further constants: VM-GRAMMAR represents the
module in which the input from the user is going to be parsed, the above VENDING-MACHINE-GRAMMAR;
the vending machine configuration is used to initialize the system, and it includes the portal
to interact with standard streams, the vm object, initially with null marking and action idle,
and a first write message to show the user that the machine is started.

op VM-GRAMMAR : -> Module .

eq VM-GRAMMAR = upModule(’VENDING-MACHINE-GRAMMAR, false) .

op vending machine : -> Configuration .

eq vending machine

= <>

< vm : VM | marking : null, action : idle >

write(stdout, vm, "\n\t Vending machine\n") .

The interaction with the user is then handled by the following two rules. Once a write

message is processed, the output stream sends back a wrote message, which is used to request
an action from the user, who is prompted with a > character. When the user hits the return
key, the stream object sends the input in a gotLine message. In the rule below, we expect
either a "quit" that will finish the interaction, a valid input in the VM-GRAMMAR grammar, or a
non-valid input. In the first case, a goodbye message is shown and the interaction terminates
(note that the object is removed from the state). If there is an invalid input, an error message
is shown and the interaction continues. If the input is valid in the VM-GRAMMAR grammar, the
corresponding action is placed in the action attribute of the VM object for further processing.

18.1. USER INTERFACES 437

Note the use of the tokenize function2 to tokenize the input, which is received as a string,
before parsing it. The operation metaParse checks whether the input stream corresponds to a
term of sort Action. If this is the case, metaParse returns the metarepresentation of that term,
which is then “moved down” using the META-LEVEL function downTerm (see Section 17.6.1).

vars O O’ : Oid .

var Str : String .

var Atts : AttributeSet .

var X : VM .

rl < O : X | Atts >

wrote(O, O’)

=> < O : X | Atts >

getLine(stdin, O, "> ") .

rl < O : X | action : idle, Atts >

gotLine(O, O’, Str)

=> if Str == "quit"

then write(stdout, O, "goodbye\n")

else if metaParse(VM-GRAMMAR, tokenize(Str), ’Action) :: ResultPair

then < O : X |

action : downTerm(

getTerm(

metaParse(VM-GRAMMAR, tokenize(Str), ’Action)),

idle),

Atts >

else < O : X | action : idle, Atts >

write(stdout, O, "Invalid input\n")

fi

fi .

The processing of the valid inputs, the actions, is performed by several rewriting rules,
modeling the changes produced in the state of the vending machine by the actions requested by
the client. To define the interaction of the state of the vending machine with the client, we can
use the strategies introduced in the BUYING-STRATS module described in Section 17.7. Recall
that BUYING-STRATS includes the META-LEVEL module.

var A : Action .

var I : Item .

var C : Coin .

var M : Marking .

vars QIL QIL’ QIL’’ : QidList .

var N : Nat .

For the show basket and show credit actions, the following rules extract the informa-
tion about the remaining credit or the items already bought, and send a write message with
the corresponding information. In the definitions of the auxiliary functions showBasket and
showCredit, the operation metaPrettyPrint takes the metarepresentation of a coin or an item,
and returns the list of quoted identifiers that encode the list of tokens produced by pretty-
printing the coin or the item in the module VENDING-MACHINE-SIGNATURE. Coins and items,
and, more generally, markings of a vending machine are metarepresented using the META-LEVEL
function upTerm (see Section 17.6.1).

2The tokenize function tokenizes strings into lists of quoted identifiers (see Section 7.11).

438 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

op showBasket : Marking -> QidList .

eq showBasket(I M)

= metaPrettyPrint(upModule(’VENDING-MACHINE-SIGNATURE, false), upTerm(I))

showBasket(M) .

eq showBasket(C M) = showBasket(M) .

eq showBasket(null) = nil .

op showCredit : Marking -> QidList .

eq showCredit(C M)

= metaPrettyPrint(upModule(’VENDING-MACHINE-SIGNATURE, false), upTerm(C))

showCredit(M) .

eq showCredit(I M) = showCredit(M) .

eq showCredit(null) = nil .

rl < O : X | action : show basket, marking : M, Atts >

=> < O : X | action : idle, marking : M, Atts >

write(stdout, O, "basket: " + printTokens(showBasket(M)) + "\n") .

rl < O : X | action : show credit, marking : M, Atts >

=> < O : X | action : idle, marking : M, Atts >

write(stdout, O, "credit: " + printTokens(showCredit(M)) + "\n") .

The following rules implement the actions of inserting a dollar or a quarter in the vending
machine. The strategy insertCoin defined in the module BUYING-STRATS (see Section 17.7)
is used to produce the corresponding change in the current marking of the vending machine.
Since strategies are applied at the metalevel, both the marking of the vending machine and the
coin to be inserted must be first metarepresented using again the META-LEVEL function upTerm.

rl < O : X | action : insert q, marking : M, Atts >

=> < O : X | action : idle,

marking : downTerm(insertCoin(’add-q, upTerm(M)), null), Atts >

write(stdout, O, "one quarter introduced\n") .

rl < O : X | action : insert $, marking : M, Atts >

=> < O : X | action : idle,

marking : downTerm(insertCoin(’add-$, upTerm(M)), null), Atts >

write(stdout, O, "one dollar introduced\n") .

The last two rules implement the actions of buying one or more items. The strategy
onlyNitems defined in the module BUYING-STRATS (see Section 17.7) is used to produce the
corresponding change in the current marking of the vending machine. Again, since strategies
are applied at the metalevel, the marking of the vending machine must be first metarepresented.

rl < O : X | action : (buy N c (s)), marking : M, Atts >

=> < O : X | action : idle,

marking : downTerm(onlyNitems(upTerm(M), ’buy-c, N), null), Atts >

write(stdout, O, string(N, 10) + " cakes bought\n") .

rl < O : X | action : (buy N a (s)), marking : M, Atts >

=> < O : X | action : idle,

marking : downTerm(onlyNitems(upTerm(M), ’buy-a, N), null),Atts >

write(stdout, O, string(N, 10) + " apples bought\n") .

endm

18.2. THE INTERACTION WITH THE SYSTEM 439

18.2 The interaction with the system

With the above definitions, we can now illustrate the basic interaction with the vending machine.
Once the VENDING-MACHINE-IO module has been entered, we can initiate the execution using
the erewrite command and the vending machine constant.

Maude> erew vending machine .

erewrite in VENDING-MACHINE-IO : vending machine .

Vending machine

>

Once the machine interface has been initialized, we can input any data by writing it after
the prompt. For example,

> insert $
one dollar introduced

> show credit

credit: $

> insert $
one dollar introduced

> insert q

one quarter introduced

> buy 1 apple(s)

Invalid input

> buy 1 a(s)

1 apples bought

> show basket

basket: a

> show credit

credit: $ q q

> insert $
one dollar introduced

> buy 3 a(s)

3 apples bought

> show basket

basket: a a a a

> show credit

credit: q

We can terminate the interface by introducing the quit action.

> quit

goodbye

rewrites: 428 in 13ms cpu (83975ms real) (32552 rewrites/second)

result Portal: <>

440 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

18.3 Metalanguage applications: tokens, bubbles, and
metaparsing

The example presented in the previous two sections is a toy example to illustrate the basic fea-
tures of a possible interaction loop with the system. However, the most interesting applications
of the STD-STREAM module are metalanguage applications, in which Maude is used to define
the syntax, parse, execute, and pretty print the execution results of a given object language or
tool. In such applications, most of the hard work is done by the META-LEVEL module, but we
can use a similar approach to handle the input/output and maintaining the persistent state of
the object language interpreter or tool.

In order to generate in Maude an environment for a language L, including the case of
a language with user-definable syntax, the first thing we need to do is to define the syntax
for L-modules. This can be done by defining a datatype for L-modules, as well as auxiliary
declarations for commands and other constructs, by means of a signature SignL. Maude
provides great flexibility to do this, thanks to its mixfix front-end and to the use of bubbles (any
non-empty list of Maude identifiers). The intuition behind bubbles is that they correspond to
pieces of a module in a language that can only be parsed once the grammar introduced by the
signature of the module is available.

The idea is that, for a language that allows modules with user-definable syntax—as it is the
case for Maude itself—it is natural to see its syntax as a combined syntax at two different levels:
(1) what we may call the top-level syntax of the language, and (2) the user-definable syntax
introduced in each module. The bubble datatype allows us to reflect this duality of levels in
the syntax definition by encapsulating portions of (as yet unparsed) text in the user-definable
syntax. Similar ideas have been exploited using ASF+SDF [41, 42].

To illustrate this concept, suppose that we want to define the syntax of Maude in Maude.
Consider the following Maude module:

fmod NAT3 is

sort Nat3 .

op s_ : Nat3 -> Nat3 .

op 0 : -> Nat3 .

eq s s s 0 = 0 .

endfm

Notice that the lists of characters inside the boxes are not part of the top level syntax of
Maude and therefore should be treated as bubbles until they are parsed. In fact, they can only
be parsed with the grammar associated with the signature of the module NAT3. In this sense,
we say that the syntax for Maude modules is a combination of two levels of syntax. The term
s s s 0, for example, has to be parsed in the grammar associated with the signature of NAT3.
The definition of the syntax of Maude in Maude must reflect this duality of syntax levels.

So far, we have talked about bubbles in a generic way. In fact, there can be many different
kinds of bubbles. In Maude we can define different types of bubbles as built-in datatypes by
parameterizing their definition. Thus, for example, a bubble of length one, which we call a
token, can be defined as follows:

sort Token .

op token : Qid -> Token

[special (id-hook Bubble (1 1)

op-hook qidSymbol (<Qids> : ~> Qid))] .

Any name can be used to define a bubble sort. It is the special attribute

id-hook Bubble (1 1)

18.3. TOKENS, BUBBLES, AND METAPARSING 441

in its constructor declaration that makes the sort Token a bubble sort. The second argument
of the id-hook special attribute indicates the minimum and maximum length of such bubbles
as lists of identifiers. Therefore, Token has only bubbles of size 1. To specify a bubble of any
length we would use the pair of values 1 and -1. The operator used in the declaration of the
bubble, in this case the operator token, is a bubble constructor that represents tokens in terms
of their quoted form. For example, the token abc123 is represented as token(’abc123).

We can define bubbles of any length, that is, non-empty sequences of Maude identifiers,
with the following declarations.

op bubble : QidList -> Bubble

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid)

id-hook Exclude (.))] .

In this case, the system will represent the bubble as a list of quoted identifiers under the con-
structor bubble. For example, the bubble ab cd ef is represented as bubble(’ab ’cd ’ef).

Different types of bubbles can be defined using the id-hook special attribute Exclude, which
takes as parameter a list of identifiers to be excluded from the given bubble, that is, the bubble
being defined cannot contain such identifiers. In general, the syntax Exclude (I1 I2 . . . Ik) is
used to exclude identifiers I1, I2, . . . , Ik inside tokens.

We can, for example, declare the sort NeTokenList with constructor neTokenList as a list
of identifiers, of any length greater or equal than one, excluding the identifier ‘->’ with the
following declarations.

op neTokenList : QidList -> NeTokenList

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid)

id-hook Exclude (->))] .

We are now ready to give the signature to parse modules such as NAT3 above. The following
module MINI-MAUDE-SYNTAX uses the above definitions of sorts Token, Bubble and NeTokenList

to define the syntax of a sublanguage of Maude, namely, many-sorted, unconditional, functional
modules, in which the declarations of sorts and operators have to be done one at a time, no
attributes are supported for operators, and variables must be declared on-the-fly.

fmod MINI-MAUDE-SYNTAX is

protecting QID-LIST .

sorts Token Bubble NeTokenList .

op token : Qid -> Token

[special

(id-hook Bubble (1 1)

op-hook qidSymbol (<Qids> : ~> Qid))] .

op bubble : QidList -> Bubble

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid)

id-hook Exclude (.))] .

op neTokenList : QidList -> NeTokenList

442 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid)

id-hook Exclude (->))] .

sorts Decl DeclList PreModule Input Command .

subsort Decl < DeclList .

subsorts Module Command < Input .

op including_. : Token -> Decl . --- including declaration

op sort_. : Token -> Decl . --- sort declaration

op op_: ->_. : Token Token -> Decl . --- operator declaration

op op_:_->_. : Token NeTokenList Token -> Decl .

op eq_=_. : Bubble Bubble -> Decl . --- equation declaration

--- functional module

op fmod_is_endfm : Token DeclList -> PreModule .

op __ : DeclList DeclList -> DeclList [assoc gather(e E)] .

--- reduce command

op reduce_. : Bubble -> Command .

endfm

Notice how we explicitly declare operators that correspond to part of the top-level syntax
of Maude, and how we represent as terms of sort Bubble those pieces of the module—namely,
terms in equations—that can only be parsed afterwards with the user-defined syntax. Notice
also that not all terms of sort PreModule represent valid Maude modules. In particular, for a
term of sort PreModule to represent a Maude module all the bubbles must be correctly parsed
as terms in the module’s user-defined syntax. We sometimes refer to modules with bubbles as
premodules.

As an example, we can call the operation metaParse, from module META-LEVEL, with the
metarepresentation of the module MINI-MAUDE-SYNTAX and the previous module NAT3 trans-
formed into a list of quoted identifiers.

Maude> red in META-LEVEL :

metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’sort ’Nat3 ’.

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’0 ’= ’0 ’.

’endfm,

’PreModule) .

We get the following term of sort ResultPair as a result:

result ResultPair:

{’fmod_is_endfm[’NAT3 ,

’__[’sort_.[’Nat3],

’__[’op_:_->_.[’s , ’Nat3 , ’Nat3],

’__[’op_:_->_.[’0 , ’Nat3],

’eq_=_.[’s ’s ’s ’0 , ’0]]],

’PreModule}

18.3. TOKENS, BUBBLES, AND METAPARSING 443

Of course, Maude does not return these boxes. Instead, the system returns the bubbles
using their constructor form as specified in their corresponding declarations. For example,
the bubbles ’Nat3 and ’s ’s ’s ’0 are represented, respectively, as token(’Nat3) and
bubble(’s ’s ’s ’0). Maude returns them metarepresented. The result given by Maude is
therefore the following.

result ResultPair: {

’fmod_is_endfm[’token[’’NAT3.Qid],

’__[’sort_.[’token[’’Nat3.Qid]],

’__[’op_:_->_.[’token[’’s_.Qid],

’neTokenList[’’Nat3.Qid],

’token[’’Nat3.Qid]],

’__[’op_:‘->_.[’token[’’0.Qid], ’token[’’Nat3.Qid]],

’eq_=_.[’bubble[’__[’’s.Qid, ’’s.Qid, ’’s.Qid,’’0.Qid]],

’bubble[’’0.Qid]]]]]],

’PreModule}

The first component of the result pair is a metaterm of sort Term. To convert this term into
a term of sort FModule is now straightforward. As already mentioned, we first have to extract
from the term the module’s signature. For this, we can use an equationally defined function

op extractSignature : Term ~> FModule .

op extractSignature : Term FModule ~> FModule .

that goes along the term metarepresenting the premodule looking for sort, operator, and im-
portation declarations. A homonymous function is used to recursively handle each declara-
tion and add it to the module carried along as second argument. Notice that the operation
extractSignature is partial, because it is not well defined for metaterms of sort Term that do
not metarepresent terms of sort PreModule in MINI-MAUDE-SYNTAX.

Once we have extracted the signature of the module—expressed as a functional module with
no equations and no membership axioms—we can then build terms of sort EquationSet with
an equationally defined operation solveBubbles (also partial) that recursively replaces each
bubble in an equation with the result of calling metaParse with the already extracted signature
and with the quoted identifier form of the bubble.

op solveBubbles : Term FModule ~> FModule .

op solveBubblesAux : Term FModule ~> EquationSet .

Finally, the partial operation processModule takes a term and, if it metarepresents a term of
sort PreModule in MINI-MAUDE-SYNTAX, and, furthermore, the solveBubbles function succeeds
in parsing the bubbles in equations as terms, then it returns a term of sort FModule.

The complete specification of these operations is as follows:

fmod MINI-MAUDE is

protecting META-LEVEL .

vars T T1 T2 T3 : Term .

vars TL TL’ : TermList .

var QI : Qid .

var QIL : QidList .

var F : Qid .

var M : Module .

var I : Import .

vars IL : ImportList .

var S : Sort .

444 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

vars SS : SortSet .

var SsS : SubsortDeclSet .

var OD : OpDecl .

var ODS : OpDeclSet .

var MbS : MembAxSet .

vars EqS EqS’ : EquationSet .

op processModule : Term ~> FModule .

eq processModule(T) = solveBubbles(T, extractSignature(T)) .

---- extractSignature

op extractSignature : Term ~> FModule .

op extractSignature : Term FModule ~> FModule .

eq extractSignature(’fmod_is_endfm[’token[QI], T])

= extractSignature(T,

fmod downTerm(QI, ’error) is nil sorts none . none none none none endfm) .

eq extractSignature(’__[T1, T2], M)

= extractSignature(T2, extractSignature(T1, M)) .

eq extractSignature(’sort_.[’token[T]], M) = addSort(M, downTerm(T, ’error)) .

eq extractSignature(’op_:_->_.[’token[T1], ’neTokenList[TL], ’token[T2]], M)

= addOpDecl(M,

op downTerm(T1, ’error) : downTerm(TL, nil) -> downTerm(T2, ’error) [none] .) .

eq extractSignature(’op_:‘->_.[’token[T1], ’token[T2]], M)

= addOpDecl(M, (op downTerm(T1, ’error) : nil -> downTerm(T2, ’error) [none] .)) .

eq extractSignature(’including_.[’token[T]], M)

= addImport(M, including downTerm(T, ’error) .) .

eq extractSignature(T, M) = M [owise] .

---- solveBubbles

op solveBubbles : Term FModule ~> FModule .

op solveBubblesAux : Term FModule ~> EquationSet .

eq solveBubbles(’fmod_is_endfm[’token[QI], T], M)

= addEquations(M, solveBubblesAux(T, M)) .

eq solveBubblesAux(’eq_=_.[T1, T2], M)

= (eq getTerm(processTerm(T1, M)) = getTerm(processTerm(T2, M)) [none] .) .

eq solveBubblesAux(’__[’eq_=_.[T1, T2], T3], M)

= (eq getTerm(processTerm(T1, M)) = getTerm(processTerm(T2, M)) [none] .

solveBubblesAux(T3, M)) .

ceq solveBubblesAux(’__[F[TL], T2], M)

= solveBubblesAux(T2, M)

if F =/= ’eq_=_. .

ceq solveBubblesAux(F[TL], M)

= none

if F =/= ’__ /\ F =/= ’eq_=_. .

op processTerm : Term Module ~> ResultPair .

eq processTerm(’bubble[T], M)

= metaParse(M, downTerm(T, nil), anyType) .

op addSort : FModule Sort -> FModule .

eq addSort(fmod QI is IL sorts SS . SsS ODS MbS EqS endfm, S)

18.3. TOKENS, BUBBLES, AND METAPARSING 445

= fmod QI is IL sorts SS ; S . SsS ODS MbS EqS endfm .

op addOpDecl : FModule OpDecl -> FModule .

eq addOpDecl(fmod QI is IL sorts SS . SsS ODS MbS EqS endfm, OD)

= fmod QI is IL sorts SS . SsS (OD ODS) MbS EqS endfm .

op addImport : FModule Import -> FModule .

eq addImport(fmod QI is IL sorts SS . SsS ODS MbS EqS endfm, I)

= fmod QI is IL I sorts SS . SsS ODS MbS EqS endfm .

op addEquations : FModule EquationSet -> FModule .

eq addEquations(fmod QI is IL sorts SS . SsS ODS MbS EqS endfm, EqS’)

= fmod QI is IL sorts SS . SsS ODS MbS (EqS EqS’) endfm .

endfm

We have then the following reductions:

Maude> red in MINI-MAUDE :

extractSignature(

getTerm(metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’sort ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’0 ’= ’0 ’.

’endfm,

’PreModule))) .

result FModule: fmod ’NAT3 is

nil

sorts ’Nat3 .

none

op ’0 : nil -> ’Nat3 [none] .

op ’s_ : ’Nat3 -> ’Nat3 [none] .

none

none

endfm

Maude> red in MINI-MAUDE :

processModule(

getTerm(metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’sort ’Nat3 ’.

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’0 ’= ’0 ’.

’endfm,

’PreModule))) .

result FModule: fmod ’NAT3 is

nil

sorts ’Nat3 .

none

op ’0 : nil -> ’Nat3 [none] .

op ’s_ : ’Nat3 -> ’Nat3 [none] .

none

eq ’s_[’s_[’s_[’0.Nat3]]] = ’0.Nat3 [none] .

446 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

endfm

Maude> red in MINI-MAUDE :

processModule(

getTerm(metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’sort ’Nat3 ’.

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’N:Nat3 ’= ’N:Nat3 ’.

’endfm,

’PreModule))) .

result FModule: fmod ’NAT3 is

nil

sorts ’Nat3 .

none

op ’0 : nil -> ’Nat3 [none] .

op ’s_ : ’Nat3 -> ’Nat3 [none] .

none

eq ’s_[’s_[’s_[’N:Nat3]]] = ’N:Nat3 [none] .

endfm

18.4 The LOOP-MODE module (deprecated)

Using object-oriented concepts, we specify in Maude a general input/output facility provided
by the LOOP-MODE module shown below, which extends the module QID-LIST (see Section 7.10),
into a generic read-eval-print loop.

mod LOOP-MODE is

protecting QID-LIST .

sorts State System .

op [_,_,_] : QidList State QidList -> System [ctor special (...)] .

endm

The operator [_,_,_] can be seen as an object—that we call the loop object—with an input
stream (the first argument), an output stream (the third argument), and a state (given by its
second argument). This read-eval-print loop provided by LOOP-MODE is a simple mechanism that
is no longer maintained. The support for communication with external objects (see Section 9)
makes it possible to develop more general and flexible solutions for dealing with input/output.

Since with the loop object only one input stream is supported (the current terminal), the
way to distinguish the input passed to the loop object from the input passed to the Maude
system—either modules or commands—is by enclosing them in parentheses. When something
enclosed in parentheses is written after the Maude prompt, it is converted into a list of quoted
identifiers. This is done by the system by first breaking the input stream into a sequence of
Maude identifiers (see Section 3.1) and then converting each of these identifiers into a quoted
identifier by putting a quote in front of it, and appending the results into a list of quoted
identifiers, which is then placed in the first slot of the loop object.3 The output is handled
in the reverse way, that is, the list of quoted identifiers placed in the third slot of the loop
object is displayed on the terminal after applying the inverse process of “unquoting” each of

3The tokenize function tokenizes strings into lists of quoted identifiers (see Section 7.11).

18.4. THE LOOP-MODE MODULE (DEPRECATED) 447

the identifiers in the list.4 However, the output stream is not cleared at the time when the
output is printed; it is instead cleared when the next input is entered. We can think of the
input and output events as implicit rewrites that transfer—in a slightly modified, quoted or
unquoted form—the input and output data between two objects, namely the loop object and
the “user” or “terminal” object.

Besides having input and output streams, terms of sort System give us the possibility of
maintaining a state in their second component. This state has been declared in a completely
generic way. In fact, the sort State in LOOP-MODE does not have any constructors. This gives
complete flexibility for defining the terms we want to have for representing the state of the
loop in each particular application. In this way, we can use this input/output facility not only
for building user interfaces for applications written in Maude, but also for uses of Maude as a
metalanguage, where the object language being implemented may be completely different from
Maude. For each such tool or language the nature of the state of the system may be completely
different. We can tailor the State sort to any such application by importing LOOP-MODE in a
module in which we define the state structure and the rewrite rules for changing the state and
interacting with the loop.

4The printTokens function takes a list of quoted identifiers and converts into a string with the usual printing
conventions (see Section 7.11).

448 CHAPTER 18. USER INTERFACES AND METALANGUAGE APPLICATIONS

Chapter 19

Meta-interpreters

The META-LEVEL module is purely functional. This is because all its descent functions are
deterministic, even though they may manipulate intrinsically nondeterministic entities such as
rewrite theories. For example, the metaSearch descent function with a bound of, say, 3, is
entirely deterministic, since given the meta-representations R of the desired system module
and t of the initial term plus the bound 3, the result yielded by search for R, t and 3 at the
object level, and therefore by metaSearch at the metalevel, is uniquely determined.

Although META-LEVEL is very powerful, its purely functional nature means that it has no
notion of state. Therefore, reflective applications where user interaction in a state-changing
manner is essential require using META-LEVEL in the context of additional features supporting
such an interaction. Maude’s meta-interpreters feature makes possible very flexible kinds of
reflective interactions in which Maude interpreters are encapsulated as external objects and
can reflectively interact with both other Maude interpreters and with various other external
objects, including the user.

19.1 Maude meta-interpreters

Conceptually a meta-interpreter is an external object that is an independent Maude interpreter,
complete with module and view databases, which sends and receives messages. The module
META-INTERPRETER in the meta-interpreter.maude file contains command and reply messages
that cover almost the entirety of the Maude interpreter. For example, it can be instructed
to insert or show modules and views, or carry out computations in a named module. As
response, the meta-interpreter replies with messages acknowledging operations carried out or
containing results. Meta-interpreters can be created and destroyed as needed, and because a
meta-interpreter is a complete Maude interpreter, it can host meta-interpreters itself and so on
in a tower of reflection. Furthermore, the original META-LEVEL functional module can itself be
used from inside a meta-interpreter after it is inserted.

Internally, the guts of the Maude interpreter implementation are encapsulated in a C++
class called Interpreter and the top-level interpreter that one interacts with on the command
line is an instance of this class together with a small amount of glue code that enables it to
communicate over the standard I/O streams. Meta-interpreters are also instances of this class,
with a small amount of glue code that enables them to exchange messages with an enclosing
object-oriented rewriting execution context. Currently, both the object-level interpreter and
any existing meta-interpreters all run the same single threaded process, and control flow is
managed through the object-oriented rewriting mechanism.

449

450 CHAPTER 19. META-INTERPRETERS

The metarepresentation of terms, modules, and views is shared with the META-LEVEL func-
tional module in Chapter 17. The API to meta-interpreters defined in the META-INTERPRETER

module includes several sorts and constructors, a built-in object identifier interpreterManager,
and a large collection of command and response messages (see file meta-interpreter.maude

for the complete details).

mod META-INTERPRETER is

protecting META-LEVEL .

including CONFIGURATION .

sort RewriteCount .

subsort Nat < RewriteCount .

sorts InterpreterOption InterpreterOptionSet .

subsort InterpreterOption < InterpreterOptionSet .

op none : -> InterpreterOptionSet [ctor] .

op interpreter : Nat -> Oid [ctor] .

op createInterpreter : Oid Oid InterpreterOptionSet -> Msg [ctor msg ...] .

op createdInterpreter : Oid Oid Oid -> Msg [ctor msg ...] .

op insertModule : Oid Oid Module -> Msg [ctor msg ...] .

op insertedModule : Oid Oid -> Msg [ctor msg ...] .

op insertView : Oid Oid View -> Msg [ctor msg ...] .

op insertedView : Oid Oid -> Msg [ctor msg ...] .

...

...

op erewriteTerm : Oid Oid Bound Nat Qid Term -> Msg [ctor msg ...] .

op erewroteTerm : Oid Oid RewriteCount Term Type -> Msg [ctor msg ...] .

...

...

op quit : Oid Oid -> Msg [ctor msg ...] .

op bye : Oid Oid -> Msg [ctor msg ...] .

op interpreterManager : -> Oid [special (...)].

endm

All messages in this module follow the standard Maude message format, with the first two
arguments being the object identifiers of the target and of the sender. The interpreterManager
object identifier refers to a special external object that is responsible for creating new meta-
interpreters in the current execution context. Such meta-interpreters have object identifiers of
the form interpreter(n) for any natural number n.

19.2 A Russian dolls example

Let us illustrate the flexibility and generality of meta-interpreters with a short example. The
example, which we call RUSSIAN-DOLLS after the Russian nesting dolls, performs a computation
in a meta-interpreter that itself exists in a tower of meta-interpreters nested to a user-definable
depth and requires only two equations and two rules.

mod RUSSIAN-DOLLS is

extending META-INTERPRETER .

op me : -> Oid .

19.2. A RUSSIAN DOLLS EXAMPLE 451

op User : -> Cid .

op depth:_ : Nat -> Attribute .

op computation:_ : Term -> Attribute .

vars X Y Z : Oid .

var AS : AttributeSet .

var N : Nat .

var T : Term .

op newMetaState : Nat Term -> Term .

eq newMetaState(0, T) = T .

eq newMetaState(s N, T)

= upTerm(

<>

< me : User | depth: N, computation: T >

createInterpreter(interpreterManager, me, none)) .

rl < X : User | AS >

createdInterpreter(X, Y, Z)

=> < X : User | AS >

insertModule(Z, X, upModule(’RUSSIAN-DOLLS, true)) .

rl < X : User | depth: N, computation: T, AS >

insertedModule(X, Y)

=> < X : User | AS >

erewriteTerm(Y, X, unbounded, 1, ’RUSSIAN-DOLLS, newMetaState(N, T)) .

endm

The visible state of the computation resides in a Maude object of identifier me and class
User. The object holds two values in respective attributes: the depth of the meta-interpreter,
which is recorded as a Nat, with 0 as the top level, and the computation to perform, which is
recorded as a Term.

The operator newMetaState takes a depth and a metaterm to evaluate. If the depth is
zero, then it simply returns the metaterm as the new metastate; otherwise, a new configu-
ration is created, consisting of a portal (needed for rewriting with external objects to locate
where messages exchanged with external objects leave and enter the configuration), the user-
visible object holding the decremented depth and computation, and a message addressed to the
interpreterManager external object, requesting the creation of a new meta-interpreter, and
this configuration is lifted to the metalevel using the built-in upTerm operator imported from
the functional metalevel.

The first rule of the RUSSIAN-DOLLS module handles the createdInterpreter message from
interpreterManager, which carries the object identifier of the newly created meta-interpreter.
It uses upModule to lift its own module, RUSSIAN-DOLLS, to the metalevel and sends a re-
quest to insert this meta-module into the new meta-interpreter. The second rule handles the
insertedModule message from the new meta-interpreter. It calls the newMetaState operator
to create a new metastate and then sends a request to the new meta-interpreter to perform an
unbounded number of rewrites, with external object support and one rewrite per location per
traversal in the metalevel copy of the RUSSIAN-DOLLS module that was just inserted.

We start the computation with an erewrite command on a configuration that consists of
a portal, a user object, and a createInterpreter message:

Maude> erewrite

<>

< me : User | depth: 0, computation: (’_+_[’s_^2[’0.Zero], ’s_^2[’0.Zero]]) >

452 CHAPTER 19. META-INTERPRETERS

createInterpreter(interpreterManager, me, none) .

result Configuration:

<>

< me : User | none >

erewroteTerm(me, interpreter(0), 1, ’s_^4[’0.Zero], ’NzNat)

With depth 0, this results in the evaluation of the meta-representation of 2 + 2 directly in a
meta-interpreter, with no nesting. Passing a depth of 1 results in the evaluation instead being
done in a nested meta-interpreter.

Maude> erewrite

<>

< me : User | depth: 1,

computation: (’_+_[’s_^2[’0.Zero],’s_^2[’0.Zero]]) >

createInterpreter(interpreterManager, me, none) .

result Configuration:

<>

< me : User | none >

erewroteTerm(me, interpreter(0), 5,

’__[’<>.Portal,

’<_:_|_>[’me.Oid,’User.Cid,’none.AttributeSet],

’erewroteTerm[’me.Oid,’interpreter[’0.Zero],’s_[’0.Zero],

’_‘[_‘][’’s_^4.Sort,’’0.Zero.Constant],’’NzNat.Sort]], ’Configuration)

Notice here that the top-level reply message erewroteTerm(...) contains a result that is a
metaconfiguration, which contains the reply ’erewroteTerm[...] metamessage from the inner
meta-interpreter.

Additional examples of the use of standard streams and meta-interpreters can be found in
the next section, where they are used to develop a simple execution environment.

19.3 An execution environment for Mini-Maude using IO
and meta-interpreters

We illustrate in this section the use of standard streams and meta-interpreters to develop
programming environments for our languages. Specifically, we present an environment for
the MiniMaude language introduced in Section 18.3. The same techniques may be used to
develop your language of choice. Once you have defined a grammar (MINI-MAUDE-SYNTAX in
the case of MiniMaude) and a transformation from parse terms to Maude (as provided by the
processModule operation in the MINI-MAUDE module) you can build an execution environment
using the techniques shown in this section.

The MiniMaude language has been designed to be as simple as possible, but there were
several features we wanted it to include:

• We can declare sorts and operations, and specify equations on the terms we can construct
with them.

• We can include modules previously defined. We illustrate how we can store modules in
the meta-interpreters database so that they can later be referred to or used.

• We can reduce terms to their normal forms using the equations in a module. The syntax
defined for MiniMaude only allows the reduce command.

19.3. AN EXECUTION ENVIRONMENT FOR MINI-MAUDE 453

As pointed out in the previous section, the main difference between the metalevel and
a meta-interpreter is that the metalevel is functional but the meta-interpreter is not, and
we can interact with it through messages. Being non-functional, meta-interpreters provide
functionality, for instance, to store modules and views in its database, and then operate on them.
We will use that functionality in this section to illustrate its use and some of its possibilities.
Indeed, meta-interpreters provide the same functionality as the metalevel, plus some additional
features to insert elements in its database and retrieve them. In other words, we can say that
it provides the desired functionality at both the object level and at the metalevel.

In our case, we will store a minimum of information in an object that will request inputs
from the user using the standard input stream and will attempt to parse it in the MiniMaude
grammar. To be able to parse inputs using the meta-interpreter, we will start by introducing
the MINI-MAUDE-SYNTAX module in it. Once it is there, we can try to parse the inputs. When
the standard stream receives a getLine message, it responds with the string typed by the user
until a return key is pressed. To be able to parse multi-line inputs, we will need to request
new lines until the input is completed. Of course, at any time we may get a parse error or an
ambiguity, in which cases we need to report the given error.

Once the input is completed, we may have a module or a reduce command. If it is a
module, we need to extract the signature first and then to solve the bubbles in its equations.
The process must be carried out in two steps, since the signature may refer to submodules in
the database of the meta-interpreter, but the equations with the bubbles processed are to be
inserted in the top module. If the input corresponds to a reduce command, the term must be
parsed, and then reduced by the meta-interpreter.

Although the process is quite systematic, different cases must be taken into account. To
simplify the processing, we use an attribute state that keeps track of the different alternatives.
Figure 19.1 shows a state diagram of the execution environment. This object also keeps the
identifier of the meta-interpreter, the name of the last entered module, and the partial input
introduced.

view Oid from TRIV to CONFIGURATION is

sort Elt to Oid .

endv

view Module from TRIV to META-MODULE is

sort Elt to Module .

endv

mod MINI-MAUDE-META-INTERPRETER is

protecting MINI-MAUDE .

including STD-STREAM .

including LEXICAL .

including MAYBE{Oid} * (op maybe to null) .

including MAYBE{Qid} * (op maybe to null) .

including MAYBE{Module} * (op maybe to null) .

including META-INTERPRETER .

vars O O’ MI Y : Oid .

var Atts : AttributeSet .

var QIL : QidList .

var Str : String .

vars T T’ : Term .

vars Ty Ty’ : Type .

var N : Nat .

454 CHAPTER 19. META-INTERPRETERS

0

1

2

4

6

11

7

8

3

4

write(banner)
createInterpreter

insertModule(MINI-MAUDE-SYNTAX)

[{T, Ty}]

[quit]
write(goodbye)
quit

[!quit]
parseTerm

[noParse]
4

5

[incomplete
input]

4

[ambiguous]

processInput

getLine
getLine

write(error msg)

showModule(true)

[fmod & !valid signature
 || red & no module]

[!valid bubbles]
write(error message)

9

10

showModule(false)

insertModule(complete)

write(ok message)

[red & module]
processInput

[noParse]

12

reduceTerm

13

printTerm

write(result)

[fmod & valid signature]
insertModule(signature)

Figure 19.1: MiniMaude’s statechart.

var RP? : [ResultPair] .

var M : Module .

var M? : Maybe{Module} .

vars QI? : Maybe{Qid} .

vars QI MN : Qid .

var EqS : EquationSet .

MiniMaude objects are represented using the following declarations.

sort MiniMaude .

subsort MiniMaude < Cid .

op MiniMaude : -> MiniMaude .

op mi:_ : Maybe{Oid} -> Attribute [prec 20 gather (&)] . ---- meta-interpreter

op mn:_ : Maybe{Qid} -> Attribute [prec 20 gather (&)] . ---- default module name

op in:_ : QidList -> Attribute [prec 20 gather (&)] . ---- accumulated input

op st:_ : Nat -> Attribute [prec 20 gather (&)] . ---- state

Several messages are used for intermediate steps.

19.3. AN EXECUTION ENVIRONMENT FOR MINI-MAUDE 455

op processInput : Oid Term -> Msg .

op pendingBubbles : Oid Term -> Msg .

op parsedEquations : Oid EquationSet -> Msg .

op processReduce : Oid [ResultPair] -> Msg .

The MiniMaude environment may be initiated using the minimaude constants, with it an
interpreter is created and a banner is sent to the output stream.

op o : -> Oid .

op minimaude : -> Configuration .

eq minimaude

= <>

< o : MiniMaude | mi: null, mn: null, in: nil, st: 0 >

write(stdout, o, "’\n\t MiniMaude Execution Environment\n")

createInterpreter(interpreterManager, o, none) .

Once the message is written and the meta-interpreter created, the MINI-MAUDE-SYNTAX

module is inserted in the meta-interpreter. The second argument of the createdInterpreter

message is, as usual, the sender (interpreterManager in this case).

rl < O : MiniMaude | mi: null, st: 0, Atts >

wrote(O, O’)

createdInterpreter(O, Y, MI)

=> < O : MiniMaude | mi: MI, st: 1, Atts >

insertModule(MI, O, upModule(’MINI-MAUDE-SYNTAX, true)) .

Once the module is inserted, a getLine message is sent to the stdin object.

rl < O : MiniMaude | mi: MI, st: 1, Atts >

insertedModule(O, O’)

=> < O : MiniMaude | mi: MI, st: 2, Atts >

getLine(stdin, O, "minimaude> ") .

When the user introduces some inputs, the stdin object responds with a gotLine message
with the string entered. The user is expected to write quit or q to leave the environment. If the
input is one of these, a goodbye message is sent to the stdout object and the meta-interpreter
is killed. Otherwise, an attempt is made to parse the input. Note that some previous inputs
may be stored in the in attribute, so the message to the meta-interpreter to parse the input
includes the entire Qid list.

rl < O : MiniMaude | mi: MI, in: QIL, st: 2, Atts >

gotLine(O, O’, Str)

=> if tokenize(Str) == ’quit or tokenize(Str) == ’q

then < O : MiniMaude | mi: MI, in: nil, st: 3, Atts >

write(stdout, o, "goodbye\n")

quit(MI, O)

else < O : MiniMaude | mi: MI, in: QIL tokenize(Str), st: 4, Atts >

parseTerm(MI, O, ’MINI-MAUDE-SYNTAX, none, QIL tokenize(Str), ’Input)

fi .

If a quit message was sent to the meta-interpreter, it would respond with a bye message.
This is the final rule, which terminates the execution.

rl < O : MiniMaude | mi: MI, st: 3, Atts >

wrote(O, O’)

bye(O, MI)

=> none .

456 CHAPTER 19. META-INTERPRETERS

If the parse succeeded, the meta-interpreter responds with a parsedTermÂ message that
includes a term of sort ResultPair. This term in that pair is sent in a processInput message.

rl < O : MiniMaude | mi: MI, in: QIL, st: 4, Atts >

parsedTerm(O, MI, {T, Ty})

=> < O : MiniMaude | mi: MI, in: nil, st: 6, Atts >

processInput(O, T) .

If the parse failed, the parsedTerm message from the meta-interpreter includes a noParse

term with the position at which the parsing failed. If the position is the end of the input it
means that the input was incomplete, and in that case that partial input is added to the current
input and additional text is requested from the user. If the error was in some other position,
an error message is sent.

rl < O : MiniMaude | mi: MI, in: QIL, st: 4, Atts >

parsedTerm(O, MI, noParse(N))

=> if N == size(QIL)

then < O : MiniMaude | mi: MI, in: QIL, st: 2, Atts >

getLine(stdin, O, "> ")

else < O : MiniMaude | mi: MI, in: nil, st: 5, Atts >

write(stdout, o, "Parse error\n")

fi .

The response may also be informing about an ambiguity. Although more precise information
might be given to the user, we have simplified the error message.

rl < O : MiniMaude | mi: MI, in: QIL, st: 4, Atts >

parsedTerm(O, MI, ambiguity({T, Ty}, {T’, Ty’}))

=> < O : MiniMaude | mi: MI, in: nil, st: 5, Atts >

write(stdout, o, "Ambiguous input\n") .

The processInput message may correspond to a functional module or to a reduce com-
mand. In the first case, if the input contains a valid signature, such a module is inserted in the
meta-interpreter. The input is kept in a pendingBubbles message for later processing.

rl < O : MiniMaude | mi: MI, mn: QI?, st: 6, Atts >

processInput(O, ’fmod_is_endfm[’token[T], T’])

=> if extractSignature(’fmod_is_endfm[’token[T], T’]) :: Module

then < O : MiniMaude | mi: MI, mn: downTerm(T, ’default-name), st: 7, Atts >

insertModule(MI, O, extractSignature(’fmod_is_endfm[’token[T], T’]))

pendingBubbles(O, T’)

else < O : MiniMaude | mi: MI, mn: QI?, st: 5, Atts >

write(stdout, o, "Parse error\n")

fi .

Once the signature is inserted, the MiniMaude object requests the flattened module. If the
module contains importations of previously entered modules, the entire module must be used
for the processing of the bubbles in the top module.

rl < O : MiniMaude | mi: MI, mn: QI, st: 7, Atts >

insertedModule(O, MI)

=> < O : MiniMaude | mi: MI, mn: QI, st: 8, Atts >

showModule(MI, O, QI, true) .

The retrieved flattened module is then used to process the bubbles in the equations of the
module. If the processing fails, an error message is shown to the user. If it succeeded, the top
module is requested so that the equations can be added to it.

19.3. AN EXECUTION ENVIRONMENT FOR MINI-MAUDE 457

rl < O : MiniMaude | mi: MI, mn: QI, st: 8, Atts >

showingModule(O, MI, M)

pendingBubbles(O, T)

=> if solveBubblesAux(T, M) :: EquationSet

then < O : MiniMaude | mi: MI, mn: QI, st: 9, Atts >

parsedEquations(O, solveBubblesAux(T, M))

showModule(MI, O, QI, false)

else < O : MiniMaude | mi: MI, mn: QI, st: 5, Atts >

write(stdout, o, "Parse error\n")

fi .

The top module is inserted in the meta-interpreter once the processed equations are added
to it.

rl < O : MiniMaude | mi: MI, mn: QI, st: 9, Atts >

showingModule(O, MI, M)

parsedEquations(O, EqS)

=> < O : MiniMaude | mi: MI, mn: QI, st: 10, Atts >

insertModule(MI, O, addEquations(M, EqS)) .

When the insertion is completed with success, the user is informed.

rl < O : MiniMaude | mi: MI, st: 10, Atts >

insertedModule(O, MI)

=> < O : MiniMaude | mi: MI, st: 5, Atts >

write(stdout, O, "Module loaded successfully\n") .

As can be seen in Figure 19.1, state 5 is the one to which the object returns every time
an operation concludes, either with a failure or success, after notifying the user, and then
requesting further inputs.

rl < O : MiniMaude | mi: MI, st: 5, Atts >

wrote(O, O’)

=> < O : MiniMaude | mi: MI, st: 2, Atts >

getLine(stdin, O, "minimaude> ") .

The input may also correspond to a reduce command. The following rule handles the
case in which a command is introduced but there is no previous module inserted on which the
command can be evaluated.

rl < O : MiniMaude | mn: null, st: 6, Atts >

processInput(O, ’reduce_.[T])

=> < O : MiniMaude | mn: null, st: 5, Atts >

write(stdout, o, "No module in the system\n") .

If there is a previous module, the term to be reduced must first be parsed.

rl < O : MiniMaude | mi: MI, mn: MN, st: 6, Atts >

processInput(O, ’reduce_.[’bubble[T]])

=> < O : MiniMaude | mi: MI, mn: MN, st: 11, Atts >

parseTerm(MI, O, MN, none, downTerm(T, nil), anyType) .

The parsing of the term may result in success or failure. In the first case, a reduceTerm

message is sent to the meta-interpreter. In the second case, an error message is given.

rl < O : MiniMaude | mi: MI, mn: MN, st: 11, Atts >

parsedTerm(O, MI, {T, Ty})

=> < O : MiniMaude | mi: MI, mn: MN, st: 12, Atts >

reduceTerm(MI, O, MN, T) .

458 CHAPTER 19. META-INTERPRETERS

rl < O : MiniMaude | mi: MI, mn: MN, st: 11, Atts >

parsedTerm(O, MI, noParse(N))

=> < O : MiniMaude | mi: MI, st: 5, Atts >

write(stdout, o, "Parse error\n") .

Once the simplification command is completed, the meta-interpreter sends back a reducedTerm
message with the result of the execution. Before showing the result to the user, the pretty-
printing of the term must be requested to the meta-interpreter.

rl < O : MiniMaude | mi: MI, mn: MN, st: 12, Atts >

reducedTerm(O, MI, N, T, Ty)

=> < O : MiniMaude | mi: MI, mn: MN, st: 13, Atts >

reducedTerm(O, MI, N, T, Ty)

printTerm(MI, O, MN, none, T, mixfix flat format number rat) .

rl < O : MiniMaude | mi: MI, st: 13, Atts >

reducedTerm(O, MI, N, T, Ty)

printedTerm(O, MI, QIL)

=> < O : MiniMaude | mi: MI, st: 5, Atts >

write(stdout, o, "result " + string(Ty) + ": " + printTokens(QIL) + "\n") .

endm

We can run the environment with the minimaude configuration.

Maude> erew minimaude .

erewrite in MINI-MAUDE-META-INTERPRETER : minimaude .

MiniMaude Execution Environment

minimaude>

First, let us introduce a simple example, the NAT3 module already used in Section 18.3.

> fmod NAT3 is

> sort Nat3 .

> op s_ : Nat3 -> Nat3 .

> op 0 : -> Nat3 .

> eq s s s 0 = 0 .

> endfm

Module loaded successfully

We can execute a simple command on that module as follows.

minimaude> reduce s s s s 0 .

result Nat3: s 0

A more interesting module refers to the previous one, extending it with a plus operation.

minimaude> fmod NAT3+ is

> including NAT3 .

> op _+_ : Nat3 Nat3 -> Nat3 .

> eq 0 + N:Nat3 = N:Nat3 .

> eq s N:Nat3 + M:Nat3 = s (N:Nat3 + M:Nat3) .

> endfm

Module loaded successfully

minimaude> reduce s s 0 + s 0 .

result Nat3: 0

If wrong inputs are inserted, an error message is provided.

19.3. AN EXECUTION ENVIRONMENT FOR MINI-MAUDE 459

minimaude> reduce foo .

Parse error

We can finally exit the environment with a q command.

minimaude> q

goodbye

rewrites: 643 in 10ms cpu (128883ms real) (62885 rewrites/second)

result Portal: <>

460 CHAPTER 19. META-INTERPRETERS

Chapter 20

Debugging and Troubleshooting

20.1 Debugging approaches

There are several approaches to debugging and optimizing Maude programs: tracing, term
coloring, using the debugger, and using the profiler.

20.1.1 Tracing

The tracing facilities allow us to follow the execution of our specifications, that is, the sequence
of rewrites or equational simplification reductions that take place. Tracing is turned on with
the command

set trace on .

A log of the trace can be captured using script or xterm logging. This can then be studied
using a text editor. Since the trace is usually voluminous, there are a number of trace options
to control just what is traced. We refer to Section 23.8 for a complete list of tracing commands
and options.

One of the most useful options is selective tracing:

set trace select on .

trace select foo bar ([_,_]) .

This will cause only rewrites where the statement (equation, membership or rule) is labeled
with a selected name or the redex is headed by operators with a selected name to be traced.
In the above example, suppose foo and bar are rule labels, [_,_] is an operator name, and
foo is also an operator name. Then, rewrites using the rules labeled by foo or bar will be
reported, as will also rewrites with redex whose top-level operator is either foo or [_,_]. Note
that these labels or operators need not be in existence at the time the trace select command
is executed; thus it is possible to select statements and operators that will only be created at
runtime via the metalevel.

A useful option for metaprogramming is

trace exclude FOO BAR .

This will exclude the named modules from being traced and thus allows one to selectively
avoid tracing the chosen object and/or metalevel modules. This is particularly useful when
using Full Maude to localize the tracing to the “object modules” being executed and not to
the FULL-MAUDE module itself (see Chapter 21). After loading Full Maude, its specification is

461

462 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

excluded from the tracing, which allows us to trace Full Maude specifications as Core Maude
specifications.

As we have mentioned, there are different commands that may help us in the control of the
trace of the execution at hand. If the number of rewrites is small, we may use the whole trace
to check the behavior of our specification. However, the number of rewrites is usually big, and
considering the whole trace is completely impossible. The different options may help us, for
example, to focus on a particular rule or set of rules, exclude certain modules from the trace,
or not tracing the rewrites happening in the conditions.

Let us illustrate some of these commands to trace the bank accounts example presented in
Section 8.1. To see the trace we just need to set the trace on. After it, the trace of any rewrite
command will be given, according to the active options. By default, the application of every
equation, membership axiom, and rule will be printed, showing the corresponding substitution,
the current whole term, and the subterm on which the axiom is being applied before and after
its application. To get a flavor of the information we get, let us rewrite the bankConf term
with a bound of 1.

Maude> set trace on .

Maude> rew [1] bankConf .

rewrite [1] in BANK-ACCOUNT-TEST : bankConf .

*********** equation

eq bankConf = (((((< A-003 : Account | bal : 1250 > from A-003 to

A-002 transfer 300) debit(A-002, 400)) < A-002 : Account | bal :

250 >) debit(A-001, 150)) debit(A-001, 200)) < A-001 : Account |

bal : 300 > .

empty substitution

bankConf

--->

(((((< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) debit(A-002, 400)) < A-002 : Account | bal : 250 >) debit(

A-001, 150)) debit(A-001, 200)) < A-001 : Account | bal : 300 >

*********** trial #1

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** equation

(built-in equation for symbol _>=_)

300 >= 150

--->

true

*********** success for condition fragment

N:Nat >= M:Nat = true

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** success #1

*********** rule

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

20.1. DEBUGGING APPROACHES 463

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) < A-001 : Account | bal : (300 - 150) >

*********** equation

(built-in equation for symbol _-_)

300 - 150

--->

150

rewrites: 4 in 1ms cpu (1ms real) (4000 rewrites/second)

result Configuration: debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 150 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

Notice that, even though the bound for the rewrite command is one, there are four rewrites.
Recall that the bound only concerns rule application. In this trace we see how three equations—
two of them built-in—are also applied. In addition to the statement used in each rewriting step,
the trace shows the matching substitution and the whole term, before and after the application
of the statement. Notice also the information concerning the evaluation of conditions. We can
see that, although there is a match with the debit rule, this rule is not applied until the success
of its condition has been checked.

Suppose we are mainly concerned with the application of rules. In this case we may think
that there is too much “noise” due to the application of equations. We may request hiding the
information about the application of equations with the command set trace eq off. Then
the trace for rewriting the same bankConf term with the same bound of 1 is as follows:

Maude> set trace eq off .

Maude> rew [1] bankConf .

rewrite [1] in BANK-ACCOUNT-TEST : bankConf .

*********** trial #1

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** success for condition fragment

N:Nat >= M:Nat = true

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** success #1

*********** rule

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

464 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) < A-001 : Account | bal : (300 - 150) >

rewrites: 4 in 1ms cpu (0ms real) (4000 rewrites/second)

result Configuration: debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 150 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

The selection of the concrete operator or statement label to trace may also be a good
alternative when looking for something specific. Suppose that we are suspicious of a particular
rule, say transfer. We may get the applications of such a rule for the unbounded rewrite of
the bankConf term by using the trace select command as follows.

Maude> set trace select on .

Maude> trace select transfer .

Maude> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

*********** trial #1

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > fromA:Oid to B:Oid transfer M:Nat => < A:Oid : Account |

bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

A:Oid --> A-003

N:Nat --> 1250

B:Oid --> A-002

N’:Nat --> 250

M:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** success for condition fragment

N:Nat >= M:Nat = true

A:Oid --> A-003

N:Nat --> 1250

B:Oid --> A-002

N’:Nat --> 250

M:Nat --> 300

*********** success #1

*********** rule

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

A:Oid --> A-003

N:Nat --> 1250

B:Oid --> A-002

N’:Nat --> 250

M:Nat --> 300

20.1. DEBUGGING APPROACHES 465

debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >

< A-002 : Account | bal : 250 > < A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >)

< A-003 : Account | bal : (1250 - 300) > < A-002 : Account |

bal : (300 + 250) >

rewrites: 13 in 1ms cpu (1ms real) (13000 rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account |

bal : 150 > < A-002 : Account | bal : 150 > < A-003 : Account |

bal : 950 >

We may also hide some of the information being shown. For example, we may get the same
trace without the substitutions being shown with the set trace substitution off command.

Maude> set trace substitution off .

Maude> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

*********** trial #1

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** success for condition fragment

N:Nat >= M:Nat = true

*********** success #1

*********** rule

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >

< A-002 : Account | bal : 250 > < A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >)

< A-003 : Account | bal : (1250 - 300) > < A-002 : Account |

bal : (300 + 250) >

rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account |

bal : 150 > < A-002 : Account | bal : 150 > < A-003 : Account |

bal : 950 >

Let us consider now a different example, namely, the PATH module presented in Sections 3.5
and 4.3. We use it here to illustrate the trace given for membership axioms and for conditional
axioms with multiple fragments. We recall first the conditional membership axiom defining
multi-edge paths and the conditional equation defining the associativity of path concatenation.

var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

466 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

Now we request the trace for the reduction of the term length((b ; c) ; d). The information
shown is particularly illustrative for understanding the way in which the membership axioms are
used and the way conditions are evaluated. Note that the equation expressing the associativity
of path concatenation has two fragments, one of which is evaluated after the other. In case the
condition of a matching equation fails another equation is attempted; furthermore, equations
with matching conditions have unbounded variables initially.

Since the full trace is more than six pages long, we use the set trace condition off

command, so that the evaluation of the conditions is omitted.

Maude> set trace on .

Maude> set trace condition off .

Maude> red length((b ; c) ; d) .

reduce in PATH : length((b ; c) ; d) .

*********** trial #1

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c

*********** solving condition fragment

target(E) = source(P)

*********** success for condition fragment

target(E) = source(P)

E --> b

P --> c

*********** success #1

*********** membership axiom

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c

[Path]: b ; c becomes Path

*********** trial #2

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

P --> b

Q --> c

R --> d

*********** solving condition fragment

target(P) = source(Q)

*********** success for condition fragment

target(P) = source(Q)

P --> b

Q --> c

R --> d

*********** solving condition fragment

target(Q) = source(R)

*********** success for condition fragment

target(Q) = source(R)

P --> b

Q --> c

R --> d

*********** success #2

*********** equation

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

P --> b

20.1. DEBUGGING APPROACHES 467

Q --> c

R --> d

(b ; c) ; d

--->

b ; (c ; d)

*********** trial #3

cmb E ; P : Path if target(E) = source(P) .

E --> c

P --> d

*********** solving condition fragment

target(E) = source(P)

*********** success for condition fragment

target(E) = source(P)

E --> c

P --> d

*********** success #3

*********** membership axiom

cmb E ; P : Path if target(E) = source(P) .

E --> c

P --> d

[Path]: c ; d becomes Path

*********** trial #4

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c ; d

*********** solving condition fragment

target(E) = source(P)

*********** success for condition fragment

target(E) = source(P)

E --> b

P --> c ; d

*********** success #4

*********** membership axiom

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c ; d

[Path]: b ; (c ; d) becomes Path

*********** trial #5

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> b

P --> c ; d

*********** success #5

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

length(b ; (c ; d))

--->

468 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

1 + length(c ; d)

*********** trial #6

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> c

P --> d

*********** success #6

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

length(c ; d)

--->

1 + length(d)

*********** equation

eq length(E) = 1 .

E --> d

length(d)

--->

1

*********** equation

(built-in equation for symbol _+_)

1 + 1

--->

2

*********** equation

(built-in equation for symbol _+_)

1 + 2

--->

3

rewrites: 20 in 2ms cpu (1ms real) (10000 rewrites/second)

result NzNat: 3

But the trace is too long to observe what we were interested in. Suppose we just wanted
to check a possible mistake in the specification of the length function. We may select it for
filtering the equations defining it.

Maude> set trace select on .

Maude> trace select length .

Maude> red length((b ; c) ; d) .

reduce in PATH : length((b ; c) ; d) .

*********** trial #1

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> b

20.1. DEBUGGING APPROACHES 469

P --> c ; d

*********** success #1

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

length(b ; (c ; d))

--->

1 + length(c ; d)

*********** trial #2

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> c

P --> d

*********** success #2

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

length(c ; d)

--->

1 + length(d)

*********** equation

eq length(E) = 1 .

E --> d

length(d)

--->

1

rewrites: 20 in 0ms cpu (1ms real) (~ rewrites/second)

result NzNat: 3

20.1.2 Term coloring

A common failure mode of Maude programs is when a term does not fully reduce. This is a
lack of sufficient completeness. For linear unconditional order-sorted specifications, sufficient
completeness can be checked with the SCC tool [83]. However, for general Maude specifications
proving sufficient completeness may require inductive theorem proving. If a term does not fully
reduce, that is, if nonconstructor symbols remain in the term’s canonical form, it can be difficult
to determine just where the problem began, since when a subterm fails to reduce, the enclosing
term often fails to reduce, and so on, leading to a large unreduced term. If the specification
makes consistent use of the ctor attribute, problem subterms can be pinpointed by switching
on term coloring with the command

set print color on .

Symbols within terms that are being executed (i.e., in a trace or in the final result of a
reduce command) are colored as follows:

470 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

reduced, ctor not colored
reduced, non-ctor, strangeness below blue
reduced, non-ctor, no strangeness below red
unreduced, no reduced above green
unreduced, reduced directly above magenta
unreduced, reduced not directly above cyan

If an operator is colored, this means that the term contains nonconstructors, that is, that
there is “strangeness” in the term. The different colors indicate the source of the strangeness.
The idea is that red and magenta indicate the initial locus of a bug, while blue and cyan indicate
secondary damage. Green denotes reduction pending and cannot appear in the final result. An
example is the following module, in which there is a missing case in each of the definitions of
the _<_ and min operators (0 < 0 and min(N N), respectively).

fmod NAT-MSET-MIN is

protecting BOOL .

sorts Nat NatMSet .

subsort Nat < NatMSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _ _ : NatMSet NatMSet -> NatMSet [assoc comm ctor] .

op _<_ : Nat Nat -> Bool .

op min : NatMSet -> Nat .

vars N M : Nat .

var S : NatMSet .

eq 0 < s(N) = true .

eq s(N) < 0 = false .

eq s(N) < s(M) = N < M .

eq min(N N S) = min(N S) .

ceq min(N M S) = min(N S) if N < M .

ceq min(N M) = N if N < M .

eq min(N) = N .

endfm

With color printing turned on, reducing min(s(s(0)) s(s(0))) returns the term with
the min operator colored red, indicating a nonconstructor that can’t be reduced. Reducing
min(s(s(0)) min(s(0) s(0))) returns the term with the inner occurrence of the min oper-
ator colored red as above, and the outer occurrence colored blue, indicating that the problem
probably lies in a subterm.

To avoid confusion, any colors that may have been specified using the format attribute (see
Section 4.4.5) are ignored in this mode.

20.1.3 The debugger

There are three ways to get into the Maude debugger:

• a control-C interrupt during rewriting,

• prefixing a command with the keyword debug, and

• hitting a break point.

Break points are set with the command

20.1. DEBUGGING APPROACHES 471

break select foo bar ([_,_]) .

where the names refer to operators or statement (equation, membership, rule or strategy defi-
nition) labels in a way that is completely analogous to the trace select command described
in Section 20.1.1. Break points are enabled with the command

set break on .

On entering the debugger, the prompt changes to Debug(n)> where n is the debug level,
that is, the number of times the debugger has been re-entered (it is fully re-entrant). All top-
level commands can be executed from the debugger, along with four commands that are special
to the debugger:

where . Prints out the stack of pending rewrites, explaining how each one arose.

step . Executes the next rewrite with tracing turned on.

resume . Exits the debugger and continues with the current rewriting task.

abort . Exits the debugger and abandons the current rewriting task.

We illustrate these commands using the bank accounts example presented in Section 8.1
(assuming it is in the file bank-account-test.maude).

We first use the debug command to activate the debugger from the begining of a rewrite.
Note the use of the where, step, and resume commands.

Maude> load bank-account-test.maude

Maude> debug rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

Debug(1)> where .

Current term is:

bankConf

which arose while executing a top level command.

Debug(1)> step .

*********** equation

eq bankConf = (((((< A-003 : Account | bal : 1250 > from A-003 to

A-002 transfer 300) debit(A-002, 400)) < A-002 : Account | bal :

250 >) debit(A-001, 150)) debit(A-001, 200)) < A-001 : Account |

bal : 300 > .

empty substitution

bankConf

--->

(((((< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) debit(A-002, 400)) < A-002 : Account | bal : 250 >) debit(

A-001, 150)) debit(A-001, 200)) < A-001 : Account | bal : 300 >

Debug(1)> where .

Current term is:

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(1)> resume .

rewrites: 13 in 2ms cpu (85160ms real) (6500 rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account | bal :

150 > < A-002 : Account | bal : 150 > < A-003 : Account | bal :

950 >

472 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

As said above, we can also enter into the debugger by reaching a break point or typing
control-c. In the following example we set a break point on the debit rule, take a step, and
then abort the rewrite process.

Maude> set break on .

Maude> break select debit .

Maude> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

break on labeled rule:

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true [

label debit] .

Debug(1)> where .

Current term is:

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(1)> step .

*********** trial #1

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => <

A:Oid : Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat =

true [label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

Debug(1)> where .

Current term is:

300 >= 150

which arose while checking a condition during the evaluation of:

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(1)> abort .

Maude>

Our last example illustrates the re-entering nature of the debugger. As said above, any
command can be used during the debugging process, allowing, for example, starting an execu-
tion while debugging another one. We execute a debug rew command, entering the debugger,
where we set a break point on the transfer rule. Notice the Debug(2)> prompt. Notice also
how after getting out of the inner debugger the break point is still active.

Maude> debug rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

Debug(1)> step .

*********** equation

eq bankConf = (((((< A-003 : Account | bal : 1250 > from A-003 to

A-002 transfer 300) debit(A-002, 400)) < A-002 : Account | bal

: 250 >) debit(A-001, 150)) debit(A-001, 200)) < A-001 : Account

| bal : 300 > .

empty substitution

bankConf

20.1. DEBUGGING APPROACHES 473

--->

(((((< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) debit(A-002, 400)) < A-002 : Account | bal : 250 >) debit(

A-001, 150)) debit(A-001, 200)) < A-001 : Account | bal : 300 >

Debug(1)> set break on .

Debug(1)> break select transfer .

Debug(1)> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

break on labeled rule:

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

Debug(2)> where .

Current term is:

debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >

< A-002 : Account | bal : 250 > < A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(2)> resume .

break on labeled rule:

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account |

bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat + N’:Nat)

> if N:Nat >= M:Nat = true [label transfer] .

Debug(2)> abort .

Debug(1)> resume .

break on labeled rule:

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

Debug(1)> set break off .

Debug(1)> resume .

rewrites: 13 in 4ms cpu (63920ms real) (2600 rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account | bal :

150 > < A-002 : Account | bal : 150 > < A-003 : Account | bal :

950 >

20.1.4 Status report

We can find out what Maude is doing during execution without sending it a control-C (which
will close files and mess up socket communication among other things since it has to exit blocked
system calls to respond to the user).

Depending on whether Maude is running the status report may be activated either us-
ing ctrl-T or kill -INFO <pid> (Mac)1 and kill -USR1 <pid> (Linux).2 When activated,
Maude will print out the current time, rewrite counts and a summary of what it is doing on
stderr.

1On Mac, the status report feature uses the BSD SIGINFO extension, which is activated by control-T from
a terminal where Maude is the foreground process. It can also be activated by kill -INFO <pid>, however this
does not give the load and timing information as control-T does.

2On Linux, there is no equivalent capability so the Maude implementation follows the dd convention and
kill -USR1 <pid> can be used instead.

474 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

20.1.5 The profiler

Tuning up of specifications is something that may be useful in many practical situations. We
illustrate the use of the profiling facilities available in Maude to understand better the execution
of our specifications, helping us in this way to make them more efficient. We will discuss the
use of the profiler on two examples, namely, the specification of the Fibonacci function already
discussed in Section 4.4.8 and the specification of sorted lists presented in Section 6.3.6.

First of all, it must be clear that there is no magic recipe on how to optimize our specifi-
cations. On the contrary, although there are some guidelines that we may try to follow when
possible, it is not always the case that they work, or that they are applicable. For example, con-
ditional rules are generally expensive from a computational point of view, as are membership
axioms, but in some cases we may be interested in using proving tools for which using them
could be a better alternative. Similarly, in Section 4.4.8 we saw that using the memo attribute
was a big win in the case of the Fibonacci function, but it is not always applicable; for some
specifications, the consumption of memory can become so big that we may be getting a slower
specification. There is always a tradeoff between the speedup obtained using memoization and
the amount of memory and the cost of handling it. We illustrate all these and other concerns
in this section.

Profiling is switched on by the command set profile on. When profiling is switched on, a
count of the number of executions of each statement (equation, membership, rule, and strategy
definition) is kept. For unconditional statements, the profile information is just the number of
rewrites using that statement. For conditional ones there is also the number of matches, since
not every match leads to a rewrite, due to condition failure. Moreover, when searching there
can be multiple rewrites for each match, since the condition may be solved in multiple ways.
There is a table that for each condition fragment gives:

1. the number of times the fragment was initially tested,

2. the number of times the fragment was tested due to backtracking,

3. the number of times the fragment succeeded, and

4. the number of times the fragment failed.

Normally, (1) + (2) = (3) + (4).
Special rewrites such as built-in rewrites and memoized rewrites are also tracked, but these

are associated with symbols rather than with statements. For conciseness, symbols with no
special rewrites, and statements that are not matched are omitted. There are some limitations:
metalevel rewrites are not displayed, due to the ephemeral nature of metamodules. In addition,
condition fragments associated with a match or search command are not tracked (though any
rewrites initiated by such a fragment are). If you turn profiling on or off in the debugger you
may get inconsistent results.

The profile information is associated with each module and is usually cleared at the start
of any command that can do rewrites, except continue. This behavior can be changed with
the set clear profile on / off command.

Let us first consider the Fibonacci function described in Section 4.4.8.

fmod FIBONACCI is

protecting NAT .

op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

20.1. DEBUGGING APPROACHES 475

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Notice in the following reductions that the times given when the profile is active are slightly
higher.

Maude> red fibo(30) .

reduce in FIBONACCI : fibo(30) .

rewrites: 4038805 in 3920ms cpu (3960ms real) (1030201 rews/sec)

result NzNat: 832040

Maude> set profile on .

Maude> red fibo(30) .

reduce in FIBONACCI : fibo(30) .

rewrites: 4038805 in 4170ms cpu (4194ms real) (968453 rews/sec)

result NzNat: 832040

After doing the reduction with the profiler activated, we can request the collected infor-
mation by means of the command show profile. In this example, since the module has no
memberships or rules and there are no conditional axioms, the profiler gives the number of
times each of the equations has been applied and also the number of times built-in functions
are called.

Maude> show profile .

op _+_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 1346268 (33.3333%)

eq fibo(0) = 0 .

rewrites: 514229 (12.7322%)

eq fibo(1) = 1 .

rewrites: 832040 (20.6011%)

eq fibo(s_^2(N)) = fibo(N) + fibo(s N) .

rewrites: 1346268 (33.3333%)

In this very simple example we observe that only the three equations in the FIBONACCI

module plus the predefined addition operation on natural numbers have been used. We can
also observe how the equations are applied a number of times relatively similar, with percentages
12, 20, and 33, respectively. More interesting is the number of times each of them is applied,
which goes to 1346268 for the third equation. Taking into account that we reduced fibo(30),
it means that the calculations have been repeated many times. As we saw in Section 4.4.8, this
is a good place to use the memo attribute: calculations on small arguments are repeated many
times and a small amount of memory is needed for storing the result of such calculations.

After adding the memo attribute to the fibo operator, we get the following results from the
profiler:

Maude> set profile on .

Maude> red fibo(30) .

reduce in FIBONACCI : fibo(30) .

rewrites: 88 in 1ms cpu (1ms real) (88000 rews/sec)

476 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

result NzNat: 832040

Maude> show profile .

op _+_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 29 (32.9545%)

op fibo : [Nat] -> [Nat] .

memo rewrites: 28 (31.8182%)

eq fibo(0) = 0 .

rewrites: 1 (1.13636%)

eq fibo(1) = 1 .

rewrites: 1 (1.13636%)

eq fibo(s_^2(N)) = fibo(N) + fibo(s N) .

rewrites: 29 (32.9545%)

As we already saw in Section 4.4.8, the number of rewrites and the time consumed in the
computation have decreased dramatically. We may observe that now each of the values in the
Fibonacci sequence is calculated only once.

Let us consider now another example, namely, the parameterized module SORTED-LIST

presented in Section 6.3.6, which defines a sort SortedList{X} of sorted lists as a subsort
of the sort List{TOSET}{X} of lists. In this case we deal with a parameterized module which
imports several other modules, and which has membership axioms and equations, some of which
are conditional.

First of all, notice that by default the profiler provides information on a particular computa-
tion. In this example, it is not the same sorting a list in reverse order as an already sorted list,
and is not the same using insertion sort, mergesort, or quicksort for sorting. To have a better
insight about our specification, and thus gaining chances of improving it, we should consider
several reductions, dealing with different cases, the different sorting algorithms in our case.

To be able to run examples on big lists, with numbers initially sorted in different ways, let us
consider the following module NAT-LIST-GENERATOR, which imports the module SORTED-LIST

{NatAsToset} defining sorted lists of natural numbers, and specifies functions nats-upto, that
builds lists from zero to the specified value, and random-nats, which generates a list of the
specified number of random numbers.

fmod NAT-LIST-GENERATOR is

protecting SORTED-LIST{NatAsToset} .

protecting RANDOM .

vars N M : Nat .

op nats-upto : Nat -> NeSortedList{NatAsToset} .

eq nats-upto(s N) = nats-upto(N) ++ s N : [] .

eq nats-upto(0) = 0 : [] .

op random-nats : Nat -> List{TOSET}{NatAsToset} .

op random-nats : Nat Nat -> List{TOSET}{NatAsToset} .

eq random-nats(N) = random-nats(0, N) .

ceq random-nats(N, M)

= random(N) : random-nats(s N, M)

if N <= M .

20.1. DEBUGGING APPROACHES 477

eq random-nats(N, M) = [] [owise] .

endfm

We execute each one of the insertion-sort, mergesort, and quicksort algorithms on
three lists, namely, a sorted list, a list in reverse order, and a random one, each of them with
1000 elements.

Maude> red insertion-sort(nats-upto(1000)) .

rewrites: 2012009 in 1032ms cpu (1079ms real) (1948029 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red insertion-sort(reverse(nats-upto(1000))) .

rewrites: 5519515 in 3634ms cpu (3694ms real) (1518667 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red insertion-sort(random-nats(1000)) .

rewrites: 1535372 in 1286ms cpu (1397ms real) (1193166 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Maude> red mergesort(nats-upto(1000)) .

rewrites: 2082358 in 1079ms cpu (1134ms real) (1928402 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red mergesort(reverse(nats-upto(1000))) .

rewrites: 2578581 in 1210ms cpu (1221ms real) (2129622 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red mergesort(random-nats(1000)) .

rewrites: 88005 in 71ms cpu (77ms real) (1222478 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Maude> red quicksort(nats-upto(1000)) .

rewrites: 6519514 in 5065ms cpu (5344ms real) (1287111 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red quicksort(reverse(nats-upto(1000))) .

rewrites: 6528518 in 4096ms cpu (4130ms real) (1593729 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red quicksort(random-nats(1000)) .

rewrites: 97858 in 75ms cpu (84ms real) (1287791 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Instead of considering the profiling information separately, we use the set clear profile

off command, so that the profiling information gets accumulated.

Maude> set clear profile off .

Maude> set profile on .

Maude> red insertion-sort(nats-upto(1000)) .

rewrites: 2012009 in 1169ms cpu (1351ms real) (1719927 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red insertion-sort(reverse(nats-upto(1000))) .

...

478 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

As mentioned above, with the profiler active, the times taken by the reductions are slightly
higher. The number of rewrites and cpu time for each of the cases is presented in the tables
displayed in Figure 20.1 (page 483), where we also include these values for all the different
executions discussed in the rest of the section.3 The information shown by the profiler with the
show profile command is three pages long; we just comment the most interesting pieces.

1. Predefined operators _+_, _quo_, _<=_, _>_, and random are used an important number
of times, in particular _<=_ and _>_, which are applied, respectively, 7599823 (28.2%) and
1770593 times (6.6%). Notice that _<=_ is only used in the conditions of one of the mem-
bership axioms and in some of the conditions of the equations for insert-list, merge,
leq-elems, gr-elems, and random-nats; the operator _>_ is used in the conditions of
the equations for insert-list, mergesort, merge, leq-elems, and gr-elems.

op _+_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 29961 (0.111124%)

op _quo_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 3000 (0.0111269%)

op _<=_ : [Nat] [Nat] -> [Bool] .

built-in eq rewrites: 7599823 (28.1874%)

op _>_ : [Nat] [Nat] -> [Bool] .

built-in eq rewrites: 1770593 (6.56706%)

op random : [Nat] -> [Nat] .

built-in eq rewrites: 3003 (0.011138%)

2. From the numbers for the membership axioms we may conclude that they are applied
a considerable number of times, in particular the conditional one—4790561 rewrites
(17.8%)—. Note that for conditional membership axioms, as for all conditional axioms,
the system gives information on the number of matches, that is, the number of times that
the conditions are reduced. It also provides the number of times each one of the fragments
of the condition is reduced. In the case of the membership axioms in this specification,
there is only one fragment. The part of the output corresponding to the membership
axioms is the following:

mb [] : SortedList{NatAsToset} .

rewrites: 22040 (0.0817455%)

mb N : [] : NeSortedList{NatAsToset} .

rewrites: 17505 (0.0649254%)

cmb N : NEOL:NeSortedList{NatAsToset} : NeSortedList{NatAsToset}

if N <= head(NEOL:NeSortedList{NatAsToset}) = true .

lhs matches: 4795972 rewrites: 4790561 (17.768%)

Fragment Initial tries Resolve tries Successes Failures

1 4795972 0 4790561 5411

We see that the condition has been checked 4795972 times, out of which only 5411 failed.

3All these figures have been obtained running Maude during a hot summer night on a Linux platform with
an Intel Pentium M760 2GHz processor and 1GB of memory.

20.1. DEBUGGING APPROACHES 479

3. From the equations specifying the insertion-sort algorithm, the ones used more times
are the two conditional ones for the insert-list function. From the information in
the profile we see that these conditional equations have been attempted almost the same
number of times, 756888 and 754895. We also see that both have been applied almost
the same number of times, because the one that was attempted first almost always failed
the evaluation of its condition, and then the second equation was applied.

eq insertion-sort([]) = [] .

rewrites: 3 (1.11269e-05%)

eq insertion-sort(N : L:List{TOSET}{NatAsToset}) = insert-list(

insertion-sort(L:List{TOSET}{NatAsToset}), N) .

rewrites: 3003 (0.011138%)

eq insert-list([], M) = M : [] .

rewrites: 1010 (0.00374605%)

ceq insert-list(N : OL:SortedList{NatAsToset}, M) = M : N :

OL:SortedList{NatAsToset} if M <= N = true .

lhs matches: 756888 rewrites: 1993 (0.00739196%)

Fragment Initial tries Resolve tries Successes Failures

1 756888 0 1993 754895

ceq insert-list(N : OL:SortedList{NatAsToset}, M) = N :

insert-list(OL:SortedList{NatAsToset}, M) if M > N = true .

lhs matches: 754895 rewrites: 754895 (2.79988%)

Fragment Initial tries Resolve tries Successes Failures

1 754895 0 754895 0

4. The information on the equations for mergesort presents a similar pattern, the main
difference being that there is only one conditional equation, since merge is declared as
commutative. In this case the number of rewrites of all the equations is relatively small,
much smaller than the total of rewrites in the computation. This makes us think that
the weight of the computation of the memberships and generation of the lists to sort is
much higher that the sorting itself.

eq mergesort(N : []) = N : [] .

rewrites: 3003 (0.011138%)

ceq mergesort(L:List{TOSET}{NatAsToset}) = merge(mergesort(take

length(L:List{TOSET}{NatAsToset}) quo 2 from L:List{TOSET}{

NatAsToset}),mergesort(throw length(L:List{TOSET}{

NatAsToset}) quo 2 from L:List{TOSET}{NatAsToset})) if

length(L:List{TOSET}{NatAsToset}) > 1 = true .

lhs matches: 3000 rewrites: 3000 (0.0111269%)

Fragment Initial tries Resolve tries Successes Failures

1 3000 0 3000 0

eq merge([], OL:SortedList{NatAsToset}) = OL:SortedList{

NatAsToset} .

rewrites: 3000 (0.0111269%)

ceq merge(N : OL:SortedList{NatAsToset}, M : OL’:SortedList{

NatAsToset}) = N :merge(OL:SortedList{NatAsToset}, M :

480 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

OL’:SortedList{NatAsToset}) if N <= M = true .

lhs matches: 18705 rewrites: 18705 (0.0693761%)

Fragment Initial tries Resolve tries Successes Failures

1 18705 0 18705 0

5. The information for the quicksort algorithm follows a similar pattern as well. However,
in this case it is interesting to notice that the equations for the leq-elems and gr-elems

operations are attempted the same number of times, and for each of these operations the
condition (say, N <= M) of one of the equations fails in around half of the cases, being
then used the other equation (with condition, say, N > M.

eq quicksort([]) = [] .

rewrites: 3006 (0.0111491%)

eq quicksort(N : L:List{TOSET}{NatAsToset}) = quicksort(

leq-elems(L:List{TOSET}{NatAsToset}, N)) ++ N : quicksort(

gr-elems(L:List{TOSET}{NatAsToset}, N)) .

rewrites: 3003 (0.011138%)

eq leq-elems([], M) = [] .

rewrites: 3003 (0.011138%)

ceq leq-elems(N : L:List{TOSET}{NatAsToset}, M) = N :

leq-elems(L:List{TOSET}{NatAsToset}, M) if N <= M = true .

lhs matches: 1012626 rewrites: 506277 (1.87776%)

Fragment Initial tries Resolve tries Successes Failures

1 1012626 0 506277 506349

ceq leq-elems(N : L:List{TOSET}{NatAsToset}, M) = leq-elems(

L:List{TOSET}{NatAsToset}, M) if N > M = true .

lhs matches: 506349 rewrites: 506349 (1.87803%)

Fragment Initial tries Resolve tries Successes Failures

1 506349 0 506349 0

eq gr-elems([], M) = [] .

rewrites: 3003 (0.011138%)

ceq gr-elems(N : L:List{TOSET}{NatAsToset}, M) = gr-elems(

L:List{TOSET}{NatAsToset}, M) if N <= M = true .

lhs matches: 1012626 rewrites: 506277 (1.87776%)

Fragment Initial tries Resolve tries Successes Failures

1 1012626 0 506277 506349

ceq gr-elems(N : L:List{TOSET}{NatAsToset}, M) = N : gr-elems(

L:List{TOSET}{NatAsToset}, M) if N > M = true .

lhs matches: 506349 rewrites: 506349 (1.87803%)

Fragment Initial tries Resolve tries Successes Failures

1 506349 0 506349 0

6. From the rest of the equations applied we may highlight those for the head and _++_

operations.

eq head(E:Nat : L:List{TOSET}{NatAsToset}) = E:Nat .

rewrites: 4795972 (17.7881%)

20.1. DEBUGGING APPROACHES 481

eq [] ++ L:List{TOSET}{NatAsToset} = L:List{TOSET}{

NatAsToset} .

rewrites: 12006 (0.0445298%)

eq (E:Nat : L:List{TOSET}{NatAsToset}) ++ L’:List{TOSET}{

NatAsToset} =E:Nat : (L:List{TOSET}{NatAsToset} ++ L’:List{

Toset}{NatAsToset}) .

rewrites: 5010777 (18.5848%)

The equation for the head function is used in the evaluation of the condition of the
membership axiom. The concatenation operator is used in the quicksort, nats-upto,
and reverse functions.

Taking all the information provided by the profiler into account, we may think of doing
different types of modifications to the original specification.

• None of the operators seems to be appropriate for memoization, since they are used on
many different arguments, and if repeated, the size of the argument lists is so big that it
is probably not worthy storing the results.

Let us, in any case, add the memo attribute, e.g., to the head operator; the result for one
of the reductions above is the following:

Maude> red insertion-sort(random-nats(1000)) .

rewrites: 1535372 in 18500ms cpu (19221ms real) (82992 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

That is, it goes from 1286 milliseconds cpu time to 18500. See Figure 20.1 for the rest of
the values.

• Conditional equations are in general computationally expensive. Let us write the two
conditional equations for insertion-sort as one single unconditional equation:

eq insert-list(N : OL, M)

= if M <= N

then M : N : OL

else N : insert-list(OL, M)

fi .

The result for the same reduction is the following:

Maude> reduce insertion-sort(random-nats(1000)) .

rewrites: 1536365 in 638ms cpu (704ms real) (2404692 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Although the number of rewrites increases slightly—from 1535372 to 1536365—, the
amount of cpu time has dropped to a half—from 1286 ms. to 638 ms.

• We may use the owise attribute for making the conditional equation of the mergesort

function unconditional, that is, we may write it as:

eq mergesort(L)

= merge(mergesort(take (length(L) quo 2) from L),

mergesort(throw (length(L) quo 2) from L))

[owise] .

482 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

Although this clearly improves the equation, the win is not very significant. To test it,
we run the mergesort algorithm on a randomly generated list.

Maude> red mergesort(random-nats(1000)) .

rewrites: 87005 in 68ms cpu (110ms real) (1261124 rews/sec)

result NeSortedList{NatAsToset}: 237728 : 17386481 : ...

The number of rewrites goes from 88005 to 87005 and the cpu time goes from 71 ms. to
68 ms.

• A more important gain may be obtained by improving the splitting of the lists for the
quicksort algorithm. Let us join the leq-elems and gr-elems functions in one single
leq-gr-elems returning a pair of lists, one with the smaller or equal elements and the
other with the greater ones.

op quicksort : List{TOSET}{X} -> SortedList{X} .

op leq-gr-elems : List{TOSET}{X} X$Elt -> LGResult .

op leq-gr-elems : List{TOSET}{X} List{TOSET}{X} List{TOSET}{X}

X$Elt -> LGResult .

sort LGResult .

op {_,_} : List{TOSET}{X} List{TOSET}{X} -> LGResult .

eq quicksort([]) = [] .

ceq quicksort(N : L)

= quicksort(L’) ++ (N : quicksort(L’’))

if {L’, L’’} := leq-gr-elems(L, N).

eq leq-gr-elems(L, M) = leq-gr-elems(L, [], [], M) .

eq leq-gr-elems([], L, L’, M) = {L, L’} .

eq leq-gr-elems(N : L, L’, L’’, M)

= if N <= M

then leq-gr-elems(L, N : L’, L’’, M)

else leq-gr-elems(L, L’, N : L’’, M)

fi .

The execution of the quicksort function on a list of randomly generated numbers takes
now 69612 rewrites (against 97858) and does the reduction in 31 milliseconds (around 75
before).

Maude> red quicksort(random-nats(1000)) .

reduce in SORTED-LIST-TEST : quicksort(random-nats(1000)) .

rewrites: 69612 in 31ms cpu (72ms real) (2175714 rews/sec)

result NeSortedList{NatAsToset}: 237728 : 17386481 : ...

There is still room for improvement in this specification. For instance, some operations
on lists can be made more efficient by means of tail-recursive definitions with accumulator
arguments, in the style of the definitions shown in Section 7.13.1.

20.1.6 Performance note

Turning on tracing, break points, or profiling causes Maude to run much more slowly, because
these options force execution through a slow path that performs extensive bookkeeping before
and after each rewrite, membership application, and condition fragment check. Therefore,

20.1. DEBUGGING APPROACHES 483

original spec. memo head unconditional
insert-list

profiler on profiler off

nats-upto
rews 2012009 2013009

ms 1169 1032 96188 1029

reverse-nats-upto
rews 5519515 5519515

ms 4189 3634 193977 2376

random-nats
rews 1535372 1536365

ms 1434 1286 18500 638

insertion-sort

original spec. memo head merge owise

profiler on profiler off

nats-upto
rews 2082358 2081358

ms 1223 1079 95760 1079

reverse-nats-upto
rews 2578581 2577581

ms 1409 1210 99579 1204

random-nats
rews 88005 87005

ms 108 71 559 68

mergesort

original spec. memo head improved
splitting

profiler on profiler off

nats-upto
rews 6519514 5267013

ms 5671 5065 221387 2523

reverse-nats-upto
rews 6528518 5777017

ms 4451 4096 196991 2650

random-nats
rews 97858 69612

ms 83 75 693 31

quicksort

Figure 20.1: Number of rewrites and CPU time for different versions of the sorting algorithms

484 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

execution will be significantly slower if one or more of these options is on, even if no tracing
information is output, no break points are encountered, and the profile information is never
examined.

To ensure Maude is running at full speed one must use:

set trace off .

set break off .

set profile off .

20.2 Debugging strategy executions

The approaches described in Section 20.1 can also be applied for debugging the execution of
strategies. When using the srewrite and dsrewrite commands, we can examine the equations,
membership axioms, and rules that are executed as part of the strategy-controlled rewriting.
Equations and membership axioms do not only occur in the evaluation of rules and rule condi-
tions, but they can also appear in strategy-specific contexts like the evaluation of the conditions
of the strategy operators, or the reduction of strategy call arguments and subtitution values.
Moreover, we can also trace, stop, and profile each time a strategy definition is used to execute
a strategy call.

However, debugging strategies has an additional hardness. Since the evaluation of strategies
is a search for solutions in a restrained rewriting subtree (see Section 10.4), several execution
paths may be being explored at the same time, and their traces will appear interleaved in the
output. This affect srewrite more than dsrewrite.

Let us illustrate this with the Prolog example in Section 10.5 using the following logic
program:

eq hypotheses := ’mortal(x{1}) :- ’fish(x{1}) ;

’mortal(x{1}) :- ’human(x{1}) ;

’fish(x{1}) :- ’cod(x{1}) ;

’human(’Socrates) :- nil .

Tracing of strategy definitions is enabled by default, although it can be switched with the
command

set trace sd on/off .

The trace of a strategy call includes the definition being applied, the call term (except for
strategies without arguments), and the matching substitution for the left-hand side and the
condition. The subject term being rewritten can also be shown by setting

set trace whole on .

In the example, we will disable tracing for any other statement, and execute the srewrite

command using the wsolve-simple strategy, which recursively applies itself until a solution to
the logic programming problem is found.

Maude> set trace mb off . set trace eq off . set trace rl off . set trace whole on .

Maude> srew < ’mortal(’Socrates) | hypotheses > using wsolve-simple .

*********** strategy call

sd wsolve-simple := ...

subject --> < 0 | ’mortal(’Socrates) $ empty | (hypotheses) >

empty substitution

*********** strategy call

sd solve-simple := ...

20.2. DEBUGGING STRATEGY EXECUTIONS 485

subject --> < 0 | ’mortal(’Socrates) $ empty | (hypotheses) >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 1 | ’fish(x{1}) $ x{1} -> ’Socrates | (hypotheses) >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 1 | ’human(x{1}) $ x{1} -> ’Socrates | (hypotheses) >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 2 | ’cod(x{2}) $ x{1} -> ’Socrates ; x{2} -> ’Socrates | (hypotheses) >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 1 | nil $ x{1} -> ’Socrates | (hypotheses) >

empty substitution

Solution 1

rewrites: 256

result Configuration: solution(empty)

No more solutions.

rewrites: 256

We can observe the different proof paths are interleaved in the traces. The successful deduction
mortal ← human ← Socrates is being explored at the same time as the failed deduction
mortal ← fish ← cod . As we have said before, the dsrewrite command provides clearer
traces, since the execution tree is explored in depth. However, to obtain the path to a given
solution, we still have to discard failed branches that may have appeared during the search.

Maude> dsrew < ’mortal(’Socrates) | hypotheses > using wsolve-simple .

*********** strategy call

sd wsolve-simple := ...

subject --> < 0 | ’mortal(’Socrates) $ empty | hypotheses >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 0 | ’mortal(’Socrates) $ empty | hypotheses >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 1 | ’fish(x{1}) $ x{1} -> ’Socrates | hypotheses >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 2 | ’cod(x{2}) $ x{1} -> ’Socrates ; x{2} -> ’Socrates | hypotheses >

empty substitution

*********** strategy call

sd solve-simple := ...

subject --> < 1 | ’human(x{1}) $ x{1} -> ’Socrates | hypotheses >

empty substitution

*********** strategy call

sd solve-simple := ...

486 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

subject --> < 1 | nil $ x{1} -> ’Socrates | hypotheses >

empty substitution

Solution 1

rewrites: 256

result Configuration: solution(empty)

No more solutions.

rewrites: 256

Tracing strategy calls is more instructive when they have parameters or when they are
conditional, since we can see the matching substitution and the condition trials. For instance,
we can execute part of the previous deduction with the wsolve strategy from Section 10.5.2.
wsolve uses a auxiliary strategy clauseWalk to iterate through the program clauses and try
them in order. We will put a label to one of its definitions, and limit tracing to it and to the
clause rule.

sd clauseWalk(P :- PL2 ; Pr) := (clause[Pr2 <- Pr] ; solve)

| clauseWalk(Pr) [label walk] .

Then, we can see the matching substitution for the left-hand side of this clauseWalk definition.
All the clauses of the program are tried in order, and only the last one succeeds.

Maude> set trace select on . trace select walk clause .

Maude> srew < ’human(’Socrates) | hypotheses > using wsolve .

*********** strategy call

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) := ... [label walk] .

call term --> clauseWalk(hypotheses)

P:Predicate --> ’mortal(x{1})

PL2:CfPredicateList --> ’fish(x{1})

Pr:Program --> ’mortal(x{1}) :- ’human(x{1}) ; ... ; ’human(’Socrates) :- nil

*********** strategy call

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) := ... [label walk] .

call term --> clauseWalk(’mortal(x{1}) :- ’human(x{1}) ; ... ;

’human(’Socrates) :- nil)

P:Predicate --> ’mortal(x{1})

PL2:CfPredicateList --> ’human(x{1})

Pr:Program --> ’fish(x{1}) :- ’cod(x{1}) ; ’human(’Socrates) :- nil

*********** strategy call

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) := ... [label walk] .

call term --> clauseWalk(’fish(x{1}) :- ’cod(x{1}) ; ’human(’Socrates) :- nil)

P:Predicate --> ’fish(x{1})

PL2:CfPredicateList --> ’cod(x{1})

Pr:Program --> ’human(’Socrates) :- nil

*********** strategy call

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) := ... [label walk] .

call term --> clauseWalk(’human(’Socrates) :- nil)

P:Predicate --> ’human(’Socrates)

PL2:CfPredicateList --> (nil).CfPredicateList

Pr:Program --> (nil).Program

*********** rule

crl ... [label clause] .

N1:Nat --> 0

P1:Predicate --> ’human(’Socrates)

PL1:PredicateList --> (nil).PredicateList

20.2. DEBUGGING STRATEGY EXECUTIONS 487

S1:Substitution --> (empty).Substitution

Pr1:Program --> (hypotheses)

P2:Predicate --> ’human(’Socrates)

PL2:PredicateList --> (nil).CfPredicateList

Pr2:Program --> (nil).Program

P3:Predicate --> ’human(’Socrates)

PL3:PredicateList --> (nil).CfPredicateList

S2:Substitution --> (empty).Substitution

N2:Nat --> 0

Solution 1

rewrites: 69

result Configuration: solution(empty)

No more solutions.

rewrites: 69

Debugging is also available in the strategy-related commands: srewrite and dsrewrite

can be invoked with the debug keyword prefix to enter the debugger, and break points can be
set like for other statements. For instance, we could follow the clause walk of the previous trace
using the debugger.

Maude> set break on . select break walk .

Maude> srew < ’mortal(’Socrates) | hypotheses > using wsolve .

break on labeled strategy definition:

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) := ... [label walk] .

Debug(1)> where .

Current term is:

< 0 | ’human(’Socrates) $ empty | ^\textit{hypotheses}^ >

which arose while executing a top level command.

Debug(1)> resume .

break on labeled strategy definition:

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) :=

clause[Pr2:Program <- Pr:Program] ; solve | clauseWalk(Pr:Program) [label walk] .

Debug(1)> abort .

(1) Setting artificial break points (or trace points) at any position of a complex strategy (1) Perhaps this is not
good advice.expression is possible and could be useful when debugging strategies. Suppose we have the

strategy

(r1 ; r2) ? r1 : r2

and we want to know what it the subject term just after r1 and before r2 in the condition. We
can declare a strategy bp1 and define it as

sd bp1 := idle [label bp1] .

Then, we evaluate the strategy (r1 ; bp1 ; r2) ? r1 : r2 breaking or tracing at bp1.
Conditional breakpoint can even be established, depending on the variables from the context
or on the subject term, by means of a conditional strategy with arguments invoked like

(r1 ; matchrew S by S using bp(S, V) ; r2) ? r1 : r2

for some variable S of the subject sort, and some variables V from the context.
Finally, strategy commands can be profiled too. As an example, we include part of the

profile of the first example in this section.

488 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

Maude> set profile on .

Maude> srew < ’mortal(’Socrates) | hypotheses > using solve .

...

Maude> show profile .

...

crl < N1:Nat | P1:Predicate,PL1:PredicateList $ S1:Substitution |

Pr1:Program ; P2:Predicate :- PL2:PredicateList ; Pr2:Program > => <

N2:Nat | PL3:PredicateList,PL1:PredicateList $ S2:Substitution |

Pr1:Program ; P2:Predicate :- PL2:PredicateList ; Pr2:Program > if

P3:Predicate :- PL3:PredicateList := rename(P2:Predicate :-

PL2:PredicateList, N1:Nat) /\ S2:Substitution := unify(P1:Predicate,

P3:Predicate, S1:Substitution) /\ N2:Nat := max(N1:Nat, last(

P3:Predicate :- PL3:PredicateList)) [label clause] .

rewrites: 4 (1.47059%)

sd solve := match Conf:Configuration such that isSolution(

Conf:Configuration) = true or-else matchrew Conf:Configuration such

that < N:Nat | CfPL:CfPredicateList $ S:Substitution | Pr:Program > :=

Conf:Configuration by Conf:Configuration using clauseWalk(Pr:Program) |

matchrew Conf:Configuration such that < N:Nat | CfPL:CfPredicateList,!,

PL:PredicateList $ S:Substitution | Pr:Program > := Conf:Configuration

by Conf:Configuration using (cut{solveOne} ; solve) .

rewrites: 5 (1.83824%)

sd clauseWalk((nil).Program) := fail .

rewrites: 4 (1.47059%)

sd clauseWalk(P:Predicate :- PL2:CfPredicateList ; Pr:Program) := clause[

Pr2:Program <- Pr:Program] ; solve | clauseWalk(Pr:Program) [label

walk] .

rewrites: 16 (5.88235%)

20.3 Traps and known problems

We list some commonly encountered problems with Maude.

20.3.1 Associativity and idempotency

Remember that the attributes assoc and idem (see Section 4.4.1) cannot be used together in
any combination of attributes, because the appropriate matching and normalization algorithms
have not been developed yet.

This requirement is quietly enforced by ignoring the attribute idem where necessary.
Let us consider the following example, in which we wrongly declare an operator with the

attributes assoc and idem appearing together.

fmod WRONG-NAT-SET is

pr NAT .

sort WNatSet .

subsort Nat < WNatSet .

op none : -> WNatSet [ctor] .

op __ : WNatSet WNatSet -> WNatSet

[ctor assoc comm idem id: none] .

20.3. TRAPS AND KNOWN PROBLEMS 489

endfm

When we reduce a term like, e.g., 4 4 5 2, the duplication does not disappear, because
Maude has ignored the idempotency attribute; the remaining attributes are applied as usual.

Maude> red 4 4 5 2 .

result WNatSet: 2 4 4 5

We can solve this by adding explicitly an idempotency equation, as we have seen, for exam-
ple, in Section 7.13.2.

Combining idem with attributes other than assoc is all right. For example, the following
module combines idempotency with commutativity.

fmod COMM-IDEM-EX is

pr NAT .

sort CI .

subsort Nat < CI .

op f : CI CI -> CI [ctor comm idem] .

vars N M : Nat .

var C : CI .

op g : CI -> Nat .

eq g(f(N, M)) = 0 .

eq g(C) = 1 [owise] .

endfm

Maude> red f(2, 2) .

result NzNat: 2

Maude> red f(2, 3) == f(3, 2) .

result Bool: true

Notice that in this module, because of matching modulo commutativity and idempotency,
the first equation for g can be applied to a term such as, e.g., g(2). For example, we have the
following reductions:

Maude> red g(2) .

result Zero: 0

Maude> red g(f(2, f(2, 2))) .

result Zero: 0

Maude> red g(f(2, f(3, 4))) .

result NzNat: 1

20.3.2 Segmentation fault (core dumped)

This looks like a bug in Maude, but in fact it is a stack overflow (a real segmentation fault is
caught and reported as an “internal error”). On a Unix box you can find out the current limit
on your stack size with the (shell) command

limit stacksize

This is often set to 8192K by default, which is quite inappropriate for a highly recursive
system like Maude. You can set the stack size to a larger value with, for example,

490 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

limit stacksize 100M

or remove the limit altogether with

unlimit stacksize

Note that stack overflows are reported as Illegal instruction on both PowerPC- and
Intel-based Macs.

20.3.3 Bare variable lefthand sides

The use of a bare variable lefthand side for an equation, rule, or membership axiom may lead
to unexpected nontermination. The recommended place to use them is in statements declared
with the nonexec attribute, which are only going to be applied via a strategy language. Using
them in membership axioms is seductive, but very tricky. For example:

subsort Prime < Nat .

var N : Nat .

cmb N : Prime if favoritePrimeTest(N) .

will end up with the membership axiom and favoritePrimeTest being applied to every reduced
term of sort Nat, including those that arise during evaluation of favoritePrimeTest(N) with
likely nontermination.

20.3.4 Operator overloading and associativity

The situation where two ad-hoc overloaded operators have the same kinds in their arities
but different ones in their coarities causes a warning to be emitted, as already mentioned in
Section 3.6. For example, loading the file overloading-assoc-warning.maude containing the
module

fmod OVER-ASSOC-EX1 is

sorts Foo Bar .

op f : Foo -> Foo .

op f : Foo -> Bar .

endfm

causes the following warning:

Warning: "overloading-assoc-warning.maude", line 8 (fmod

OVER-ASSOC-EX1): declaration for f has the same domain kinds as

the declaration on "overloading-assoc-warning.maude", line 7

(fmod OVER-ASSOC-EX1) but a different range kind.

A similar warning is obtained in the case where the arities differ but might look the same
because of associativity, like in the following example (loaded as before):

fmod OVER-ASSOC-EX2 is

sort Foo .

op f : Foo Foo -> Foo [assoc] .

op f : Foo Foo Foo -> Foo .

endfm

Warning: "overloading-assoc-warning.maude", line 22

(fmod OVER-ASSOC-EX2): declaration for f clashes with

declaration on "overloading-assoc-warning.maude", line 21 (fmod

OVER-ASSOC-EX2) because of associativity.

20.3. TRAPS AND KNOWN PROBLEMS 491

20.3.5 Preregularity and equational attributes

We recall from Section 3.8 that Maude assumes that modules are preregular and generates
warnings when a module contains operator declarations that do not satisfy this property. This
means that for each possible combination of argument sorts the resulting term has a unique least
type, which is usually a sort but might also be the kind, depending on the operator declarations.
However, as also explained in Section 3.8, in the presence of equational attributes, such as assoc,
comm, id:, and idem (see Section 4.4.1), preregularity must be understood modulo the axioms
A declared by such attributes. That is, we want not just each term t, but also each equivalence
class [t]A to have a least sort. Therefore, there is an additional requirement for an operator
that is declared associative, namely, that the least type of a term should not depend on the
way nested operators are associated. Let us explain this situation in some detail.

The assoc attribute, stating that a binary operator is associative, appears usually associated
with declarations of operators whose arguments are both of the same sort, like, for example,

op _+_ : Nat Nat -> Nat [assoc] .

However, in the presence of subsorts and overloaded operators it also makes sense to have binary
operators whose arguments are not the same, but are related via subsorting; for example, to
make it explicit that the addition of a natural number to a nonzero natural number produces
a nonzero natural number, we can have an additional declaration

op _+_ : NzNat Nat -> NzNat [assoc] .

or also (see Section 4.4.6)

op _+_ : NzNat Nat -> NzNat [ditto] .

Thus, in general, the assoc attribute is allowed for binary operators such that the two
argument sorts and the result sort all belong to the same connected component. Therefore, it
is possible to consider a module like the following:

fmod NON-ASSOCIATIVE-EX is

sorts s1 s2 .

subsort s1 < s2 .

op f : s1 s2 -> s2 [assoc] .

op a : -> s1 .

eq f(a,a) = a .

endfm

If we try to reduce the term f(a,a), we get the following warning:

Maude> red f(a, a) .

Warning: sort declarations for associative operator f are

non-associative on 2 out of 27 sort triples. First such triple is

(s1, s1, s2).

reduce in NON-ASSOCIATIVE-EX : f(a, a) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result s1: a

Maude has checked the preregularity property on the associative operator f. It is enough
to check this property on each triple of types, and when it fails to hold Maude returns the first
such triple. In this example we have three possible types for each one of the two arguments and
also for the result, namely, the sorts s1 and s2, and the corresponding kind [s2], and therefore
we have 33 = 27 possible triples. Among those, the triple (s1, s1, s2) does not satisfy the
preregularity checking, because f(X:s1, X:s1) has sort s2, f(X:s1, X:s2) has sort s2, and
f(X:s2, X:s2) has kind [s2], but no sort; thus the flattened term f(X:s1, X:s1, X:s2)

492 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

could have either sort s2, by grouping the arguments as f(X:s1, f(X:s1, X:s2)), or kind
[s2], by grouping the arguments as f(f(X:s1, X:s1), X:s2)). To sum up, the sort structure
for the operator f is said to be non-associative on the triple (s1, s1, s2).

Two ways of avoiding this undesirable situation are the following: either having a unique
declaration at the top sort with both arguments of the same sort,

fmod ASSOCIATIVE-EX1 is

sorts s1 s2 .

subsort s1 < s2 .

op f : s2 s2 -> s2 [assoc] .

op a : -> s1 .

eq f(a,a) = a .

endfm

Maude> red f(a, a) .

reduce in ASSOCIATIVE-EX1 : f(a, a) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result s1: a

or adding enough declarations to cover all possible combinations of arguments; in this case only
one more declaration is enough, as follows:

fmod ASSOCIATIVE-EX2 is

sorts s1 s2 .

subsort s1 < s2 .

op f : s2 s2 -> s2 [assoc] .

op f : s1 s2 -> s2 [assoc] .

op a : -> s1 .

eq f(a,a) = a .

endfm

Maude> red f(a, a) .

reduce in ASSOCIATIVE-EX2 : f(a, a) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result s1: a

When an associative operator is also declared to be commutative using the comm atribute,
Maude computes the commutative completion (switching the order of the argument sorts) of
the given operator declarations before checking preregularity.

In the case of the id: and idem attributes, preregularity modulo those axioms requires that
all collapses, that is, all passages from a term f(t, e) to an equivalent term t by application of an
identity equation f(x, e) = x; or from a term f(t, t) to an equivalent term t by application of an
idempotency equation f(x, x) = x (where in both cases the top function symbol f disappears),
should be such that the least sort of the resulting term t is smaller than or equal to the least sort
of f(t, e) (resp. f(t, t)). A term that can collapse from one sort to a greater or incomparable
sort breaks the sort calculations and violates preregularity modulo such axioms. Therefore,
syntactic conditions ensuring that a collapse is also into a lesser or equal sort are checked by
Maude for both the id: and idem attributes.

20.3.6 Collapse theories

Using id: or idem attributes means that you are (conceptually) working with infinite equiv-
alence classes, and that many lefthand side patterns will match in unexpected ways. Unlike
OBJ3, Maude has true collapse matching algorithms, rather than identity completion, and it
does not try to omit problematic matches. Consider for example the module

20.3. TRAPS AND KNOWN PROBLEMS 493

fmod COLLAPSE-ID-EX is

sort Foo .

ops a e : -> Foo .

op f : Foo Foo -> Foo [left id: e] .

var X : Foo .

eq f(X, a) = ...

endfm

Then we have

a = f(e, a) = f(e, f(e, a)) = ...

In particular, the pattern f(X, a) matches a with X ← e, leading to possible nontermina-
tion. You should be wary of having an operator with an identity element as the top symbol
for a lefthand side. One useful trick when you need a pattern like f(X, a) is to use a pattern
f(Y, a) where Y has a sort lower than that of the identity element. For example,

fmod COLLAPSE-NAT-EX is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat .

op s : Nat -> NzNat .

op + : Nat Nat -> Nat [assoc comm id: 0] .

op + : Nat NzNat -> Nat [assoc comm id: 0] .

var X : Nat .

var Y : NzNat .

eq +(s(X), Y) = s(+(X, Y)) .

endfm

Here +(s(X), Y) cannot match s(0) because, although s(0) = +(s(0), 0) by the identity
attribute, Y cannot match 0.

Rewriting with the idem attribute is even riskier. For example,

fmod COLLAPSE-IDEM-EX is

sort Foo .

ops a b : -> Foo .

op f : Foo Foo -> Foo [idem] .

var X : Foo .

eq a = b .

endfm

We then have

a = f(a, a) = f(f(a, a), f(a, a)) = ...

Thus, if a can be rewritten by an equation, then any number of rewrites can be done by using
the idem axiom to create new copies of a. In fact, the current implementation would choose
the obvious rewrite and just produce b, but this should not be relied upon; COLLAPSE-IDEM-EX
is a nonterminating system. The only safe way to use idem is as follows. Whenever a connected
component is the domain and range of an operator having the idem attribute, then its sorts
are poisoned. Terms of poisoned sorts must never rewrite other than by rules under the control
of a strategy, that is, using metalevel descent functions. Such terms must be built out of free
constructors—operators that may have equational attributes such as comm, but may not have
equations with these operators at the top. Of course, it is ok to have defined functions that
work on such constructor terms; it is just that the terms themselves may not rewrite.

494 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

20.3.7 One-sided identities and associativity

When the associativity axiom is combined with a one-sided identity axiom some unexpected
matching properties result. Consider the module:

fmod ASSOC-ID-EX is

sort Foo .

ops a b 1f : -> Foo .

op f : Foo Foo -> Foo [assoc left id: 1f] .

var X Y : Foo .

endfm

Then (see Section 23.3 for matching commands),

match f(X, Y) <=? f(a, b) .

yields three solutions:

Solution 1

X:Foo --> 1f

Y:Foo --> f(a, b)

Solution 2

X:Foo --> a

Y:Foo --> b

Solution 3

X:Foo --> f(a, 1f)

Y:Foo --> b

whereas the naive user may not have expected the last solution.
Matching with extension can be even more surprising. The command

xmatch f(X, Y) <=? f(a, b) .

yields five solutions:

Solution 1

Matched portion = f(a, 1f)

X:Foo --> a

Y:Foo --> 1f

Solution 2

Matched portion = f(a, 1f)

X:Foo --> f(a, 1f)

Y:Foo --> 1f

Solution 3

Matched portion = (whole)

X:Foo --> 1f

Y:Foo --> f(a, b)

Solution 4

Matched portion = (whole)

X:Foo --> a

Y:Foo --> b

20.3. TRAPS AND KNOWN PROBLEMS 495

Solution 5

Matched portion = (whole)

X:Foo --> f(a, 1f)

Y:Foo --> b

Here the first two solutions match a portion f(a, 1f) of the subject that was not apparent
from the original problem. However, if one considers the equivalence class of f(a, b) they are
valid solutions that are necessary for correct simulation of (conditional) rewriting on equivalence
classes.

20.3.8 Memberships for associative operators

Membership axioms can interact with assoc or iter operator attributes in undesirable ways.
The reason is that, for completeness, the operator declarations would have to be tried on

every subterm of every member of the equivalence class, and this is not done (for efficiency
reasons) in the current implementation, giving rise to some warnings.

For associative operators declared at the sort level, membership axioms will be applied
only at the top, they will not be applied to subterms in the process of applying an operator
declaration to compute the sort. For example in the following module

fmod ASSOC-MB-EX1 is

sort Foo .

op f : Foo Foo -> Foo [assoc comm] .

op e : -> [Foo] .

ops a b c d : -> Foo .

mb f(a, e) : Foo .

endfm

the membership axiom will not be used to lower the sort of f(a, f(b, e)) to foo as it does
not match at the top.

Recall from Sections 3.9.3 and 4.8 that terms built with associative operators can be written
in flattened form. This is the notation used for f-terms in the following examples.

Maude> red f(a, b, e) .

Warning: membership axioms are not guaranteed to work correctly for

associative symbol f as it has declarations that are not at the

kind level.

reduce in ASSOC-MB-EX1 : f(e, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, a, b)

Maude> red f(a, b, e, a) .

reduce in ASSOC-MB-EX1 : f(e, a, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, a, a, b)

Maude> red f(e, b, e, a) .

reduce in ASSOC-MB-EX1 : f(e, e, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, b)

Maude> red f(a, b, e, e, a) .

reduce in ASSOC-MB-EX1 : f(e, e, a, a, b) .

496 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, a, b)

Maude> red f(a, a, b, e, e, a) .

reduce in ASSOC-MB-EX1 : f(e, e, a, a, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, a, a, b)

Here the intuition is that each e forces the result to the kind level, unless there is an a

to bring it back down. Unfortunately, for f(a, b, e) we would need to use the membership
axiom on a proper subterm, and then use the declaration at the top to arrive at the sort Foo,
and this is not allowed.

Note that the warning produced by Maude is a per module warning and is only printed
once, when the first reduction or rewriting command is given in the module.

The module ASSOC-MB-EX1 above can be rewritten so that sort computations work as ex-
pected as follows:

fmod ASSOC-MB-EX2 is

sort Foo .

op f : [Foo] [Foo] -> [Foo] [assoc comm] .

op e : -> [Foo] .

ops a b c d : -> Foo .

mb f(X:Foo, Y:Foo) : Foo .

mb f(a, e) : Foo .

endfm

Maude> red f(a, b, e) .

reduce in ASSOC-MB-EX2 : f(e, a, b) .

rewrites: 2 in 0ms cpu (1ms real) (~ rews/sec)

result Foo: f(e, a, b)

Maude> red f(a, b, e, a) .

reduce in ASSOC-MB-EX2 : f(e, a, a, b) .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e, a, a, b)

Maude> red f(e, b, e, a) .

reduce in ASSOC-MB-EX2 : f(e, e, a, b) .

rewrites: 6 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, b)

Maude> red f(a, b, e, e, a) .

reduce in ASSOC-MB-EX2 : f(e, e, a, a, b) .

rewrites: 11 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e, e, a, a, b)

Maude> red f(a, a, b, e, e, a) .

reduce in ASSOC-MB-EX2 : f(e, e, a, a, a, b) .

rewrites: 12 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e, e, a, a, a, b)

20.3. TRAPS AND KNOWN PROBLEMS 497

Here the operator declaration is at the kind level, and the effect of the declaration of f in
ASSOC-MB-EX1 is obtained by an extra membership axiom.4

Let us see another example of this situation, starting with a module specifying non-empty
lists of natural numbers.

fmod SIMPLE-NAT-LIST is

protecting NAT .

sort NatList .

subsort Nat < NatList .

op __ : NatList NatList -> NatList [assoc] .

endfm

It seems natural to specify sorted lists of natural numbers by importing SIMPLE-NAT-LIST

and then defining a subsort of NatList.

fmod NAIVE-SORTED-NAT-LIST is

protecting SIMPLE-NAT-LIST .

sort SortedNatList .

subsort Nat < SortedNatList < NatList .

vars I J : Nat .

var SNL : SortedNatList .

cmb I J : SortedNatList if I <= J .

cmb I J SNL : SortedNatList if I <= J /\ J SNL : SortedNatList .

endfm

Maude> red 0 1 2 3 4 5 6 7 8 9 .

Warning: membership axioms are not guaranteed to work correctly for

associative symbol __ as it has declarations that are not at the

kind level.

reduce in NAIVE-SORTED-NAT-LIST : 0 1 2 3 4 5 6 7 8 9 .

rewrites: 1354 in 0ms cpu (0ms real) (~ rews/sec)

result SortedNatList: 0 1 2 3 4 5 6 7 8 9

To avoid this, we can rewrite the module above so that we only use kind-level operator
declarations (notice the form of the arrow) and convert all sort-level operator declarations into
memberships.

fmod NAT-LIST-KIND is

protecting NAT .

sort NatList .

subsort Nat < NatList .

op __ : NatList NatList ~> NatList [assoc] .

mb I:NatList J:NatList : NatList .

endfm

fmod SORTED-NAT-LIST-KIND is

protecting NAT-LIST-KIND .

sort SortedNatList .

subsort Nat < SortedNatList < NatList .

4Maude 1 did not allow multiple membership axioms on associative operators. In Maude 2 this works,
although it will be extremely inefficient for large terms, since matching the extra membership essentially amounts
to expanding out the equivalence class.

498 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

vars I J : Nat .

var SNL : SortedNatList .

cmb I J : SortedNatList if I <= J .

cmb I J SNL : SortedNatList if I <= J /\ J SNL : SortedNatList .

endfm

Maude> red 0 1 2 3 4 5 6 7 8 9 .

reduce in SORTED-NAT-LIST-KIND : 0 1 2 3 4 5 6 7 8 9 .

rewrites: 1354 in 0ms cpu (0ms real) (~ rews/sec)

result SortedNatList: 0 1 2 3 4 5 6 7 8 9

20.3.9 Memberships for iterated operators

In analogy to interaction of associative operators and membership declarations, terms con-
structed with a stack of iterated operators may not be assigned the expected sort when it is
necessary to apply a membership axiom to a subterm in order to infer the sort. Again, if
an iter operator is declared at the sort level, Maude will not apply membership axioms to
subterms in order to calculate the sort of a subterm before attempting to apply the operator
declaration to calculate the sort of the whole term. As an example, consider the following
module:

fmod ITER-MB-EX1 is

sort Foo .

op f : Foo -> Foo [iter] .

op e : -> [Foo] .

mb f(e) : Foo .

endfm

Maude> red f(e) .

Warning: membership axioms are not guaranteed to work correctly for

iterated symbol f as it has declarations that are not at the

kind level.

reduce in ITER-MB-EX1 : f(e) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e)

Maude> red f(f(e)) .

reduce in ITER-MB-EX1 : f^2(e) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f^2(e)

Maude> red f(f(f(e))) .

reduce in ITER-MB-EX1 : f^3(e) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f^3(e)

Here the intuition is that e is at the kind level, but f(e) is not. Unfortunately, for f(f(e))
we would need to use the membership axiom on a proper subterm and then use the declaration
at the top to arrive at the sort Foo, and declarations applying above membership axioms for
iterated operators are not allowed.

Again, recall that the warning that membership axioms may not work is only given once
per module. Here it just happens that it is given in response to a reduction command that
does give the right answer.

20.3. TRAPS AND KNOWN PROBLEMS 499

The example can be rewritten so that membership axioms can be used to compute the
desired sort as follows:

fmod ITER-MB-EX2 is

sort Foo .

op f : [Foo] -> [Foo] [iter] .

op e : -> [Foo] .

mb f(X:Foo) : Foo .

mb f(e) : Foo .

endfm

Maude> red f(e) .

reduce in ITER-MB-EX2 : f(e) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e)

Maude> red f(f(e)) .

reduce in ITER-MB-EX2 : f^2(e) .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f^2(e)

Maude> red f(f(f(e))) .

reduce in ITER-MB-EX2 : f^3(e) .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f^3(e)

Here the operator declaration is at the kind level, and as in the associativity example in the
previous section, the effect of the old declaration is obtained by an extra membership axiom.
Note that using membership axioms in this way loses the efficiency for big towers of operators,
which is the whole point of the iter theory.

20.3.10 Ambiguity in print attribute items

Since Maude has few restrictions on variable names, it is possible to introduce ambiguity with
the print attribute by using strings or attribute names as variables. Consider, for example,
the following module, where the string "here" and the keyword metadata are also declared as
variables.

fmod PRINT-ATTR-AMBIGUOUS is

sort Foo .

op a : -> Foo .

ops f g h : Foo -> Foo .

vars metadata "here" : Foo .

eq f("here") = g("here") [print "here"] .

eq g(metadata) = h(metadata)

[print "metadata = " metadata "g->h equation"] .

endfm

In the print attribute of the first equation, Maude cannot decide whether "here" is a string
constant or a variable. Similarly, in the print attribute of the second equation, Maude will
not be able to decide whether metadata is a variable or a keyword. Under these circumstances,
Maude will output warnings about the multiple parses and then make an undefined choice
between them.

500 CHAPTER 20. DEBUGGING AND TROUBLESHOOTING

Warning: <standard input>, line 6 (fmod PRINT-ATTR-AMBIGUOUS):

multiple distinct parses for statement

eq f ("here") = g ("here") [print "here"] .

Warning: <standard input>, line 7 (fmod PRINT-ATTR-AMBIGUOUS):

multiple distinct parses for statement

eq g (metadata) = h (metadata)

[print "metadata = " metadata "g->h equation"] .

In this particular example, the equations work but, as a consequence of the ambiguity, the user
does not get the expected information provided by the print attribute.

Maude> set print attribute on .

Maude> red f(g(a)) .

reduce in PRINT-ATTR-AMBIGUOUS : f(g(a)) .

metadata =

h(a)

metadata =

rewrites: 3 in 0ms cpu (0ms real) (25210 rewrites/second)

result Foo: h(h(a))

Part II

Full Maude

501

Chapter 21

Full Maude: Extending Core
Maude

During the development of the Maude system we have put special emphasis on the creation
of metaprogramming facilities to allow the generation of execution environments for a wide
variety of languages and logics. The first most obvious area where Maude can be used as
a metalanguage is in building language extensions for Maude itself. Our experience in this
regard—first reported in [49], and further documented in [50, 44, 45, 51]—is very encouraging.

We have been able to define in Core Maude a language, that we call Full Maude, with
all the features of Maude plus notation for object-oriented programming, module expressions
specifying tuples of any size, etc. Although the Maude distribution has included the specifica-
tion/implementation of Full Maude since it was first distributed in 1999, Core Maude and Full
Maude are now closer than ever before. Many of the features now available in Core Maude,
like the strategy language, unification and narrowing, parameterized modules and views, and
module expressions like summation, renaming and instantiation, were available in Full Maude
long before they were available in Core Maude [49]. In fact, Full Maude has not only been a
complement to Core Maude, but also a vehicle to experiment with new language features. Once
these features have been mature enough to be implemented in the core language, we have made
the effort to do so. Similarly, it is very likely that those features in Full Maude which are not
yet available in Core Maude will become part of it sooner or later, and that new features will
be added to Full Maude for purposes of language design and experimentation. This applies not
only to Full Maude, but also to further language extensions based on Full Maude such as the
strategy language proposed in [98], whose Core Maude implementation is currently underway.

Full Maude implements a complete user interface for the extended language. Using the
META-LEVEL and other predefined modules, we have been able to define in Core Maude all the
additional functionality required for parsing, evaluating, and pretty-printing modules in the
extended language, and also for input/output interaction, as already discussed in Chapter 18.
Thanks to the efficient implementation of the rewrite engine, the parser, and the META-LEVEL

module, such a language extension executes with reasonable efficiency.

Full Maude contains Core Maude as a sublanguage, so that Core Maude modules can also
be entered at the Full Maude level. However, currently there are a few syntactic restrictions
that have to be satisfied by modules and commands in order to be acceptable inputs at the
Full Maude level, including the fact that Full Maude inputs, for both modules and commands,
must be enclosed in parentheses. These syntactic restrictions are explained in Section 21.6.

The structure of this chapter is as follows. Section 21.1 gives instructions on how to load

503

504 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

and use Full Maude, how to enter modules, reduce terms, trace executions, etc. Section 21.2
explains how modules in Core Maude’s database may be used from Full Maude. Section 21.3
introduces the additional module operations that are available in Full Maude. Section 21.4
explains how to move terms and modules up and down reflection levels. Finally, Section 21.6
enumerates the main differences between Full Maude and Core Maude.

21.1 Running Full Maude

Since the execution environment for Full Maude has been implemented in Core Maude, to
initialize the system so that we can start using it the first thing we have to do is to load the
FULL-MAUDE module in the system. Assuming that the file full-maude.maude, which contains
the executable specification of Full Maude, is located in the current directory (or in a place
where Maude can locate it, see Section 2.2), we just need to type the corresponding in or load
command in the Maude prompt:

Maude> load full-maude.maude

Full Maude 3.1 Oct 12 2020

The Full Maude system is then loaded, and we can use it as any other module.
Since Maude can take file names as arguments when started, assuming one is working on a

Linux platform, one may also run Maude as follows:

~/maude-linux/bin$./maude.linux64 full-maude.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 3.1 built: Oct 12 2020 20:12:31

Copyright 1997-2020 SRI International

Tue Oct 13 12:00:00 2020

Full Maude 3.1 Oct 12 2020

At the end of this file full-maude.maude there is the command

loop init .

which initializes the system just after loading the specification. This command starts the read-
eval-print loop (see Section 18.4) to allow the interaction with the user by entering modules,
theories, views, and commands, and to maintain a database in which to store all the modules,
theories and views being introduced. The term init is a constant of sort System, in the
specification of Full Maude, standing for the initial state of the Full Maude database.

Typing control-C may result in the loop being broken, and with it the current execution of
Full Maude. Maude may try to recover the loop by itself, but if it is not successful we must
reinitialize it with the loop command. That is, we need to type

Maude> loop init .

This command will be successful only if the full-maude.maude file is loaded and the
FULL-MAUDE module is the default one. If it is not the default one, we may select it with
the select command (see Section 23.15):

Maude> select FULL-MAUDE .

Maude> loop init .

21.1. RUNNING FULL MAUDE 505

The loop init command may be omitted here: Maude will try to restart the loop, using
the last loop command, if something is written in parentheses henceforth.

Any module, theory, view, or command intended for Full Maude has to be enclosed in
parentheses. Since Core Maude is running underneath Full Maude—indeed, it now provides
what might be called the system programming level—it will handle any input not enclosed in
parentheses. This allows the possibility of using both systems at the same time. Thanks to this,
we may use many Core Maude commands when interacting with Full Maude. For example,
we may use Core Maude trace or profile facilities on Full Maude specifications, may load files,
etc. However, this may lead to some confusion, and we should take care of putting parentheses
around those pieces of text intended for Full Maude.

A Core Maude module, such as those presented in previous sections, can be entered in Full
Maude by enclosing it in parentheses. For example, a module PATH1 can be entered to Full
Maude as follows:

Maude> (fmod PATH is

sorts Node Edge .

ops source target : Edge -> Node .

sort Path .

subsort Edge < Path .

op _;_ : [Path] [Path] -> [Path] .

var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R

= P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

ops source target : Path -> Node .

ceq source(P) = source(E) if E ; S := P .

ceq target(P) = target(S) if E ; S := P .

protecting NAT .

ops n1 n2 n3 n4 n5 : -> Node .

ops a b c d e f : -> Edge .

op length : Path -> Nat .

eq length(E) = 1 .

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

eq source(a) = n1 .

eq target(a) = n2 .

eq source(b) = n1 .

eq target(b) = n3 .

eq source(c) = n3 .

eq target(c) = n4 .

eq source(d) = n4 .

eq target(d) = n2 .

eq source(e) = n2 .

eq target(e) = n5 .

1Some fragments of this module have been discussed in Sections 3.5 and 4.3.

506 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

eq source(f) = n2 .

eq target(f) = n1 .

endfm)

rewrites: 5438 in 10ms cpu (157ms real) (543800 rews/sec)

Introduced module PATH

As in Core Maude, we can enter any module or command by writing it directly after the
prompt, or by having it in a file and then using the in or load commands. Also as in Core
Maude, we can write several Full Maude modules or commands in a file and then enter all of
them with a single in or load command (without parentheses), but each of the modules or
commands has to be enclosed in parentheses.

When entering a module, as above, Maude gives us information about the rewrites executed
to handle such a module. This is the number of rewrites done by Full Maude to evaluate
the module being entered. In the same way, every time we enter a command, although in
most cases it finally makes a call to Core Maude, Full Maude needs to perform some additional
rewrites. Thus, as we will see below, the number of rewrites given by the system for Full Maude
commands includes the reductions due to the evaluation of the command and those due to the
execution of the command itself.

We can perform reduction or rewriting using a syntax for commands such as that of Core
Maude.

Maude> (red in PATH : b ; (c ; d) .)

rewrites: 893 in 30ms cpu (21ms real) (29766 rewrites/second)

reduce in PATH :

b ;(c ; d)

result Path :

b ;(c ; d)

Maude> (red length(b ; (c ; d)) .)

rewrites: 474 in 10ms cpu (2ms real) (47400 rewrites/second)

reduce in PATH :

length(b ;(c ; d))

result NzNat :

3

Maude> (red a ; (b ; c) .)

rewrites: 587 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

a ;(b ; c)

result [Path] :

a ;(b ; c)

Maude> (red source(a ; (b ; c)) .)

rewrites: 616 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

source(a ;(b ; c))

result [Node] :

source(a ;(b ; c))

rewrites: 622 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

target((a ; b); c)

result [Node] :

target((a ; b); c)

21.1. RUNNING FULL MAUDE 507

Maude> (red length(a ; (b ; c)) .)

rewrites: 579 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

length(a ;(b ; c))

result [Nat] :

length(a ;(b ; c))

Note the number of rewrites. These figures include, as said above, the rewrites accomplished
by Full Maude in the processing of the inputs and outputs, plus the number of rewrites of the
reduction itself. For example, the first two reductions above in Core Maude would produce the
following output:

Maude> red in PATH : b ; (c ; d) .

reduce in PATH : b ; (c ; d) .

rewrites: 7 in 0ms cpu (23ms real) (~ rews/sec)

result Path: b ; (c ; d)

Maude> red length(b ; (c ; d)) .

reduce in PATH : length(b ; (c ; d)) .

rewrites: 12 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: 3

Tracing, debugging, profiling, and the other facilities available in Core Maude (see Sec-
tion 20.1) are also available in Full Maude. Since these facilities are provided by Core Maude,
the corresponding commands for managing them must be written without parentheses. For
example, we can do the following:

Maude> set trace on .

Maude> set trace mb off .

Maude> set trace condition off .

Maude> set trace substitution off .

Maude> (red length(b ; c) .)

*********** trial #1

ceq length(E:Edge ; P:Path) = length(P:Path) + 1

if E:Edge ; P:Path : Path .

*********** solving condition fragment

E:Edge ; P:Path : Path

*********** success for condition fragment

E:Edge ; P:Path : Path

*********** success #1

*********** equation

ceq length(E:Edge ; P:Path) = length(P:Path) + 1

if E:Edge ; P:Path : Path .

length(b ; c)

--->

length(c) + 1

*********** equation

eq length(E:Edge) = 1 .

length(c)

--->

1

*********** equation

(built-in equation for symbol _+_)

1 + 1

--->

508 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

2

rewrites: 444 in 0ms cpu (7ms real) (~ rewrites/second)

reduce in PATH :

length(b ; c)

result NzNat :

2

One should always bear in mind that Full Maude is part of the specification being run. The
specification of Full Maude is loaded in the system, and as said above, some of the rewrites
taking place are the result of applying equations or rules in these modules. In the case of
tracing, the rewrites done by Full Maude are not shown thanks to one of the trace commands
available, namely trace exclude (see Sections 20.1.1 and 23.8). With such a command we
may exclude particular modules from being traced. In particular, the full-maude.maude file
includes the command trace exclude FULL-MAUDE, where FULL-MAUDE is the top module of
the specification of Full Maude.

21.2 Using Core Maude modules in Full Maude

Full Maude maintains a module database independent from the one used by Core Maude to
store the modules entered into it. In fact, this module database is a Maude term stored as
part of the state in the LOOP-MODE input/output object. Therefore, a module entered into Core
Maude can only import modules previously entered into Core Maude. However, Full Maude
modules can import modules previously entered either into Full Maude or into Core Maude.
Basically, if Full Maude cannot find a module in its own database, it looks into Core Maude’s
module database to find it.

When metaprogramming, the system behaves differently. In Core Maude, a metamodule
(that is, the metarepresentation of a module) can include a module at the object level. In
Full Maude, however, metamodules cannot import modules entered into Full Maude and can
only import modules entered into Core Maude. Note that Full Maude is implemented using
reflection, and that in the end all modules are handled by Core Maude, which is not aware of
Full Maude’s database.

Notice also that loading a Core Maude module once Full Maude is running will break the
read-eval-print loop (see Section 18.4). Therefore, one should enter such modules before starting
Full Maude. Assuming there is a file path.maude containing the Core Maude module PATH, we
will have the following behavior if we enter it into Full Maude.

Maude> load path.maude

Maude> (red in PATH : b ; (c ; d) .)

Warning: no loop state.

Advisory: attempting to reinitialize loop.

Warning: "full-maude.maude", line 13692: bad token init

Warning: "full-maude.maude", line 13692: no parse for term.

Advisory: unable to reinitialize loop.

As said above, when the loop gets broken, as in this case, we must select the FULL-MAUDE

module and restart the loop. We may now do the following:

Maude> select FULL-MAUDE .

Maude> loop init .

Full Maude 3.1 Oct 12 2020

21.3. ADDITIONAL MODULE OPERATIONS IN FULL MAUDE 509

Maude> (red in PATH : b ; (c ; d) .)

reduce in PATH :

b ;(c ; d)

result Path :

b ;(c ; d)

Notice that with a loop init command Full Maude is restarted with an empty database.
That is, any Full Maude module entered before the reinitialization will have to be reentered
again. In this case, PATH is a Core Maude module, which is being executed in Full Maude.
Since it is not in Full Maude’s database, Full Maude looks into Core Maude’s database and then
executes the command in it. This functionality is useful for using any of the predefined modules,
but also other modules which are not part of Maude’s prelude. For example, for using inside
Full Maude the model checker, which although predefined is not part of the prelude.maude

file, we just need to load the model-checker.maude file before starting the loop. For example,
we can do the following:

~/maude-linux/bin$./maude.linux64 model-checker.maude full-maude.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 3.1 built: Oct 12 2020 20:12:31

Copyright 1997-2020 SRI International

Tue Oct 13 12:00:00 2020

Full Maude 3.1 Oct 12 2020

Maude> (mod CHECK-RESP is

protecting MODEL-CHECKER .

...

endm)

Maude> (red p(0) |= (<> Qstate) .)

See Section 22.7 for a concrete example of the use of Maude’s model checker with Full Maude
modules.

21.3 Additional module operations in Full Maude

As for Core Maude, in Full Maude we can use the keywords protecting, extending, and
including (or pr, ex, and inc in abbreviated form) to define structured specifications, as
well as summation, renaming, and instantiation operations on parameterized modules (see
Chapter 6). All the predefined modules introduced in Chapter 7, plus the module META-LEVEL

and its submodules, described in Chapter 17, are also available in Full Maude.
In addition to the module operations available in Core Maude, Full Maude supports the

following extensions:

• Tuple and power expressions which, given any nonzero natural number, generate param-
eterized modules specifying tuples and powers of the corresponding size.

TUPLE[〈NonzeroNaturalNumber〉]\{〈ViewExpression〉\}
POWER[〈NonzeroNaturalNumber〉]\{〈ViewExpression〉\}

See Section 21.3.1.

510 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

• Object-oriented modules, extending all the module operations available in Core Maude to
this new type of modules. Thus, in Full Maude we may rename object-oriented modules,
with renamings of classes, attributes, and messages, or use object-oriented modules in the
summation of modules. Full Maude also supports object-oriented theories, views from
object-oriented theories to object-oriented modules, and object-oriented parameterized
modules, as well as the instantiation of such object-oriented parameterized modules. We
devote Chapter 22 to the study of object-oriented modules.

As in Core Maude, a module or theory importing some combination of modules or theories,
given by module expressions, can be seen as a structured module with more or less complex
relationships among its component submodules. For execution purposes, however, we typically
want to convert this structured module into an equivalent unstructured module, that is, into a
“flattened” module without submodules; this flattened module will then be compiled into the
Maude rewrite engine. By systematically using the metaprogramming capabilities of Maude,
we can both evaluate module expressions into structured module hierarchies and flatten such
hierarchies into unstructured modules for execution. All such module operations are defined
by equations that operate on the metalevel term representations of modules. This is essentially
the idea behind the implementation of Full Maude in Maude.

In Full Maude, the use of module expressions is somewhat more general than in Core Maude.
A Full Maude module expression can be used in any place where a module name is expected.
Thus, as in Core Maude, in Full Maude, module expressions can be used as:

• arguments of a protecting, extending, or including importation,

• the source or target of a view, or

• the parameter of a module, provided the top level is a theory.

Furthermore, in Full Maude, they can also be used, e.g., to express the module in which a red

or rew command will be executed,

Maude> (red in BOOL * (op true to T, op false to F) : T or F .)

result Bool :

T

or as argument of any other command requiring a module name,

Maude> (show ops LIST{Nat} .)

op $reverse : List{Nat}List{Nat}-> List{Nat}.

op $size : List{Nat}Nat -> Nat .

op append : List{Nat}List{Nat}-> List{Nat}.

op append : List{Nat}NeList{Nat}-> NeList{Nat}.

op append : NeList{Nat}List{Nat}-> NeList{Nat}.

...

Of course, this works with any module, and not only with predefined modules. For example, let
us do the same with the instantiation of the SET-MAX module presented in Section 6.3.4 (which
we assume is in file set-max.maude) with the view IntAsToset described in Section 6.3.2.
Although we can use Core Maude modules in Full Maude, we do not have access to user-defined
Core Maude views from Full Maude. Any such view must be entered into Full Maude before
it is used in a module instantiation. Note that although Core Maude modules are implicitly
entered into Full Maude’s database, they are recompiled, and therefore, any view required for
recompiling the corresponding module must also be entered. The evaluation of the module
expression SET-MAX{IntAsToset} requires views TOSET and IntAsToset.

21.3. ADDITIONAL MODULE OPERATIONS IN FULL MAUDE 511

Maude> load set-max.maude

Maude> select FULL-MAUDE .

Maude> loop init .

Full Maude 3.1 Oct 12 2020

Maude> (view TOSET from TRIV to TOSET is

sort Elt to Elt .

endv)

Introduced view TOSET

Maude> (view IntAsToset from TOSET to INT is

sort Elt to Int .

endv)

Introduced view IntAsToset

Maude> (red in SET-MAX{IntAsToset} : max((5, 4, 8, 4, 6, 5)) .)

result NzNat :

8

Similarly, after entering the Full Maude version of the RingToRat view, we can reduce the same
expression we reduced in Section 6.3.4 as follows:

Maude> (red in RAT-POLY{Qid} :

(((2 / 3) ((’X ^ 2) (’Y ^ 3)))

++ ((7 / 5) ((’Y ^ 2) (’Z ^ 5))))

(((1 / 7) (’U ^ 2)) ++ (1 / 2)) .)

result Poly{RingToRat,Qid} :

(1/3(’X ^ 2)’Y ^ 3)

++ (1/5(’U ^ 2)(’Y ^ 2)’Z ^ 5)

++ (2/21(’U ^ 2)(’X ^ 2)’Y ^ 3)

++ (7/10(’Y ^ 2)’Z ^ 5)

As we will see below, a module expression can also be used as the parameter of a view,
provided the top level is a theory.

21.3.1 The tuple and power module expressions

The evaluation of an n-tuple module expression consists in the generation of a parameterized
functional module with the number of TRIV parameters specified by the argument n. A sort
for tuples of such size, and the corresponding constructor (,...,) and selector operators
p1 , ..., pn , are also defined. For example, the module expression TUPLE[2] automatically
generates as result the following module (notice the backquotes in the declaration of the tuple
constructor).

(fmod TUPLE[2]{C1 :: TRIV, C2 :: TRIV} is

sorts Tuple{C1, C2} .

op ‘(_‘,_‘) : C1$Elt C2$Elt -> Tuple{C1, C2} [ctor].

op p1_ : Tuple{C1, C2} -> C1$Elt .

op p2_ : Tuple{C1, C2} -> C2$Elt .

var E1 : C1$Elt .

var E2 : C2$Elt .

eq p1(E1, E2) = E1 .

eq p2(E1, E2) = E2 .

endfm)

512 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

In the Clear [21] and OBJ [79] family of languages, module operations take theories, modules,
and views, and return new theories and modules (see Chapter 6); on the other hand, the
TUPLE[_] operation takes a nonzero natural number n and returns a parameterized TUPLE[n]
module; this is impossible to achieve with the Clear/OBJ repertoire of module operations. Even
though an n-tuple module expression is in principle of a completely different nature from the
usual Clear/OBJ module operations, the way Full Maude handles it is the same as the way
it handles any other module expression. Its evaluation produces a new unit, a parameterized
functional module in this case, with the module expression as its name.

Suppose that we want to specify a library in which we have the information on the books in
a record structure with the title, author, year of publication, publisher, and number of copies
available. We may use a specification beginning as follows:

(fmod LIBRARY is

pr TUPLE[5]{String, String, Nat, String, Nat}

* (op p1_ to title,

op p2_ to author,

op p3_ to year,

op p4_ to publisher,

op p5_ to copies) .

---- ...

endfm)

The particular case of a tuple in which all component sorts are equal is provided by the
n-power module expression. For example, the module expression POWER[5] automatically gen-
erates as result the following module:

(fmod POWER[5]{X :: TRIV} is

protecting TUPLE[5]{X, X, X, X, X}

* (sort Tuple{X, X, X, X, X} to Power{X}) .

endfm)

We can use the power module expression in any place where a module name is expected,
like in a reduction

Maude> (red in POWER[10]{Nat} : p5 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) .)

result NzNat :

4

or in an importation to build other modules:

(fmod PERSON-RECORD is

pr POWER[3]{String}

* (sort Tuple{String, String, String} to PersonRecord,

op p1_ to firstname,

op p2_ to lastname,

op p3_ to address) .

op fullName : PersonRecord -> String .

vars F L A : String .

eq fullName((F, L, A)) = F + " " + L .

endfm)

Maude> (red fullName(("John", "Smith", "Maude Ave")) .)

result String :

"John Smith"

21.4. MOVING UP AND DOWN BETWEEN REFLECTION LEVELS 513

21.4 Moving up and down between reflection levels

The functions provided by Core Maude for moving up and down reflection levels (see Sec-
tion 17.6.1) are not very useful in Full Maude. Although they are available as part of the
module META-LEVEL, they take as one of their arguments the name of a module entered into
Core Maude. Since the databases of modules are different, these functions work in Full Maude
only for Core Maude predefined modules. Full Maude provides its own functions upTerm and
upModule for moving, respectively, terms and modules up reflection levels, and an additional
down command which allows moving terms down reflection levels.

Let us consider the following module for the examples in the coming sections.

(fmod NAT-PLUS is

sort Nat .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm id: 0] .

vars N M : Nat .

eq s N + s M = s s (N + M) .

endfm)

In what follows we will use the notation t and M to refer to the metarepresentations of a
term t and a module M , respectively. For example, we will write the metarepresentation of 0

+ s 0 as 0 + s 0 instead of

’_+_[’0.Nat, ’s_[’0.Nat]]

21.4.1 Up

As in Core Maude, in Full Maude we can use the upModule and upTerm functions to avoid the
cumbersome task of explicitly writing, respectively, the metarepresentation of a module or the
metarepresentation of a term in a given module. The Full Maude upModule function takes as a
single argument the name of a module and returns its metarepresentation;2 upTerm takes two
arguments, the name of a module and a term in such a module, and returns the corresponding
metarepresentation of the term.

Therefore, by evaluating in any module importing the module META-LEVEL the upModule

function with the name of any module in the system—either in Core Maude or in Full Maude—
as argument, we obtain the metarepresentation of such a module. For example, assuming that
the previous module NAT-PLUS has been entered into Full Maude, and therefore it is in its
database, we can get its metarepresentation, which we denoted by NAT-PLUS, as follows:

Maude> (red in META-LEVEL : upModule(NAT-PLUS) .)

result FModule :

fmod ’NAT-PLUS is

nil

sorts ’Bool ; ’Nat .

none

op ’0 : nil -> ’Nat [none] .

op ’_+_ : ’Nat ’Nat -> ’Nat [assoc comm id(’0.Nat)] .

...

We can use the metarepresentation obtained in this way in any place where a term of
sort Module is expected. For example, we can apply the function getOps in META-LEVEL (see
Section 17.4) to upModule(NAT-PLUS) as follows:

2The Core Maude upModule function takes as second argument a Boolean value (see Section 17.6.1).

514 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

Maude> (red in META-LEVEL : getOps(upModule(NAT-PLUS)) .)

result OpDeclSet :

op ’0 : nil -> ’Nat [none] .

op ’_+_ : ’Nat ’Nat -> ’Nat [assoc comm id(’0.Nat)] .

op ’_=/=_ : ’Universal ’Universal -> ’Bool

[poly(1 2)

prec(51)

special(

id-hook(’EqualitySymbol,nil)

term-hook(’equalTerm,’false.Bool)

term-hook(’notEqualTerm,’true.Bool))] .

...

Similarly, we can use it with descent functions as discussed in Section 17.6.

Maude> (red in META-LEVEL :

metaReduce(upModule(NAT-PLUS), ’_+_[’0.Nat, ’s_[’0.Nat]]) .)

result ResultPair :

{’s_[’0.Nat],’Nat}

But, instead of explicitly writing the metarepresentation 0 + s 0 in the above reduction we
can also make good use of the upTerm function, that allows us to get the metarepresentation
of a term in a given module.

Maude> (red in META-LEVEL :

metaReduce(upModule(NAT-PLUS), upTerm(NAT-PLUS, 0 + s 0)) .)

result ResultPair :

{’s_[’0.Nat], ’Nat}

As another example, to obtain the metarepresentation of the term s 0 in the module
NAT-PLUS above, which we denoted by s 0, we can write

Maude> (red in META-LEVEL : upTerm(NAT-PLUS, s 0) .)

result GroundTerm :

’s_[’0.Nat]

The module name is the first argument of the upTerm function, with the term of that module
to be metarepresented as the second argument. Since the same term can be parsed in different
ways in different modules, and therefore can have different metarepresentations depending on
the module in which it is considered, the module to which the term belongs has to be used to
obtain the correct metarepresentation. Note also that the above reduction only makes sense at
the metalevel, that is, either in the META-LEVEL module itself or in a module importing it.

21.4.2 Down

The result of a metalevel computation, that may use several levels of reflection, can be a term
or a module metarepresented one or more times, which may be hard to read. Therefore, to
display the output in a more readable form we can use the down command, which is in a sense
inverse to upTerm, since it gives us back the original term from its metarepresentation. Notice
that down is not a function, but a command instead, because it is more general, taking other
commands as arguments, as we are going to explain.

The down command takes two arguments. The first argument is the name of the module
to which the term to be returned belongs. The metarepresentation of the desired output term
should be the result of the command given as second argument. The syntax of the down

command is as follows:

21.4. MOVING UP AND DOWN BETWEEN REFLECTION LEVELS 515

down 〈ModuleExpression〉 : 〈Command〉

Thus, we can give the following command.

Maude> (down NAT-PLUS :

red in META-LEVEL :

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0))) .)

result Nat :

s 0

Notice that this is equivalent to what we may write using the overline notation as:

Maude> red getTerm(metaReduce(\allttoverline{\texttt{NAT-PLUS}}, \allttoverline{\texttt{0 + s 0}})) .

result Term: \allttoverline{\texttt{s 0}}

The use of upTerm and down can be iterated with as many levels of reflection as we wish.
For example, we can give the command

Maude> (red in META-LEVEL :

getTerm(

metaReduce(upModule(META-LEVEL),

upTerm(META-LEVEL,

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0)))))) .)

result GroundTerm :

’_‘[_‘][’’s_.Sort, ’’0.Nat.Constant]

This is equivalent to what we would have written using the overline notation as

Maude> red getTerm(metaReduce(\allttoverline{\texttt{META-LEVEL}},

\allttoverline{\texttt{metaReduce(}\allttoverline{\texttt{NAT-PLUS}}\texttt{, }\allttoverline{\texttt{0 + s 0}}\texttt{)}})) .

result Term: \allttoverline{\allttoverline{\texttt{s 0}}}

We can write expressions involving simultaneously down, upModule, and upTerm:

Maude> (down NAT-PLUS :

down META-LEVEL :

red in META-LEVEL :

getTerm(

metaReduce(upModule(META-LEVEL),

upTerm(META-LEVEL,

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0)))))) .)

result Nat :

s 0

The metalevel function downTerm can also be used, but it is a Core Maude function, and
therefore can only be used on Core Maude modules.

Maude> (down NAT-PLUS :

red in META-LEVEL :

downTerm(

getTerm(

metaReduce(upModule(META-LEVEL),

upTerm(META-LEVEL,

516 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0)))))),

’T:Term) .)

result Nat :

s 0

21.5 Ax-coherence completion

As pointed out in Section 14.3, the equations used for variant generation in an admissible
equational theory must be confluent, terminating, sort-decreasing, and explicitly Ax-coherent.
The confluence, termination, and sort-decreasingness of equational Maude specifications are
the typical executability requirements for equational specifications, and can be checked using
Maude’s Church-Rosser Checker (CRC) [54, 56] and Termination Checker (MTT) [47].

Regarding the Ax-coherence requirement, the situation is different for different purposes.
Ax-coherence is not currently required for rewrite theories written in Maude because specifi-
cations are implicitly completed for Ax-coherence within Maude (see Section 4.8). It is not
required either for tools like the CRC or the Coherence Checker (ChC), or for narrowing (see
Chapter 15) which also automatically complete the specifications provided. However, rewrite
theories are assumed to be explicitly Ax-coherent for variant generation and variant-based uni-
fication (Section 14.8), the reason being that there is a different treatment of extension variables
in rewriting and narrowing (see [137] for more details). Indeed, we require coherence rather
than ground coherence, since the latter is weaker and sufficient for rewriting but insufficient for
narrowing or critical pair analysis.

For theories Ax that are combinations of associativity, commutativity, and identity axioms,
we can make any specification explicitly Ax-coherent by using a procedure which adds Ax-
extensions and always terminates (see [123], and Section 4.8 for a more informal explanation).
The procedure followed to automatically complete for Ax-coherence for rewriting and for nar-
rowing, or in the CRC or ChC tools is carried on differently. Whilst for rewriting the completion
is performed by (Core) Maude, in the other cases the completion is performed by Maude code
provided by Full Maude.

Full Maude provides the following axCohComplete operation in its module AX-COHERENCE-

COMPLETION.

op axCohComplete : Module -> Module .

This operation takes (the metarepresentation of) a module which defines an order-sorted spec-
ification (i.e., no memberships are allowed) and returns (the metarepresentation of) another
module whose equations and rules are modified to complete them modulo associativity and com-
mutativity (AC), associativity, commutativity, and identity (ACU), associativity and identity
(AU), associativity and left identity (AUl), associativity and right identity (AUr), and asso-
ciativity (A).

More specifically, for each operator f : S S → S and equation/rule f(t1, . . . , tn) → r if C
in the module,

21.5. AX-COHERENCE COMPLETION 517

if f is AC add f(t1, . . . , tn, x : [S])→ f(r, x : [S]) if C
if f is ACU replace by f(t1, . . . , tn, x : [S])→ f(r, x : [S]) if C
if f is AU replace by f(x : [S], t1, . . . , tn, y : [S])→ f(x : [S], r, y : [S]) if C
if f is AUl replace by f(x : [S], t1, . . . , tn, y : [S])→ f(x : [S], r, y : [S]) if C

add f(x : [S], t1, . . . , tn)→ f(x : [S], r) if C
if f is AUr replace by f(x : [S], t1, . . . , tn, y : [S])→ f(x : [S], r, y : [S]) if C

add f(t1, . . . , tn, y : [S])→ f(r, y : [S]) if C
if f is A add f(x : [S], t1, . . . , tn, y : [S]])→ f(x : [S], r, y : [S]) if C

add f(x : [S], t1, . . . , tn)→ f(x : [S], r) if C
add f(t1, . . . , tn, y : [S])→ f(r, y : [S]) if C

To deal with collapses, those rules/equations of the form l→ r if C that do not match any
of the above cases, and such that there is an operator f : S S → S with identity and with
S and leastSort(l) in the same kind, are completed following the above cases as if it were the
equation/rule f(l)→ r if C.

Ax-completion is available in Full Maude through the following command:

(ax coherence completion [〈ModuleExpression〉] .)

where 〈ModuleExpression〉 is any module expression. As usual, if no module expression is given
the default current module is completed.

For example, let us consider the following non-coherent version of the equational theory for
exclusive or (see Section 14.1).

mod EXCLUSIVE-OR-NOT-COHERENT is

sorts Nat NatSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

subsort Nat < NatSet .

op mt : -> NatSet .

op _*_ : NatSet NatSet -> NatSet [ctor assoc comm] .

vars X Y Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [id] : X * mt = X [variant] .

endm

The module EXCLUSIVE-OR-NOT-COHERENT is not AC -coherent. The command

Maude> (ax coherence completion EXCLUSIVE-OR-NOT-COHERENT .)

shows the completed version of the EXCLUSIVE-OR-NOT-COHERENT module. Specifically, the
following equation is added :

eq [idem] : X:[NatSet] * X:[NatSet] * X@@@:[NatSet]

= mt * X@@@:[NatSet] [variant] .

Notice the new variable X@@@:[NatSet]. The resulting module is equivalent to the module
EXCLUSIVE-OR in Section 14.1.

As another example, the Ax-completion of the VENDING-MACHINE module in Section 5.1
results in a module with the same definitions but with the change rule replaced by the rule

rl [change] : q q q q X@@@:[Marking] => $ X@@@:[Marking] .

In general, of course, a module can have operators with any combination of associativ-
ity, commutativity, and identity, with associated equations and rules. In that case the ax

518 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

coherence completion command will add or replace the corresponding completion equations
and rules.

The narrowing command (see Section 15.6) and the CRC and ChC tools use the metalevel
operation axCohComplete to complete the modules before using them. As any other function in
Full Maude, it is available for its direct use in other tools or commands. We can illustrate the use
of this metalevel function with the coherence completion of the EXCLUSIVE-OR-NOT-COHERENT

module:

Maude> reduce in FULL-MAUDE :

axCohComplete(upModule(’EXCLUSIVE-OR-NOT-COHERENT, false)) .

result SModule :

mod ’EXCLUSIVE-OR-NOT-COHERENT is

including ’BOOL .

sorts ’Nat ; ’NatSet .

subsort ’Nat < ’NatSet .

op ’0 : nil -> ’Nat [ctor] .

op ’mt : nil -> ’NatSet [ctor] .

op ’_*_ : ’NatSet ’NatSet -> ’NatSet [assoc comm ctor] .

op ’s : ’Nat -> ’Nat [ctor] .

none

eq ’_*_[’X:‘[NatSet‘],’mt.NatSet]

= ’X:‘[NatSet‘] [label(’id) variant] .

eq ’_*_[’X:‘[NatSet‘],’X:‘[NatSet‘]]

= ’mt.NatSet [label(’idem) variant] .

eq ’_*_[’X:‘[NatSet‘],’X:‘[NatSet‘],’X@@@:‘[NatSet‘]]

= ’_*_[’mt.NatSet,’X@@@:‘[NatSet‘]] [label(’idem) variant] .

none

endm

The following example shows the completion of rules that require changing the top operator
of the left-hand side term.

mod NARROWING-VM-NOTOP is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

subsort Marking < State .

ops $ q : -> Coin . ops a c : -> Item .

var M : Marking .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

eq [change]: q q q q = $ [variant] .

endm

Maude> reduce in FULL-MAUDE :

axCohComplete(upModule(’NARROWING-VM-NOTOP, false)) .

result SModule:

mod ’NARROWING-VM-NOTOP is

including ’BOOL .

sorts ’Coin ; ’Item ; ’Marking ; ’Money ; ’State .

21.6. DIFFERENCES BETWEEN FULL MAUDE AND CORE MAUDE 519

subsort ’Coin < ’Money .

subsort ’Item < ’Marking .

subsort ’Marking < ’State .

subsort ’Money < ’Marking .

op ’$: nil -> ’Coin [none] .

op ’__ : ’Marking ’Marking -> ’Marking [assoc comm id(’empty.Money)] .

op ’__ : ’Money ’Money -> ’Money [assoc comm id(’empty.Money)] .

op ’a : nil -> ’Item [none] .

op ’c : nil -> ’Item [none] .

op ’empty : nil -> ’Money [none] .

op ’q : nil -> ’Coin [none] .

none

eq ’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin,’X@@@:‘[State‘]]

= ’__[’$.Coin,’X@@@:‘[State‘]]
[variant label(’change)] .

rl ’__[’$.Coin,’X@@@:‘[State‘]]
=> ’__[’c.Item,’X@@@:‘[State‘]]

[label(’buy-c)] .

rl ’__[’$.Coin,’X@@@:‘[State‘]]
=> ’__[’a.Item,’q.Coin,’X@@@:‘[State‘]]

[label(’buy-a)] .

endm

No variant unifier

21.6 Differences between Full Maude and Core Maude

Apart from those features available in Full Maude that are not supported in Core Maude
(discussed above in Sections 21.3-21.5 and later in Chapters 15 and 22), we find a number
of differences between Full Maude and Core Maude. There are some obvious ones, like the
fact that any input enclosed in parentheses is handled by Full Maude. Core Maude gives a
much more precise information on error location and cause, and do not have the overload of
Full Maude when tracing and debugging. Thus, Full Maude modules, theories, views, and
commands can refer to modules, theories, and views in both Core Maude and Full Maude’s
databases. There are also differences in pretty-printing, tracing, debugging, etc. Moreover,
there are also other differences that impose certain limitations on the specifications themselves:

1. External objects are not accessible in Full Maude.

2. Operator and message names have to be given in their equivalent single-identifier form
when they are declared (see below), but they can later be written in the usual way in
statements and in terms for evaluation.

3. Sort names used in term qualifications, membership assertions, and on-the-fly declarations
of variables have to be in their equivalent single-identifier form.

4. The continue, show component, show path, and show search graph commands are
not supported in Full Maude.

5. Full Maude does not support external objects.

In the rest of the section we explain the first two restrictions in some detail and give some hints
on how to avoid them.

520 CHAPTER 21. FULL MAUDE: EXTENDING CORE MAUDE

An operator name has to be given as a single identifier; multi-identifier operators have to be
declared in their single-identifier form, that is, each identifier in a multi-identifier name has to be
preceded by a backquote. For example, to define an operator with name _less than or equal_,
we have to declare it in its single identifier form _less‘than‘or‘equal_. Except for having to
use the single-identifier form in the operator name, the declaration of operators is exactly as in
Core Maude. For example, the declaration of this operator on sort, say, Int is as follows.

op _less‘than‘or‘equal_ : Int Int -> Bool .

Remember that not only blank spaces, but also the special characters ‘{’, ‘}’, ‘(’, ‘)’, ‘[’, ‘]’ and
‘,’ break the identifiers. Therefore, to declare in Full Maude an operator such as {_} taking
an element of sort, say, Int and with value sort Set, we should add appropriate backquotes, as
follows:

op ‘{_‘} : Int -> Set .

As in Core Maude, several operators with the same arity and coarity can be defined in the
same declaration using the keyword ops, but, again, each operator name has to be given in its
single-identifier form. We could have for example the following declaration.

ops _‘{_‘} _‘,_ : Foo Bar -> Baz .

Since each operator name is a single identifier, parentheses are not needed to indicate the
boundaries between the syntactic forms of the different operators.

As for operator names, message names can be mixfix, but they have to be declared in single-
identifier form. Thus, to define a message credit in an object-oriented module (see Chapter 22)
with syntax, say, (_)credit_ the declaration has to be given as follows.

msg ‘(_‘)credit_ : Oid Nat -> Msg .

And the same applies to declarations of multiple message names:

msgs ‘(_‘)credit_ ‘(_‘)debit_ : Oid Nat -> Msg .

The second problem mentioned at the beginning of this section affects the qualification
of terms by sort names, on-the-fly declarations of variables, and membership assertions. In
these three situations, the user must use the names of parameterized sorts, not as he or she has
defined them, but in their equivalent single-identifier form. Thus, if we have, for example, a sort
List{Nat} and a constant nil in it, if necessary, it should be qualified as (nil).List‘{Nat‘}.
A variable L of sort List{Nat} being declared on the fly should be written L:List‘{Nat‘}.
Similarly, to check whether a term T has sort List{Nat} we have to write T : List‘{Nat‘}

or T :: List‘{Nat‘}, depending on the kind of sort check we wish to perform.

Chapter 22

Object-Oriented Modules

In Full Maude, concurrent object-oriented systems can be defined by means of object-oriented
modules—introduced by the keyword omod...endom—using a syntax more convenient than that
of system modules, because it assumes acquaintance with the basic entities, such as objects,
messages and configurations, and supports linguistic distinctions appropriate for the object-
oriented case.

As in Core Maude, we may have specifications of object-oriented systems in system mod-
ules; for example, we could enter into Full Maude the system modules describing object-based
systems discussed in Chapter 8 by enclosing them in parentheses. However, although Maude’s
system modules are sufficient for specifying object-oriented systems, there are important con-
ceptual advantages provided by Full Maude’s syntax for object-oriented modules. Such syntax
allows the user to think and express his/her thoughts in object-oriented terms whenever such
a viewpoint seems best suited for the problem at hand. Those conceptual advantages would be
partially lost if only system modules at the Core Maude level were provided.

Object-oriented modules are however just syntactic sugar: they are internally transformed
into system modules for execution purposes (Section 22.8). All object-oriented modules implic-
itly include the CONFIGURATION module (see Section 8.1), and thus assume the latter’s syntax.
Recall that the module CONFIGURATION defines the basic concepts of concurrent object systems;
among others, and besides the Configuration sort, it includes the declarations of sorts

• Oid of object identifiers,

• Cid of class identifiers,

• Object for objects, and

• Msg for messages.

22.1 Object-oriented systems

Some object-oriented concepts were introduced in Chapter 8. Here we recall some of them and
then focus on the notions of class and inheritance, and on the additional syntactic facilities
provided by Full Maude to support object-oriented programming.

22.1.1 Objects and messages

As in Core Maude, an object in a given state is represented as a term of the form

521

522 CHAPTER 22. OBJECT-ORIENTED MODULES

< O : C | 〈att-1 〉, ... , 〈att-n〉 >

but Full Maude supports and enforces a specific choice for the syntax of attributes. Each
attribute of sort Attribute consists of a name (attribute identifier), followed by a colon ‘:’
(with white space both before and after), followed by its value, which must have a given sort.
Therefore, the Full Maude syntax for objects is

< O : C | a1 : v1, ... , an : vn >

where O is the object’s name or identifier, C is its class identifier, the ai’s are the names of
the object’s attribute identifiers, and the vi’s are the corresponding values, for i = 1 . . . n. In
particular, an object with no attributes can be represented as

< O : C | >

Messages do not have a fixed syntactic form; their syntax is instead defined by the user
for each application. The only assumption made by the system is that the first argument of a
message is the identifier of its destination object. Messages satisfying this requirement should
be declared using the msg keyword. It is still possible to declare messages not following this
requirement as operators of sort Msg; but, if declared as operators, no message attribute will
be provided for them (see Sections 8.1 and 8.2). For example, the following declarations of
messages are possible.

msg credit : Oid Nat -> Msg .

op left : -> Msg .

The concurrent state of an object-oriented system is then a multiset of objects and messages,
of sort Configuration, with multiset union described with empty syntax __, and with assoc,
comm, and id: none as operator attributes.

22.1.2 Classes

Classes are defined with the keyword class, followed by the name of the class, followed by
a bar ‘|’, followed by a list of attribute declarations separated by commas. Each attribute
declaration has the form a : S, where a is an attribute identifier and S is the sort in which the
values of the attribute identifier range. That is, class declarations have the form

class C | a1 : 〈Sort-1 〉, ... , an : 〈Sort-n〉 .

In particular, we can declare classes without attributes using syntax

class C .

Class names have the same form as sort names. In particular, class names may be pa-
rameterized in a way completely similar to parameterized sort names (see Sections 6.3.3, 22.3,
and 22.4).

As an example of class declaration, the class Account of bank account objects with a balance
attribute, introduced in Section 8.1, is now declared as follows:

class Account | bal : Int .

As another example, a class Person, with a name, an age, and a bank account as attributes
can then be declared as follows:

class Person | name : String, age : Nat, account : Oid .

In this case, a person has a reference to his/her account in an account attribute of sort Oid.
All Full Maude object-oriented modules have an operation class that takes an object as

argument and returns its actual class. Thus, for example,

22.1. OBJECT-ORIENTED SYSTEMS 523

getClass(< A-002 : Account | bal : 1000 >)

returns the class identifier Account. This operation will be particularly useful when combined
with the inheritance relation (see the use of the getClass operation in the example in Sec-
tion 22.5).

The syntax for message declarations is similar to the syntax for the declaration of operators,
but using msg and msgs instead of op and ops, and having as result sort Msg or a subsort of
it. Thus, msg is used to declare a single message, and msgs may be used for declaring multiple
messages. The user can introduce subsorts of the predefined sort Msg, so that it is possible to
declare messages of different types. This may be useful for restricting the kind of messages that
could be received by a particular type of object. As in the case of operators, messages can be
overloaded and can be declared with operator attributes.

In the account example, the three kinds of messages involving accounts are credit, debit,
and from_to_transfer_, whose user-definable syntax is introduced in the following declara-
tions:

msgs credit debit : Oid Nat -> Msg .

msg from_to_transfer_ : Oid Oid Nat -> Msg .

Notice the use of the Oid sort for specifying the addressee of a message, as in credit and
debit, and for specifying the objects involved in a message, e.g., the source and the target
accounts of an account transfer in the from_to_transfer_ message. Note that, as explained
in Chapter 8 for Core Maude, Full Maude also assumes that the message’s destination object
is the first argument mentioned in the message declaration. This convention is needed by
the object-message fair rewriting strategy (see Section 8.2). The behavior associated with the
messages is then specified by rewrite rules in a declarative way (see Section 22.1.4).

Given object identifiers Smith and A-002, the following term may represent a configuration
with a person, his account, and a credit message sent to it.

< Smith : Person | name : "John", age : 34, account : A-002 >

< A-002 : Account | bal : 1000 >

credit(A-002, 100)

22.1.3 Inheritance

Class inheritance is directly supported by Maude’s order-sorted type structure. Since class
names are a particular case of sort names, a subclass declaration C < C’ in an object-oriented
module is just a particular case of a subsort declaration C < C’. The effect of a subclass
declaration is that the attributes, messages, and rules of all the superclasses, together with the
newly defined attributes, messages, and rules of the subclass, characterize the structure and
behavior of the objects in the subclass.

For example, we can define an object-oriented module SAVING-ACCOUNT of saving accounts
introducing a subclass SavingAccount of Account with a new attribute rate recording the
interest rate of the account.

class SavingAccount | rate : Float .

subclass SavingAccount < Account .

In this example there is only one class immediately above SavingAccount, namely, Account.
In general, however, a class C may be defined as a subclass of several classes D1, . . . , Dk, i.e.,
multiple inheritance is supported. If an attribute and its sort have already been declared in
a superclass, they should not be declared again in the subclass. Indeed, all such attributes
are inherited. In the case of multiple inheritance, the only requirement that is made is that

524 CHAPTER 22. OBJECT-ORIENTED MODULES

if an attribute occurs in two different superclasses, then the sort associated with it in each of
those superclasses must be the same.1 In summary, a class inherits all the attributes, messages,
and rules from all its superclasses. An object in the subclass behaves exactly as any object in
any of the superclasses, but it may exhibit additional behavior due to the introduction of new
attributes, messages, and rules in the subclass.

Objects in the class SavingAccount will have an attribute bal and can receive messages
debiting, crediting and transferring funds exactly as any other object in the class Account. For
example, the following object is a valid instance of class SavingAccount.

< A-002 : SavingAccount | bal : 5000, rate : 3.0 >

As for subsort relationships, we can declare multiple subclass relationships in the same
declaration. Thus, given classes A, . . . , H, we can have a declaration of subclasses such as

subclasses A B C < D E < F G H .

22.1.4 Object-oriented rules

The behavior associated with messages is specified by rewrite rules in a declarative way. For
example, the semantics of the credit, debit, and from_to_transfer_ messages declared in
Section 22.1.2 may be given as follows:

vars A B : Oid .

var M : Nat .

vars N N’ : Int .

rl [credit] :

credit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N + M > .

crl [debit] :

debit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N - M >

if N >= M .

crl [transfer] :

(from A to B transfer M)

< A : Account | bal : N >

< B : Account | bal : N’ >

=> < A : Account | bal : N - M >

< B : Account | bal : N’ + M >

if N >= M .

Note that the multiset structure of the configuration provides the top-level distributed
structure of the system and allows concurrent application of the rules. The reader is referred
to [104] for a detailed explanation of the logical semantics of the object-oriented model of
computation supported by Maude.

In object-oriented modules it is possible not to mention in a given rule those attributes of
an object that are not relevant for that rule. The attributes mentioned only on the lefthand
side of a rule are preserved unchanged, the original values of attributes mentioned only on the

1If a class inherits from two different superclasses that share an attribute but with different associated sorts,
then both attributes are inherited in the subclass, thus muddling them up.

22.1. OBJECT-ORIENTED SYSTEMS 525

righthand side do not matter, and all attributes not explicitly mentioned are left unchanged
(see Section 22.8 for more details). For instance, a message for changing the age of a person
defined by the class Person (introduced in Section 22.1.2) may be defined as follows:

msg to_:‘new‘age_ : Oid Nat -> Msg .

var A : Nat .

var O : Oid .

rl [change-age] :

< O : Person | >

to O : new age A

=> < O : Person | age : A > .

The attributes name and account, which are not mentioned in this rule, are not changed
when applying the rule. The value of the age attribute is replaced by the given new age,
independently of its previous value.

The following module ACCOUNT contains all the declarations above defining the class Account.
Note that Qid is declared as a subsort of Oid, making any quoted identifier a valid object iden-
tifier.

(omod ACCOUNT is

protecting QID .

protecting INT .

subsort Qid < Oid .

class Account | bal : Int .

msgs credit debit : Oid Int -> Msg .

msg from_to_transfer_ : Oid Oid Int -> Msg .

vars A B : Oid .

var M : Nat .

vars N N’ : Int .

rl [credit] :

credit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N + M > .

crl [debit] :

debit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N - M >

if N >= M .

crl [transfer] :

(from A to B transfer M)

< A : Account | bal : N >

< B : Account | bal : N’ >

=> < A : Account | bal : N - M >

< B : Account | bal : N’ + M >

if N >= M .

endom)

We can now rewrite a simple configuration consisting of an account and a message as follows:

Maude> (rew < ’A-06238 : Account | bal : 2000 >

526 CHAPTER 22. OBJECT-ORIENTED MODULES

debit(’A-06238, 1000) .)

result Object :

< ’A-06238 : Account | bal : 1000 >

The following module contains the declarations for the class SavingAccount.

(omod SAVING-ACCOUNT is

including ACCOUNT .

protecting FLOAT .

class SavingAccount | rate : Float .

subclass SavingAccount < Account .

endom)

We leave unspecified the rules for computing and crediting the interest of an account ac-
cording to its rate, whose proper expression should introduce a real-time2 attribute in account
objects.

We can now rewrite a configuration, obtaining the following result.

Maude> (rew < ’A-73728 : SavingAccount | bal : 5000, rate : 3.0 >

< ’A-06238 : Account | bal : 2000 >

< ’A-28381 : SavingAccount | bal : 9000, rate : 3.0 >

debit(’A-06238, 1000)

credit(’A-73728, 1300)

credit(’A-28381, 200) .)

result Configuration :

< ’A-06238 : Account | bal : 1000 >

< ’A-73728 : SavingAccount | bal : 6300, rate : 3.0 >

< ’A-28381 : SavingAccount | bal : 9200, rate : 3.0 >

We can also search over configurations. In this case the search pattern takes into account
object-oriented information, finding also states where a subclass matches the pattern. For
example, we can look for final states having accounts with balance less than 8000 with the
following command:

Maude> (search in SAVING-ACCOUNT :

< ’A-73728 : SavingAccount | bal : 5000, rate : 3.0 >

< ’A-06238 : Account | bal : 2000 >

< ’A-28381 : SavingAccount | bal : 9000, rate : 3.0 >

debit(’A-06238, 1000)

credit(’A-73728, 1300)

credit(’A-28381, 200)

=>! C:Configuration

< O:Oid : Account | bal : N:Nat >

such that N:Nat < 8000 .)

search in SAVING-ACCOUNT :

< ’A-73728 : SavingAccount | bal : 5000, rate : 3.0 >

< ’A-06238 : Account | bal : 2000 >

< ’A-28381 : SavingAccount | bal : 9000, rate : 3.0 >

debit(’A-06238, 1000)

credit(’A-73728, 1300)

credit(’A-28381, 200)

=>! C:Configuration

2See [120, 122] for a general methodology to specify real-time systems, including object-oriented ones, in
rewriting logic.

22.2. EXAMPLE: A RENT-A-CAR STORE 527

< O:Oid : V#0:Account | bal : N:Nat, V#1:AttributeSet > .

Solution 1

C:Configuration -->

< ’A-28381 : SavingAccount | bal : 9200,rate : 3.0 >

< ’A-73728 : SavingAccount | bal : 6300,rate : 3.0 > ;

N:Nat --> 1000 ;

O:Oid --> ’A-06238 ;

V#0:Account --> Account ;

V#1:AttributeSet --> (none).AttributeSet

Solution 2

C:Configuration -->

< ’A-06238 : Account | bal : 1000 >

< ’A-28381 : SavingAccount | bal : 9200, rate : 3.0 > ;

N:Nat --> 6300 ;

O:Oid --> ’A-73728 ;

V#0:Account --> SavingAccount ;

V#1:AttributeSet --> rate : 3.0

No more solutions.

Notice that the search pattern has been transformed so that objects in subclasses match. In
this example, we obtain as solutions both an object of class Account and an object in the
subclass SavingAccount.

22.2 Example: a rent-a-car store

In order to further illustrate Full Maude’s object-oriented features, we specify a simple rent-a-
car store example. Several rules in this specification have variables in their righthand sides or
conditions not present in their lefthand sides; therefore, these rules are not directly executable
by the rewrite engine and are declared as nonexecutable. In order to run the object-oriented
system, we will have to use strategies; a possible such strategy will be presented in Section 22.6.

The regulations of the system, especially those that govern the rental processes, are the
following:

1. Cars are rented for a specific number of days, after which they should be returned.

2. A car can be rented only if it is available.

3. No credit is allowed; customers must pay cash.

4. Customers must make a deposit at pick-up time of the estimated rental charges.

5. Rental charges depend on the car class. There are three categories: economy, mid-size,
and full-size cars.

6. When a rented car is returned, the deposit is used to pay the rental charges.

7. If a car is returned before the due date, the customer is charged only for the number of
days the car has been used. The rest of the deposit is reimbursed to the customer.

8. Customers who return a rented car after its due date are charged for all the days the car
has been used, with an additional 20% charge for each day after the due date.

528 CHAPTER 22. OBJECT-ORIENTED MODULES

9. Failure to return the car on time or to pay a debt may result in the suspension of renting
privileges.

Let us begin with the static aspects of this system, i.e., with its structure. We can identify
three main classes, namely the store, customer, and car classes. There are three kinds of cars:
economy, mid-size, and full-size cars.

Customers may rent cars. This relationship may be represented by a Rental class which, in
addition to references to the objects involved in the relationship, has some extra attributes. The
system also requires some control over time, which we get with a class representing calendars
that provides the current date and simulates the passage of time.

The Customer class has three attributes, namely, suspended, cash, and debt to keep track
of, respectively, whether he is suspended or not, the amount of cash that the customer currently
has, and his debt with the store. Such a class is defined by the following Maude declaration:

class Customer | cash : Nat, debt : Nat, suspended : Bool .

The attribute available of the Car class indicates whether the car is currently available or
not, and rate records the daily rental rate. We model the different types of cars for rent by
three different subclasses, namely, EconomyCar, MidSizeCar and FullSizeCar.

class Car | available : Bool, rate : Nat .

class EconomyCar .

class MidSizeCar .

class FullSizeCar .

subclasses EconomyCar MidSizeCar FullSizeCar < Car .

Each object of class Rental will establish a relationship between a customer and a car,
whose identifiers are kept in attributes customer and car, respectively. In addition to these,
the class Rental is also declared with attributes deposit, pickUpDate, and dueDate to store,
respectively, the amount of money left as a deposit by the customer, the date in which the car
is picked up by the customer, and the date in which the car should be returned to the store.

class Rental | deposit : Nat, dueDate : Nat, pickUpDate : Nat,

customer : Oid, car : Oid .

Given the simple use that we are going to make of dates, we can represent them, for example,
as natural numbers. Then, we may have a calendar object that keeps the current date and gets
increased by a rewrite rule as follows:

class Calendar | date : Nat .

rl [new-day] :

< O : Calendar | date : F >

=> < O : Calendar | date : F + 1 > .

We do not worry here about the frequency with which the date gets increased, the possible
synchronization problems in a distributed setting, or with any other issues related to the speci-
fication of time. See the papers [120, 122] on the specification of real-time systems in rewriting
logic and Maude for a discussion on these issues.

Four actions can be identified in our example:

• a customer rents a car,

• a customer returns a rented car,

• a customer is suspended for being late in paying her debt or for being late in returning a
rented car, and

22.2. EXAMPLE: A RENT-A-CAR STORE 529

• a customer pays (part of) her debt.

The rental of a car by a customer is specified by the car-rental rule below, which involves
the customer renting the car, the car itself (which must be available, i.e., not currently rented),
and a calendar object supplying the current date. The rental can take place if the customer is
not suspended, that is, if her identifier is not in the set of identifiers of suspended customers
of the store, and if the customer has enough cash to make the corresponding deposit. Notice
that a customer could rent a car for less time she really is going to use it on purpose, because
either she does not have enough money for the deposit, or prefers making a smaller deposit.
According to the description of the system, the payment takes place when returning the car,
although there is an extra charge for the days the car was not reserved.

crl [car-rental] :

< U : Customer | cash : M, suspended : false >

< I : Car | available : true, rate : Rt >

< C : Calendar | date : Today >

=> < U : Customer | cash : M - Amnt >

< I : Car | available : false >

< C : Calendar | >

< A : Rental | pickUpDate : Today, dueDate : Today + NumDays,

car : I, deposit : Amnt, customer : U, rate : Rt >

if Amnt := Rt * NumDays /\ M >= Amnt

[nonexec] .

Note that, as already mentioned, those attributes of an object that are not relevant for a
rule do not need to be mentioned. Attributes not appearing in the righthand side of a rule will
maintain their previous values unmodified. Furthermore, since the variables A and NumDays

appear in the righthand side or condition of the rule but not in its lefthand side, this rule has
to be declared as nonexec. Note as well the use of the attributes customer and car in objects
of class Rental, which makes explicit that a rental relationship is between the customer and
the car specified by these attributes.

A customer returning a car late cannot be forced to pay the total amount of money due at
return time. Perhaps she does not have such an amount of money in hand. The return of a
rented car is specified by the rules below. The first rule handles the case in which the car is
returned on time, that is, the current date is smaller or equal to the due date, and therefore
the deposit is greater or equal to the amount due.

crl [on-date-car-return] :

< U : Customer | cash : M >

< I : Car | rate : Rt >

< A : Rental | customer : U, car : I, pickUpDate : PDt,

dueDate : DDt, deposit : Dpst >

< C : Calendar | date : Today >

=> < U : Customer | cash : (M + Dpst) - Amnt >

< I : Car | available : true >

< C : Calendar | >

if (Today <= DDt) /\ Amnt := Rt * (Today - PDt)

[nonexec] .

In this case, part of the deposit needs to be reimbursed. We can see that the Rental object
disappears in the righthand side of the rule, that is, it is removed from the set of rentals and
the availability of the car is restored.

The second rule deals with the case in which the car is returned late.

crl [late-car-return] :

530 CHAPTER 22. OBJECT-ORIENTED MODULES

< U : Customer | debt : M >

< I : Car | rate : Rt >

< A : Rental | customer : U, car : I, pickUpDate : PDt,

dueDate : DDt, deposit : Dpst >

< C : Calendar | date : Today >

=> < U : Customer | debt : (M + Amnt) - Dpst >

< I : Car | available : true >

< C : Calendar | >

if DDt < Today *** it is returned late

/\ Amnt := Rt * (DDt - PDt)

+ ((Rt * (Today - DDt)) * (100 + 20)) quo 100

[nonexec] .

In this case, the customer’s debt is increased by the portion of the amount due not covered by
the deposit.

Debts may be paid at any time, the only condition being that the amount paid is between
zero and the amount of money owed by the customer at that time.

crl [pay-debt] :

< U : Customer | debt : M, cash : N >

=> < U : Customer | debt : M - Amnt, cash : N - Amnt >

if 0 < Amnt /\ Amnt <= N /\ Amnt <= M

[nonexec] .

Customers who are late in returning a rented car or in paying their debts “may” be sus-
pended. The first rule deals with the case in which a customer has a pending debt, and the
second one handles the case in which a customer is late in returning a rented car.

crl [suspend-late-payers] :

< U : Customer | debt : M, suspended : false >

=> < U : Customer | suspended : true >

if M > 0 .

crl [suspend-late-returns] :

< U : Customer | suspended : false >

< I : Car | >

< A : Rental | customer : U, car : I, dueDate : DDt >

< C : Calendar | date : Today >

=> < U : Customer | suspended : true >

< I : Car | >

< A : Rental | >

< C : Calendar | >

if DDt < Today .

Since the system is not terminating, and there are several rules with variables in their right-
hand sides or conditions not present in their lefthand sides and not satisfying the admissibility
conditions discussed in Section 5.3, strategies are necessary for controlling its execution. We
can define many different strategies and use them in many different ways (see Section 17.7); a
concrete possibility will be described later in Section 22.6.

22.3 Object-oriented parameterized programming

The notions of theory, view, and parameterized module (see Section 6.3) have been extended to
the object-oriented case. In this section, we explain how to write object-oriented theories, views

22.3. OBJECT-ORIENTED PARAMETERIZED PROGRAMMING 531

with object-oriented theories as sources and object-oriented modules or object-oriented theories
as targets, and object-oriented parameterized modules with possibly object-oriented theories as
parameters. In Section 22.4 we explain how the module operations available in Full Maude have
been extended, so that they are also available on object-oriented modules. In particular, we will
see how it is possible to rename an object-oriented module and to instantiate an object-oriented
module parameterized by an object-oriented theory with a view having another object-oriented
module as its target.

22.3.1 Theories

In addition to functional and system theories, Full Maude also supports object-oriented theories.
Their structure is the same as that of object-oriented modules. Object-oriented theories can
have classes, subclass relationships, and messages. These object-oriented notions may be useful
for the definition of theories; for example, the following theory CELL specifies the theory of
classes with at least one attribute of any sort.

(oth CELL is

sort Elt .

class Cell | contents : Elt .

endoth)

22.3.2 Views

For a view having an object-oriented theory as its source, the mapping of a class C in the source
theory to a class C’ in the target is expressed with syntax

class C to C’ .

Attribute maps have the form

attr C . A to A’ .

where A is the name of an attribute of class C in the source theory and A’ is an attribute of the
image class of C under the view.

The mapping of messages is expressed with syntax

msg M to M’ .

where M is a message identifier or a message identifier together with its arity and value sort.
As for operators, a message map in which explicit arity and coarity are given affects the entire
family of subsort-overloaded message declarations associated with the declaration of the given
message.

22.3.3 Parameterized object-oriented modules

Like any other type of module, object-oriented modules can be parameterized, and, like sort
names, class names may also be parameterized. The naming of parameterized classes follows
the same conventions discussed in Section 6.3.3 for parameterized sorts.

As an example of an object-oriented parameterized module, we define a stack of elements.
We define a class Stack{X} as a linked sequence of node objects. Objects of class Stack{X}

have a single attribute first, containing the identifier of the first node in the stack. If the
stack is empty, the value of the first attribute is null. Each object of class Node{X} has an
attribute next holding the identifier of the next node—which should be null if there is no next
node—and an attribute contents to store a value of sort X$Elt. Notice that node identifiers

532 CHAPTER 22. OBJECT-ORIENTED MODULES

are of the form o(S,N), where S is the identifier of the stack object to which the node belongs,
and N is a natural number. The messages push, pop and top have as their first argument the
identifier of the object to which they are addressed, and will cause, respectively, the insertion
at the top of the stack of a new element, the removal of the top element, and the sending of a
response message elt containing the element at the top of the stack to the object making the
request.

(omod OO-STACK{X :: TRIV} is

protecting INT .

protecting QID .

subsort Qid < Oid .

class Node{X} | next : Oid, contents : X$Elt .

class Stack{X} | first : Oid .

msg _push_ : Oid X$Elt -> Msg .

msg _pop : Oid -> Msg .

msg _top_ : Oid Oid -> Msg .

msg _elt_ : Oid X$Elt -> Msg .

op null : -> Oid .

op o : Oid Int -> Oid .

vars O O’ O’’ : Oid .

var E : X$Elt .

var N : Int .

rl [top] : *** top on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | contents : E >

(O top O’’)

=> < O : Stack{X} | >

< O’ : Node{X} | >

(O’’ elt E) .

rl [push1] : *** push on a non-empty stack

< O : Stack{X} | first : o(O, N) >

(O push E)

=> < O : Stack{X} | first : o(O, N + 1) >

< o(O, N + 1) : Node{X} |

contents : E, next : o(O, N) > .

rl [push2] : *** push on an empty stack

< O : Stack{X} | first : null >

(O push E)

=> < O : Stack{X} | first : o(O, 0) >

< o(O, 0) : Node{X} | contents : E, next : null > .

rl [pop] : *** pop on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | next : O’’ >

(O pop)

=> < O : Stack{X} | first : O’’ > .

endom)

Notice that top and pop messages are not received if the stack is empty.

22.3. OBJECT-ORIENTED PARAMETERIZED PROGRAMMING 533

We may want to define stacks storing not just data elements of a particular sort, but actually
objects in a particular class. We can define an object-oriented module with the intended
behavior as the parameterized module OO-STACK2 below, which is parameterized by the object-
oriented theory CELL introduced in Section 22.3.1. Notice that the main difference with respect
to the previous STACK version is in the attribute node, that keeps the identifier of the object
where the contents can be found instead of the attribute contents that provided direct access
to those contents.

(omod OO-STACK2{X :: CELL} is

protecting INT .

protecting QID .

subsort Qid < Oid .

class Node{X} | next : Oid, node : Oid .

class Stack{X} | first : Oid .

msg _push_ : Oid Oid -> Msg .

msg _pop : Oid -> Msg .

msg _top_ : Oid Oid -> Msg .

msg _elt_ : Oid X$Elt -> Msg .

op null : -> Oid .

op o : Oid Int -> Oid .

vars O O’ O’’ O’’’ : Oid .

var E : X$Elt .

var N : Int .

rl [top] : *** top on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | node : O’’ >

< O’’ : X$Cell | contents : E >

(O top O’’’)

=> < O : Stack{X} | >

< O’ : Node{X} | >

< O’’ : X$Cell | >

(O’’’ elt E) .

rl [push1] : *** push on a non-empty stack

< O : Stack{X} | first : o(O, N) >

(O push O’)

=> < O : Stack{X} | first : o(O, N + 1) >

< o(O, N + 1) : Node{X} |

next : o(O, N), node : O’ > .

rl [push2] : *** push on an empty stack

< O : Stack{X} | first : null >

(O push O’)

=> < O : Stack{X} | first : o(O, 0) >

< o(O, 0) : Node{X} | next : null, node : O’ > .

rl [pop] : *** pop on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | next : O’’ >

(O pop)

=> < O : Stack{X} | first : O’’ > .

534 CHAPTER 22. OBJECT-ORIENTED MODULES

endom)

22.4 Module operations on object-oriented modules

The module operations of summation, renaming, and instantiation have been extended so that
they are also available on object-oriented modules.

22.4.1 Module summation and renaming

The summation and renaming of object-oriented modules is similar to their non-object-oriented
counterparts. Renaming maps, however, are in this case available for mapping classes, at-
tributes, and messages. Therefore, in addition to the renamings available in Core Maude, Full
Maude also supports renaming maps of the form:

class 〈identifier〉 to 〈identifier〉
attr 〈class-identifier〉 . 〈attr-identifier〉 to 〈class-identifier〉
msg 〈identifier〉 to 〈identifier〉
msg 〈identifier〉 : 〈type-list〉 -> 〈type〉 to 〈identifier〉

We illustrate the renaming of object-oriented modules with the following example:3

Maude> (show module OO-STACK2 * (class Stack{X} to Stack{X},

class Node{X} to Node{X},

attr Stack{X} . first to head,

msg _elt_ to element,

sort Int to Integer) .)

omod OO-STACK2 * (sort Int to Integer,

msg _elt_ to element,

class Node‘{X‘} to Node‘{X‘},

class Stack‘{X‘} to Stack‘{X‘},

attr Stack‘{X‘} . first to head) {X :: CELL} is

protecting QID .

protecting INT * (sort Int to Integer) .

including CONFIGURATION+ .

including CONFIGURATION .

protecting BOOL .

subsort Qid < Oid .

class Node‘{X‘} | next : Oid, node : Oid .

class Stack‘{X‘} | head : Oid .

op null : -> Oid .

op o : Oid Integer -> Oid .

msg _pop : Oid -> Msg .

msg _push_ : Oid Oid -> Msg .

msg _top_ : Oid Oid -> Msg .

msg element : Oid X$Elt -> Msg .

rl < O:Oid : Stack{X}| head : O’:Oid >

< O’:Oid : Node{X}| next : O’’:Oid >

O:Oid pop

=> < O:Oid : Stack{X}| head : O’’:Oid >

[label pop] .

rl < O:Oid : Stack{X}| head : O’:Oid >

3The including CONFIGURATION+ . declaration in the shown module will be explained in Section 22.8.

22.4. MODULE OPERATIONS ON OBJECT-ORIENTED MODULES 535

< O’:Oid : Node{X}| node : O’’:Oid >

< O’’:Oid : X$Cell | contents : E:X$Elt >

O:Oid top O’’’:Oid

=> < O:Oid : Stack{X}| none >

< O’:Oid : Node{X}| none >

< O’’:Oid : X$Cell | none >

element(O’’:Oid,E:X$Elt)
[label top] .

rl < O:Oid : Stack{X}| head : null >

O:Oid push O’:Oid

=> < O:Oid : Stack{X}| head : o(O:Oid,0)>

< o(O:Oid,0): Node{X}| next : null,node : O’:Oid >

[label push2] .

rl < O:Oid : Stack{X}| head : o(O:Oid,N:Integer)>

O:Oid push O’:Oid

=> < O:Oid : Stack{X}| head : o(O:Oid,N:Integer + 1)>

< o(O:Oid,N:Integer + 1): Node{X}|

next : o(O:Oid,N:Integer),node : O’:Oid >

[label push1] .

endom

22.4.2 Module instantiation

We show in this section how, by instantiating the object-oriented module OO-STACK2 given in
Section 22.3.3, we can obtain a specification of a stack of banking accounts. We first specify a
view Account from the object-oriented theory CELL (in Section 22.3.1) to the object-oriented
module ACCOUNT (in Section 22.1.4).

(view Account from CELL to ACCOUNT is

sort Elt to Int .

class Cell to Account .

attr Cell . contents to bal .

endv)

Now we can do the following rewriting on the module resulting from the instantiation.

Maude> (rew in OO-STACK2{Account}

* (class Account to Account,

class Stack{Account} to Stack{Account},

class Node{Account} to Node{Account},

attr Stack{Account} . first to head,

attr Account . bal to balance,

msg _elt_ to element,

sort Int to Integer) :

< ’stack : Stack{Account} | head : null >

< ’A-73728 : Account | balance : 5000 >

< ’A-06238 : Account | balance : 2000 >

< ’A-28381 : Account | balance : 15000 >

(’stack push ’A-73728)

(’stack push ’A-06238)

(’stack push ’A-28381)

(’stack top ’A-06238)

(’stack pop) .)

536 CHAPTER 22. OBJECT-ORIENTED MODULES

result Configuration :

element(’A-28381,15000)

< ’A-06238 : Account | balance : 2000 >

< ’A-28381 : Account | balance : 15000 >

< ’A-73728 : Account | balance : 5000 >

< ’stack : Stack{Account}| head : o(’stack, 1)>

< o(’stack, 0) : Node{Account} | next : null, node : ’A-06238 >

< o(’stack, 1) : Node{Account} |

next : o(’stack, 0), node : ’A-73728 >

22.5 Example: extended rent-a-car store

This section describes a variant of the rent-a-car store example in Section 22.2 in which several
interesting data structures are used to store relevant information.

Let us refine the specification of a rent-a-car store presented in Section 22.2 by adding the
following regulations:

10. When a rented car is returned, the deposit is used to pay the rental charges, which are
calculated in accordance with the conditions at pick-up time.

11. There are three different kinds of customers: staff, occasional, and preferred.

12. Staff members and preferred customers benefit from special discounts in all rentals.

13. A customer qualifies as “preferred” when the accumulated amount of money spent in the
store by the customer is above a certain threshold.

The main differences introduced by these regulations are that we need to keep the conditions
at pick-up time, so that the calculations at drop-off time are correct. We also need to distinguish
the three different types of customers, with the possibility of an occasional customer being
promoted to preferred if he spends a given amount of money.

As an alternative approach to the one followed previously in Section 22.2, we introduce
a class Store of rental car stores, whose attributes represent the information concerning the
general parameters of such stores: the rates applicable to each type of car, the discounts for each
type of customer renting each type of car, the identifiers of the customers who are suspended,
the amount of money above which occasional customers are qualified as preferred, the record
with the amount of money spent in the store by each of the customers, and the daily penalty
for late return (20%). In addition, attributes customers, cars, rentals, and calendar store
the identifiers of the objects participating in the relationships with the Store composite object;
those are directed binary relationships and therefore we need only store the identifiers of the
subordinate objects as attributes of the object that references them.

class Store |

discounts : PFun{Tuple{Cid, Cid}, Nat},

payments : PFun{Oid, Nat},

penalty : Nat,

threshold : Nat,

suspended : Set{Oid},

rates : PFun{Cid, Nat},

customers : Set{Oid},

cars : Set{Oid},

rentals : Set{Oid},

calendar : Oid .

22.5. EXAMPLE: EXTENDED RENT-A-CAR STORE 537

The information on rates, discounts, and money spent is modeled by attributes of sort
PFun of partial functions4 (see Section 6.3.7), associating the appropriate values to each of the
different agents involved. The rates for the different cars are stored in the attribute rates, of
sort PFun{Cid, Nat}, that associates the per-day rate to be charged to a customer for renting
a given type of car. Thus, assuming that Rts is a variable of sort PFun{Cid, Nat}, with
value the partial function assigning the appropriate rates to each type of car, we have that
Rts[FullSizeCar] is the per-day rate for renting a full size car. If we want to increase this
rate by, say 20%, we can use the expression

Rts[FullSizeCar -> Rts[FullSizeCar] * (100 + penalty) / 100]

with penalty a constant equal to 20. The discounts applied to each customer on each type
of car and the amount of the purchases of each customer are stored, respectively, in attributes
payments and discounts. The set of the identifiers of the customers who are suspended is
stored in an attribute suspended of sort Set{Oid}. The predefined sorts Oid and Cid are used
for object identifiers and class identifiers, respectively.

This specification will allow us, for instance, to easily “compose” systems with different
particular details (e.g., discounts may change from one store to another), allowing them to
easily co-exist.

The rest of the classes can be specified as follows:

class Customer | cash : Nat, debt : Nat .

class Staff .

class OccasionalCust .

class PreferredCust .

subclasses OccasionalCust PreferredCust Staff < Customer .

class Car | available : Bool .

class EconomyCar .

class MidSizeCar .

class FullSizeCar .

subclasses EconomyCar MidSizeCar FullSizeCar < Car .

class Rental |

deposit : Nat, discount : Nat,

dueDate : Nat, pickUpDate : Nat,

rate : Nat, customer : Oid,

car : Oid .

The different actions may then be defined as follows:

crl [car-rental] :

< U : Customer | cash : M >

< I : Car | available : true > *** the car is available

< V : Store | suspended : US,

rates : Rts, discounts : Dscnts, calendar : C,

cars : (I, IS), customers : (U, SS), rentals : RS >

< C : Calendar | date : Today >

=> < U : Customer | cash : sd(M, Amnt) >

< I : Car | available : false >

< V : Store | rentals : (A, RS) >

< C : Calendar | >

< A : Rental | pickUpDate : Today, dueDate : Today + NumDays,

4An alternative possibility is to use the maps specified in the predefined MAP module in Section 7.14.

538 CHAPTER 22. OBJECT-ORIENTED MODULES

car : I, deposit : Amnt, customer : U,

rate : Rt, discount : Dscnt >

if not U in US *** the customer is not suspended

/\ Rt := Rts[getClass(< I : Car | >)]

/\ Dscnt := Dscnts[(getClass(< U : Customer | >),

getClass(< I : Car | >))]

/\ Amnt := sd(Rt, Dscnt) * NumDays

/\ M >= Amnt *** enough cash to make a deposit

[nonexec] .

Notice the use of customer and car attributes in objects of class Rental, which makes
explicit that a rental relationship is between the customer and the car specified by these at-
tributes. Likewise for attributes customers, cars, and calendar of object V of class Store,
which indicate that the customer, car and calendar appearing on the rule should be known to
the store. After the car-rental action, the rental is added to the set of rentals kept by the
store.

Rules may be applied to objects of the classes specified in the rules or of any of their
subclasses. Remember that the function getClass takes an object as argument and returns its
actual class (see Section 22.1.2); for example, the getClass function applied to an object of
the form < ’c123 : MidSizeCar | ... > returns MidSizeCar, and not Car. Finally, notice
the use of matching equations of the form t := t’ in the condition (see Section 4.3).

The return of a rented car is specified by the rules below. The first rule handles the case in
which the car is returned on time, that is, the current date is smaller than or equal to the due
date, and therefore the deposit is greater than or equal to the amount due. Notice that the
rate and discount to be used in the calculation of the amount due are those at pick-up time,
which are stored as attributes of the Rental object.

crl [on-date-car-return] :

< U : Customer | cash : M >

< I : Car | >

< A : Rental | customer : U, car : I, rate : Rt, discount : Dscnt,

pickUpDate : Ppdt, dueDate : Ddt, deposit : Dpst >

< V : Store | payments : Pmnts, cars : (I, IS),

customers : (U, SS), calendar : C, rentals : (A, RS) >

< C : Calendar | date : Today >

=> < U : Customer | cash : M + sd(Dpst, Amnt) >

< I : Car | available : true >

< V : Store | rentals : RS,

payments : (if Pmnts[U] == undefined *** no record for customer

then Pmnts[U -> Amnt]

else Pmnts[U -> ((Pmnts[U]) + Amnt)]

fi) >

< C : Calendar | >

if (Today <= Ddt) /\ Amnt := sd(Rt, Dscnt) * sd(Today, Ppdt) .

In this case, the deposit is greater than the amount due and therefore part of the deposit needs
to be reimbursed. Note also that the Store object keeps a record of the amount of money
spent by each customer in the store, and thus it must be updated accordingly. We can see how
the Rental object disappears in the righthand side of the rules: it is removed from the set of
rentals known to the store and the availability of the car is restored.

The second rule deals with the case in which the car is returned late. The amount to be
paid is calculated at drop-off time, but the rate and discount to be used, those at pick-up time,
may have changed when returning the car.

22.5. EXAMPLE: EXTENDED RENT-A-CAR STORE 539

crl [late-car-return] :

< U : Customer | debt : M >

< I : Car | >

< A : Rental | customer : U, car : I, rate : Rt, discount : Dscnt,

pickUpDate : Ppdt, dueDate : Ddt, deposit : Dpst >

< V : Store | payments : Pmnts, penalty : Pnlt, rentals : (A, RS),

cars : (I, IS), customers : (U, SS), calendar : C >

< C : Calendar | date : Today >

=> < U : Customer | debt : M + sd(Amnt, Dpst) >

< I : Car | available : true >

< V : Store | rentals : RS,

payments : (if Pmnts[U] == undefined

then Pmnts[U -> Dpst]

else Pmnts[U -> ((Pmnts[U]) + Dpst)]

fi) >

< C : Calendar | >

if Ddt < Today *** it is returned late

/\ Amnt := (sd(Rt, Dscnt) * sd(Ddt, Ppdt))

+ (((sd(Rt, Dscnt) * sd(Today, Ddt))

* (100 + Pnlt)) quo 100) .

In this case the customer’s debt is increased by the portion of the amount due not covered by
the deposit.

Debts may be paid at any time, the only condition being that the amount paid is between
zero and the amount of money of the customer at that time.

crl [pay-debt] :

< V : Store |

payments : Pmnts, customers : (U, SS), calendar : C >

< U : Customer | debt : M, cash : N >

< C : Calendar | date : Today >

=> < V : Store | payments : Pmnts[U -> ((Pmnts[U]) + Amnt)] >

< U : Customer | debt : sd(M, Amnt), cash : sd(N, Amnt) >

< C : Calendar | >

if 0 < Amnt /\ Amnt <= N /\ Amnt <= M

[nonexec] .

We are assuming that, if there is a debt, then there has been a previous payment, and
therefore there is already a record for that customer.

The text says that customers who are late in returning a rented car or in paying their debts
“may” be suspended. However, nothing is said about the reasons for taking such a decision
or when they should be suspended, that is, a customer could be suspended right after the car
is returned without having paid all the charges, after some grace days, or never. In practice
there will be fixed criteria, as, for example, suspending customers that are two days late, or
two months.

The first rule deals with the case in which a customer has a pending debt, and the second
one handles the case in which a customer is late in returning a rented car.

crl [suspend-late-payers] :

< V : Store | suspended : US, customers : (U, SS) >

< U : Customer | debt : M >

=> < V : Store | suspended : (U, US) >

< U : Customer | >

if (not U in US) and M > 0 .

540 CHAPTER 22. OBJECT-ORIENTED MODULES

crl [suspend-late-returns] :

< V : Store | suspended : US, cars : (I, IS),

customers : (U, SS), calendar : C >

< U : Customer | >

< I : Car | >

< A : Rental | customer : U, car : I, dueDate : F >

< C : Calendar | date : Today >

=> < V : Store | suspended : (U, US) >

< U : Customer | >

< I : Car | >

< A : Rental | >

< C : Calendar | >

if (not U in US) and F < Today .

The upgrade in the status of a customer can then be modeled with the following rule:

crl [upgrade-to-preferred] :

< U : OccasionalCust | cash : M, debt : N >

< V : Store | threshold : Thrshld, payments : Pmnts,

customers : (U, SS), calendar : C >

< C : Calendar | date : Today >

=> < U : PreferredCust | cash : M, debt : N >

< V : Store | >

< C : Calendar | >

if (Pmnts[U]) >= Thrshld .

In this rule, a customer object U of subclass OccasionalCust becomes of subclass PreferredCust
when the accumulated amount of purchases exceeds the store’s threshold. The partial function
stored in the attribute payments gives us the amount of money spent by each customer. In
Maude, objects changing their classes must show all their attributes in the righthand sides of
the rules.

As in the simpler rent-a-car system, the presence of nonterminating rules and of rules with
new variables in the righthand side requires some kind of strategy for the execution of the
system; we give an example of such a strategy in the next section.

22.6 A strategy for sequential rule execution

Strategies are necessary for controlling the execution of rules that are not terminating, or that
do not satisfy the admissibility conditions discussed in Section 5.3. A simple but interesting
strategy may be one that allows us to execute a given sequence of rules, that is, to accomplish
sequentially a series of actions from a particular initial state. We introduce in this section such
a generic strategy and illustrate its use by applying it for executing the systems specified in
Sections 22.2 and 22.5. Dealing with strategies may become cumbersome, since we need to
handle terms and modules at different levels of reflection, and expressions may become quite
hard to read and handle. We show in this section how the upModule and upTerm functions and
the down command introduced in Section 21.4 can help in alleviating this difficulty.

A strategy is represented as a sequence of rule applications. We instantiate the predefined
module LIST with pairs formed by a rule label representing the rule to be applied, and a
substitution to partially instantiate the variables in such a rule before its application. The
pairs are obtained using the generic tuple construction described in Section 21.3.1. Thus, to
get the module expression LIST{Tuple{Qid, Substitution}}, given the predefined view Qid

and the parameterized view Tuple, that we have already used in the partial functions example
of Section 6.3.7, we only need to define a view Substitution from TRIV to META-LEVEL.

22.6. A STRATEGY FOR SEQUENTIAL RULE EXECUTION 541

(view Substitution from TRIV to META-LEVEL is

sort Elt to Substitution .

endv)

This construction is put to work in the module REW-SEQ below. The operator rewSeq in this
module takes the metarepresentation of a module, the metarepresentation of a term, and a list of
pairs (each formed by a rule label and a substitution); the term obtained in this way is rewritten
by applying the given rules sequentially, using in their applications their corresponding partial
substitutions.

(mod REW-SEQ is

including META-LEVEL .

protecting LIST{Tuple{Qid, Substitution}} .

var M : Module .

var T : Term .

var L : Qid .

var S : Substitution .

var LLS : List{Tuple{Qid, Substitution}} .

op rewSeq :

Module Term List{Tuple{Qid, Substitution}} -> [Term] .

rl [seq] : rewSeq(M, T, (L, S) LLS)

=> rewSeq(M,

getTerm(metaXapply(M, T, L, S, 0, unbounded, 0)), LLS) .

rl [seq] : rewSeq(M, T, nil) => T .

endm)

The rules to be applied here are part of the module given as first argument. The strategy
starts with the term given as initial state, which is replaced in each recursive call by the
term representing the state obtained after the application of the next rule in the sequence (see
Section 17.6.4). When all the rules have been applied, thus reaching the empty list as third
argument, the current state is returned as the resulting final state.

We illustrate the use of the rewSeq strategy by applying a sequence of rules on a configura-
tion of the rent-a-car system specified in Section 22.2. Let RENT-A-CAR-STORE be the name of
the module containing the specification of such a system, and let StoreConf be a configuration
of objects defined in the following module.

(fmod RENT-A-CAR-STORE-TEST is

pr RENT-A-CAR-STORE .

op StoreConf : -> Configuration [memo] .

eq StoreConf

= < ’C1 : Customer | cash : 5000, debt : 0, suspended : false >

< ’C2 : Customer | cash : 5000, debt : 0, suspended : false >

< ’A1 : EconomyCar | available : true, rate : 100 >

< ’A3 : MidSizeCar | available : true, rate : 150 >

< ’A5 : FullSizeCar | available : true, rate : 200 >

< ’C : Calendar | date : 0 > .

endfm)

The StoreConf configuration consists of two clients C1 and C2, three cars A1, A3 and A5, and a
calendar object C. Now, let StoreStrat be a sequence of pairs (rule label - substitution) that

542 CHAPTER 22. OBJECT-ORIENTED MODULES

defines the strategy declared in the following module as a sequence of actions:

(fmod REW-SEQ-TEST is

pr REW-SEQ .

op StoreStrat : -> List{Tuple{Qid, Substitution}} [memo] .

eq StoreStrat

= (’car-rental,

’U:Oid <- ’’C1.Qid ; *** size car A3 for 2 days

’I:Oid <- ’’A3.Qid ;

’NumDays:Int <- ’s_^2[’0.Zero] ;

’A:Oid <- ’’a0.Qid)

(’new-day, none) *** two days pass

(’new-day, none)

(’on-date-car-return, none) *** car A3 is returned

(’new-day, none)

(’car-rental, *** client C1 rents the full

’U:Oid <- ’’C1.Qid ; *** size car A5 for 1 day

’I:Oid <- ’’A5.Qid ;

’NumDays:Int <- ’s_^1[’0.Zero] ;

’A:Oid <- ’’a1.Qid)

(’new-day, none) *** two days pass

(’new-day, none)

(’late-car-return, none) *** car A5 is returned

(’new-day, none)

(’suspend-late-payers, none) *** client C1 is suspended

(’new-day, none)

(’new-day, none)

(’pay-debt, *** client C1 pays 100$
’Amnt:Int <- ’s_^100[’0.Zero]) .

endfm)

Comments on the righthand side of the code above explain the sequence of rules defining the
strategy. Basically, the execution trace specified consists of client C1 renting two cars, one of
which is returned on time and the other one is returned late. After the second car is returned,
the client is suspended for being late in his payments. The client then pays part of his debt.
Note how the passage of time is modeled by the application of the rule new-day.

Now, in order to execute the system specifications using this strategy, we just need to use
rewSeq to apply the given rules sequentially, using their corresponding partial substitutions in
their applications. Note how the first two arguments are metarepresented with the upModule

and upTerm functions, since they need to be the metarepresentations of the actual module and
term, respectively.

Maude> (down RENT-A-CAR-STORE :

rew rewSeq(upModule(RENT-A-CAR-STORE-TEST),

upTerm(RENT-A-CAR-STORE-TEST, StoreConf),

StoreStrat) .)

result Configuration :

< ’C : Calendar | date : 8 >

< ’C1 : Customer | suspended : true, debt : 140, cash : 4400 >

< ’C2 : Customer | suspended : false, debt : 0, cash : 5000 >

< ’A1 : EconomyCar | rate : 100, available : true >

< ’A3 : MidSizeCar | rate : 150, available : true >

< ’A5 : FullSizeCar | rate : 200, available : true >

22.6. A STRATEGY FOR SEQUENTIAL RULE EXECUTION 543

We can see in this configuration that eight days have passed, after which the client C1 is
suspended. The client C1 has paid a total of $600 (= 2 × 150 + 200 + 100), and has still a
debt of $140 (= 200 + 20 % 200 − 100).

The same strategy can be used to execute the extended specification in Section 22.5, con-
tained in a module named EXTENDED-RENT-A-CAR-STORE. First, we define a module with an
initial configuration ExtStoreConf.

(fmod EXTENDED-RENT-A-CAR-STORE-TEST is

pr EXTENDED-RENT-A-CAR-STORE .

op ExtStoreConf : -> Configuration [memo] .

eq ExtStoreConf

= < ’S : Store |

discounts :

(((Staff, EconomyCar), 20),

((Staff, MidSizeCar), 30),

((Staff, FullSizeCar), 40),

((OccasionalCust, EconomyCar), 0),

((OccasionalCust, MidSizeCar), 0),

((OccasionalCust, FullSizeCar), 0),

((PreferredCust, EconomyCar), 10),

((PreferredCust, MidSizeCar), 15),

((PreferredCust, FullSizeCar), 20)),

payments : empty, penalty : 0,

threshold : 1000, suspended : empty,

rates : ((EconomyCar, 100),

(MidSizeCar, 150),

(FullSizeCar, 200)),

customers : (’C1, ’C2),

cars : (’A1, ’A3, ’A5),

rentals : empty, calendar : ’C >

< ’C1 : Staff | cash : 5000, debt : 0 >

< ’C2 : OccasionalCust | cash : 5000, debt : 0 >

< ’A1 : EconomyCar | available : true >

< ’A3 : MidSizeCar | available : true >

< ’A5 : FullSizeCar | available : true >

< ’C : Calendar | date : 0 > .

endfm)

Now we execute a command completely analogous to the previous one, obtaining a resulting
state that shows how, after eight days, client C1 has paid $500, and has a debt of $60.

Maude> (down EXTENDED-RENT-A-CAR-STORE :

rew rewSeq(upModule(EXTENDED-RENT-A-CAR-STORE),

upTerm(EXTENDED-RENT-A-CAR-STORE, ExtStoreConf),

StoreStrat) .)

result Configuration :

< ’A1 : EconomyCar | available : true >

< ’A3 : MidSizeCar | available : true >

< ’A5 : FullSizeCar | available : true >

< ’C : Calendar | date : 8 >

< ’C1 : Staff | cash : 4500, debt : 60 >

< ’C2 : OccasionalCust | cash : 5000, debt : 0 >

< ’S : Store | calendar : ’C,

cars : (’A1, ’A3, ’A5),

544 CHAPTER 22. OBJECT-ORIENTED MODULES

customers : (’C1, ’C2),

discounts : (((OccasionalCust, EconomyCar), 0),

((OccasionalCust, FullSizeCar), 0),

((OccasionalCust, MidSizeCar), 0),

((PreferredCust, EconomyCar), 10),

((PreferredCust, FullSizeCar), 20),

((PreferredCust, MidSizeCar), 15),

((Staff, EconomyCar), 20),

((Staff, FullSizeCar), 40),

((Staff, MidSizeCar), 30)),

payments : (’C1, 500),

penalty : 0,

rates : ((EconomyCar, 100),

(FullSizeCar, 200),

(MidSizeCar, 150)),

rentals : empty,

suspended : ’C1,

threshold : 1000 >

22.7 Model checking a round-robin scheduling algorithm

In this section we present a specification of a round-robin scheduling algorithm, and the mutual
exclusion and guaranteed reentrance properties are proven about it. Both the algorithm and
the property guaranteing that all processes reenter their critical sections are parameterized
by the number of processes. We use Maude’s model checker to prove the mutual exclusion
and guaranteed reentrance properties. As we said in Section 21.2, to use the MODEL-CHECKER

module, or any other Core Maude module, we just need to make sure that it has been loaded;
we suggest loading the model-checker.maude file before starting Full Maude.

We first give a specification of natural numbers modulo. Since we want to be able to
have any number of processes, we define the NAT/ module parameterized by the functional
theory NZNAT#, which requires a constant of sort Nat. Thus, having a view, say 5 from TRIV

to NZNAT# mapping # to the natural number 5, the module expression NAT/{5} specifies the
natural numbers modulo 5.

(fth NZNAT# is

protecting NAT .

op # : -> NzNat .

endfth)

(fmod NAT/{N :: NZNAT#} is

sort Nat/{N} .

op ‘[_‘] : Nat -> Nat/{N} [ctor] .

op _+_ : Nat/{N} Nat/{N} -> Nat/{N} .

op _*_ : Nat/{N} Nat/{N} -> Nat/{N} .

vars N M : Nat .

ceq [N] = [N rem #] if N >= # .

eq [N] + [M] = [N + M] .

eq [N] * [M] = [N * M] .

endfm)

The round-robin scheduling algorithm is specified in the module RROBIN below. Processes
are represented as objects of class Proc, which may be in wait or critical mode, meaning

22.7. MODEL CHECKING A ROUND-ROBIN SCHEDULING ALGORITHM 545

that a process may be either in its critical section or waiting to enter into it. The process
getting the token, which is represented as the message go, can enter its critical section. Once
a process gets out of its critical section it forwards the token to the next process. The init

operator sets up the initial configuration for a given number of processes. Note that Nat/{N} is
made a subsort of Oid, making in this way natural numbers modulo N valid object identifiers.

(omod RROBIN{N :: NZNAT#} is

protecting NAT/{N} .

sort Mode .

ops wait critical : -> Mode [ctor] .

subsort Nat/{N} < Oid .

class Proc | mode : Mode .

msg go : Nat/{N} -> Msg .

var N : Nat .

rl [enter] :

go([N])

< [N] : Proc | mode : wait >

=> < [N] : Proc | mode : critical > .

rl [exit] :

< [N] : Proc | mode : critical >

=> < [N] : Proc | mode : wait >

go([s(N)]) .

op init : -> Configuration .

op make-init : Nat/{N} -> Configuration .

ceq init = go([0]) make-init([N]) if s(N) := # .

ceq make-init([s(N)])

= < [s(N)] : Proc | mode : wait > make-init([N])

if N < # .

eq make-init([0]) = < [0] : Proc | mode : wait > .

endom)

For proving mutual exclusion and guaranteed reentrance, we declare the propositions inCrit
and twoInCrit in the module CHECK-RROBIN below (see Chapter 12 for a discussion on the use
of Maude’s model checker). The property inCrit takes a Nat/{N} as argument, thus making
this property parameterized by the number of processes, and is true when such a process is in
its critical section. The property twoInCrit is true if any two processes are in their critical
sections simultaneously. Mutual exclusion will be proved directly below, while for proving
guaranteed reentrance we use the auxiliary formula guaranteedReentrance, which allows us
to specify the property of all processes reentering their critical sections in exactly 2N steps, for
N the number of processes. For a formula F, nextIter F returns O...O F (where O denotes
the modal next operator), which specifies that the property is true in the next iteration, that
is, 2N steps later. Note that the expression 2 * # will become two times N once the module
is instantiated.

(omod CHECK-RROBIN{N :: NZNAT#} is

pr RROBIN{N} .

546 CHAPTER 22. OBJECT-ORIENTED MODULES

inc MODEL-CHECKER .

inc SATISFACTION .

ex LTL-SIMPLIFIER .

inc LTL .

subsort Configuration < State .

op inCrit : Nat/{N} -> Prop .

op twoInCrit : -> Prop .

var N : Nat .

vars X Y : Nat/{N} .

var C : Configuration .

var F : Formula .

eq < X : Proc | mode : critical > C |= inCrit(X) = true .

eq < Y : Proc | mode : critical > < Y : Proc | mode : critical > C

|= twoInCrit = true .

op guaranteedReentrance : -> Formula .

op allProcessesReenter : Nat -> Formula .

op nextIter_ : Formula -> Formula .

op nextIterAux : Nat Formula -> Formula .

eq guaranteedReentrance = allProcessesReenter(#) .

eq allProcessesReenter(s N)

= (inCrit([s N]) -> nextIter inCrit([s N])) /\

allProcessesReenter(N) .

eq allProcessesReenter(0) = inCrit([0]) -> nextIter inCrit([0]) .

eq nextIter F = nextIterAux(2 * #, F) .

eq nextIterAux(s N, F) = O nextIterAux(N, F) .

eq nextIterAux(0, F) = F .

endom)

Note that the LTL formula describing the guaranteedReentrance property is not a single
LTL formula, but an infinite parametric family of formulas

guaranteedReentrance = {allProcessesReenter(n) | n ∈ N}.

The use of equations in the above CHECK-RROBIN parameterized module allows us to define this
infinite family of formulas by means of a few recursive equations. When this module is instanti-
ated for a concrete value of n, we then obtain the concrete LTL formula allProcessesReenter(n)
for that n.

We now prove mutual exclusion and guaranteed reentrance for the case of five processes
using the model checker.

(view 5 from NZNAT# to NAT is

op # to term 5 .

endv)

Maude> (reduce in CHECK-RROBIN{5} :

modelCheck(init, [] ~ twoInCrit) .)

22.7. MODEL CHECKING A ROUND-ROBIN SCHEDULING ALGORITHM 547

result Bool :

true

Maude> (reduce in CHECK-RROBIN{5} :

modelCheck(init, [] guaranteedReentrance) .)

result Bool :

true

Of course the answer depends on the property checked and is not always true. The following
example shows how the model checker gives a counterexample as result when trying to prove
that, for a configuration of five processes, process [1] is in its critical section three steps after
it was in it.

Maude> (red in CHECK-RROBIN{5} :

modelCheck(init, [] (inCrit([1]) -> O O O inCrit([1]))) .)

result ModelCheckResult :

counterexample(

{go([0]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : critical > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([1]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : critical >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([2]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : critical > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit},

{go([3]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : critical >

<[4]: Proc | mode : wait >, ’exit}

{go([4]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : critical >, ’exit}

{go([0]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : critical > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([1]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

548 CHAPTER 22. OBJECT-ORIENTED MODULES

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : critical >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([2]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : critical > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit})

22.8 From object-oriented modules to system modules

The best way to understand classes and class inheritance in Full Maude is by making explicit
the full structure of an object-oriented module, which is left somewhat implicit by the syntactic
conventions adopted for them. Indeed, although object-oriented modules provide convenient
syntax for programming object-oriented systems, their semantics can be reduced to that of
system modules. We can regard the special syntax reserved for object-oriented modules as
syntactic sugar. In fact, each object-oriented module can be translated into a corresponding
system module whose semantics is by definition that of the original object-oriented module.

In the translation process, the most basic structure shared by all object-oriented modules
is made explicit by the CONFIGURATION functional module. The translation of a given object-
oriented module extends this structure with the classes, messages and rules introduced by the
module. For example, the following system module is the translation of the ACCOUNT module
introduced earlier. Note that a subsort Account of Cid is introduced. The purpose of this
subsort is to range over the class identifiers of the subclasses of Account. For the moment, no
such subclasses have been introduced; therefore, at present the only constant of sort Account

is the class identifier Account.

mod ACCOUNT is

protecting INT .

protecting QID .

including CONFIGURATION+ .

including CONFIGURATION .

sorts Account .

subsort Qid < Oid .

subsort Account < Cid .

op Account : -> Account .

op credit : Oid Int -> Msg [msg] .

op debit : Oid Int -> Msg [msg] .

op from_to_transfer_ : Oid Oid Int -> Msg [msg] .

op bal :_ : Int -> Attribute .

var A : Oid .

var B : Oid .

var M : Int .

var N : Int .

var N’ : Int .

var V@Account : Account .

var ATTS@0 : AttributeSet .

var V@Account1 : Account .

var ATTS@2 : AttributeSet .

rl [credit] :

22.8. FROM OBJECT-ORIENTED MODULES TO SYSTEM MODULES 549

credit(A, M)

< A : V@Account | bal : N, ATTS@0 >

=> < A : V@Account | bal : (N + M), ATTS@0 > .

crl [debit] :

debit(A, M)

< A : V@Account | bal : N, ATTS@0 >

=> < A : V@Account | bal : (N - M), ATTS@0 >

if N >= M = true .

crl [transfer] :

(from A to B transfer M)

< A : V@Account | bal : N, ATTS@0 >

< B : V@Account1 | bal : N’, ATTS@2 >

=> < A : V@Account | bal : (N - M), ATTS@0 >

< B : V@Account1 | bal : (N’ + M), ATTS@2 >

if N >= M = true .

endm

We can describe the desired transformation from an object-oriented module to a system
module as follows:5

• The module CONFIGURATION+ is imported, which in turn imports the module CONFIGURATION
from Section 8.1. It adds a function getClass which returns the actual class of the given
object, and also syntax for objects with no attributes <_:_| >.

mod CONFIGURATION+ is

protecting CONFIGURATION .

op <_:_| > : Oid Cid -> Object .

op class : Object -> Cid .

eq < O:Oid : C:Cid | > = < O:Oid : C:Cid | none > .

eq getClass(< O:Oid : C:Cid | A >) = C:Cid .

endm

• For each class declaration of the form class C | a1:S1, . . . ,an:Sn, the following is
introduced: a subsort C of sort Cid, a constant C of sort C, and declarations of operations

ai : : Si -> Attribute

for each attribute ai.

• For each subclass relation C < D a subsort declaration

subsort C < D .

is introduced, and the set of attributes for objects of class C is completed with those of
D.

• The system modules resulting from the transformation have the special features supported
in Core Maude for object-based programming explained in Chapter 8. Specifically, the
msg attribute is added to message declarations starting with the msg keyword.

• The rewrite rules are modified to make them applicable to all objects of the given classes
and of their subclasses, that is, not only to objects whose class identifiers are those explic-
itly given. The rules are then “inherited” by all objects in their subclasses by replacing

5We have simplified the transformation of object-oriented modules into system modules that originally ap-
peared in [104].

550 CHAPTER 22. OBJECT-ORIENTED MODULES

the class identifiers in the objects in the rules by variables of the corresponding class
sort. Variables of sort AttributeSet are also introduced, to range over the additional
attributes that may appear in objects of a subclass. That is, each object expression
< O : C | . . . > appearing in a rule is translated into < O : X | . . . , Atts >,
where the new variable X is declared of sort C, and the new variable Atts has sort
AttributeSet.

• The rewrite rules are modified to give the user the possibility of not mentioning in a
given rule those attributes of an object that are not relevant for that rule. To explain
the transformation, let −−→a : v denote the attribute-value pairs a1 : v1, . . . , an : vn, where −→a
are the attribute identifiers of a given class C (after completing it with all the attributes

in its superclasses) having
−→
S as the corresponding sorts of values prescribed for those

attributes. Then, in object-oriented modules we allow rules where the attributes for an
object O, mentioned in the lefthand and righthand sides of a rule, need not exhaust all
the object’s attributes, but can instead be in any of two arbitrary subsets of the object’s
attributes. We can picture this as follows

. . . 〈O : C | −−−→al : vl,
−−−−→
ab : vb〉 . . . −→ . . . 〈O : C |

−−−−→
ab : vb′,−−−−→ar : vr〉 . . .

where
−→
al are the attributes appearing only on the left,

−→
ab are the attributes appearing on

both sides, and −→ar are the attributes appearing only on the right. In the transformation
into a system module, this rule is translated into

. . . 〈O : X | −−−→al : vl,
−−−−→
ab : vb,−−−→ar : x,

−−−→
ac : x′, Atts〉 . . .

−→ . . . 〈O : X | −−−→al : vl,
−−−−→
ab : vb′,−−−−→ar : vr,

−−−→
ac : x′, Atts〉 . . .

where X is a variable of sort C, −→ac are the attributes defined in the class C that do not

appear in
−→
al ,
−→
ab, or −→ar, the −→x and

−→
x′ are new variables of the appropriate sorts, and Atts

matches the remaining attribute-value pairs.

The rewrite rules given in the original ACCOUNT module are interpreted here—according to
the conventions already explained—in a form that can be inherited by subclasses of Account

that could be defined later. Thus, SavingAccount inherits the rewrite rules for crediting
and debiting accounts, and for transferring funds between accounts that had been defined for
Account.

Let us illustrate the treatment of class inheritance with the system module resulting from
the transformation of the module SAVING-ACCOUNT introduced previously.

mod SAVING-ACCOUNT is

including CONFIGURATION+ .

including CONFIGURATION .

including ACCOUNT .

sorts SavingAccount .

subsort SavingAccount < Cid .

subsort SavingAccount < Account .

op SavingAccount : -> SavingAccount .

op rate :_ : Int -> Attribute .

endm

Note that by translating a rule like credit above

rl [credit] :

22.8. FROM OBJECT-ORIENTED MODULES TO SYSTEM MODULES 551

credit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : (N + M) > .

into its corresponding transformed form

rl [credit] :

credit(A, M)

< A : V0@:Account | bal : N, V1@:AttributeSet >

=> < A : V0@:Account | bal : (N + M), V1@:AttributeSet > .

it is guaranteed that the rule will be applicable to objects of class Account as well as of any of
its subclasses.

Note also that a rule like change-age (discussed in Section 22.1.4)

rl [change-age] :

< O : Person | >

to O : new age A

=> < O : Person | age : A > .

is translated into a rule like

rl [change-age] :

< O : V0@:Person | name : V1:String, age : V2:Nat,

account : V3:Oid, V4@:AttributeSet >

to O : new age A

=> < O : V0@:Person | age : A, name : V1:String,

account : V3:Oid, V4@:AttributeSet > .

With this translation we allow the rule to be applied to objects in subclasses of Person. Fur-
thermore, we guarantee that it is only applied to well-formed objects, that is, to objects with
all the required attributes.

See [44] for a detailed explanation of the transformation of object-oriented modules into
system modules and how their semantics is by definition that of the original object-oriented
module.

552 CHAPTER 22. OBJECT-ORIENTED MODULES

Part III

Reference

553

Chapter 23

Complete List of Maude
Commands

In this chapter we use curly bracket pairs, ‘{’ and ‘}’, to enclose optional syntax.

23.1 Command line flags

The following command line flags are supported.

- -help
Displays information on the usage of the Maude command and its line flags.

- -version
Displays the Maude version number.

-no-mixfix
Turns off mixfix printing; useful if Maude is being run by some other program that does
not want to deal with the intricacies of mixfix parsing.

-ansi-color, -no-ansi-color
By default ANSI escape codes for color and other effects are disabled if the standard
output is not a terminal or the TERM environment variable is set to dumb. These flags
allow the default behavior to be overridden.

-tecla, -no-tecla
By default Tecla-based command line editing is disabled if the standard output is not a
terminal or the TERM environment variable is set to dumb or emacs. These flags allow the
default behavior to be overridden.

-no-prelude
Causes Maude not to read in the standard prelude.

-batch
Disables control-C handling.

555

556 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

-interactive
Pretends to be interactive, and enables control-C handling even though standard output
is not a terminal.

-xml-log=file-name
Generates an XML log for selected commands in the given file.

-no-banner
Causes Maude not to show the welcome banner at start up.

-random-seed=number
Specifies the natural number number in the range [0, 232 − 1] as the seed for the pseudo-
random number generator random in module RANDOM (see Section 7.3). The default seed
is 0.

-no-advise
Switches off advisories at start up.

-always-advise
Disables the possibility of turning advisories off.

-no-wrap
Disables the automatic line wrapping of output.

-print-to-stderr
Causes the output of the print attribute to be set to stderr rather than stdout.

-erewrite-loop-mode
Causes Maude to use external object rewriting for loop mode.

-show-pid
Print process id to stderr before printing banner.

-allow-processes
Allow running arbitrary executables.

-allow-files
Allow operations on files.

-trust
Allow all potentially risky capabilities.

23.2 Rewriting commands

reduce {in module :} term .
Causes the specified term to be reduced using the equations and membership axioms in
the given module. reduce may be abbreviated to red. If the in clause is omitted, the
current module is assumed. For examples, see Section 4.9.

rewrite {[bound]} {in module :} term .
Causes the specified term to be rewritten using the rules, equations, and membership

23.2. REWRITING COMMANDS 557

axioms in the given module. The default interpreter for rules applies them using a rule-
fair top-down (lazy) strategy and stops when the number of rule applications reaches the
given bound. No rule will be applied if an equation can be applied. If the in clause is
omitted, the current module is assumed. If the upper bound clause is omitted, infinity is
assumed. rewrite may be abbreviated to rew. For examples, see Section 5.4.1.

frewrite {[bound {,number}]} {in module :} term .
Like the previous command, causes the specified term to be rewritten using the rules,
equations, and membership axioms in the given module. But now the default interpreter
for rules applies them using a rule- and position-fair strategy and stops when the number
of rule applications reaches the given bound. This strategy causes multiple passes over
the term, with at most number rule rewrites taking place at each position. If the in clause
is omitted, the current module is assumed. If the upper bound clause is omitted, infinity
is assumed. If the number of rewrites per position is omitted, 1 is assumed. frewrite
may be abbreviated to frew. For examples, see Section 5.4.2.

Unlike rewrite, which uses a leftmost outermost strategy for applying rules and reduces
the whole term with equations after each successful rule rewrite, frewrite attempts to be
position fair by making a number of depth-first traversals of the term. On each traversal,
each position that existed at the start of the traversal is entitled to at most number rule
rewrites when its turn comes around. After a rule rewrite succeeds, only the subterm
that was rewritten is reduced with equations in order to avoid destroying positions that
have not yet had their turn for the current traversal. Traversals are made until bound
rule rewrites have been made, or until no more rewrites are possible. When operators
have the assoc or iter attributes, term depth and positions are relative to the flattened
or compact form of the term, respectively. Thus, fair rewriting treats a whole stack of an
iter operator as a single position for the purposes of position fairness.

The are a couple of caveats with frewrite:

• If position-fair rewriting stops in mid traversal, then the sort of the (incompletely re-
duced) result has not yet been calculated and is printed as (sort not calculated).

• Position-fair rewriting is not substitution fair; this is particularly apparent if you
have a multiset of messages and objects, as in Section 8.2.

erewrite {[bound {,number}]} {in module :} term .
Works like the frewrite command and in addition it allows messages to be exchanged
with external objects that do not reside in the configuration. It is abbreviated to erew.

continue {number} .
Attempts to continue rewriting the result of the last rewriting command using the rules,
equations, and membership axioms, stopping if the upper bound on the number of rule ap-
plications is reached. This command is only usable if the current module has not changed
since the last rewriting command, and the last rewriting command was not reduce. If
no upper bound clause is given, infinity is assumed. In the case where the last rewriting
command was frewrite, the number given to the continue command increases the bound
on the number of traversals, leaving the number of rewrites per position unchanged. In
particular, considerable extra information about the current traversal is saved by the
frewrite command so that, for example,

frewrite [n, k] t .

continue m .

558 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

produces the same final answer as

frewrite [s, k] t .

when s = n + m. For an erewrite command, the same state information is preserved as
for frewrite, but in this case nothing can be guaranteed, due to the interaction with the
external environment.

loop {in module :} term . (deprecated)
This command is used to initialize the read-eval-print loop in a module importing LOOP-MODE

(see Section 18.4). The specified term is rewritten as far as possible using the rules, equa-
tions, and membership axioms in the given module. If the result has a loop constructor
symbol at the top, then it becomes the current state of the loop; also, the list of quoted
identifiers in the output position of the loop constructor is printed as a sequence of iden-
tifiers.

(identifier*) (deprecated)
This command is used to input a list of identifiers to the loop in a module importing
LOOP-MODE (see Section 18.4). If the current module has not changed since the last
rewriting command, the result of previous rewrites has a loop constructor symbol at the
top, and the last rewriting command was not reduce then:

1. the sequence of identifiers in the parentheses is converted into a list of quoted iden-
tifiers and is placed under the input position of the loop constructor;

2. a nil list of quoted identifiers is placed under the output position of the loop con-
structor;

3. the new term is rewritten as far as possible using the rules, equations, and member-
ship axioms in the module to which the term belongs; and

4. if the new result has a loop constructor symbol at the top, the list of quoted identifiers
in the output position of the loop constructor is printed as a sequence of identifiers.

set clear rules on . / set clear rules off .
Normally, each rewrite or frewrite command and each loop mode invocation resets the
rule state for each symbol. For most symbols the rule state consists of the next rule to
be executed in a round-robin scheme but for counter symbols the rule state consists of
the next number to rewrite to. Setting clear rules to off means the rule state will not be
reset between commands.

23.3 Matching commands

Matching commands are used to directly invoke the rewriting engine’s term pattern matcher.
They can be useful for figuring out exactly what subjects can be matched by a complex pattern.

match {[number]} {in module :} pattern <=? subject-term {such that condition} .
Performs straightforward matching in the given module. This kind of matching is used
by the engine for applying membership axioms. The result is a list of at most number
matching substitutions such that the subject term matches the pattern and the substi-
tution satisfies the optional condition (whose syntactic form is the same as the one of
conditions for conditional equations and memberships; see Section 4.3). If the upper
bound clause is omitted, infinity is assumed. For examples, see Section 4.9.

23.4. SEARCHING COMMANDS 559

xmatch {[number]} {in module :} pattern <=? subject-term {such that condition}
.
Works similarly to the previous command, except that it performs matching with exten-
sion for those theories that need it (those including the assoc or iter attributes). If the
subject term (after theory normalization) has a symbol f from an extension theory on
top, only a piece of the top theory layer with f on top need be matched. This kind of
matching is used by the engine for applying equations and rules in order to accurately
simulate equivalence class rewriting. The result is a list of all matches satisfying the given
condition. If only part of the subject was matched, that part is given. For examples, see
Sections 4.8 and 4.9.

23.4 Searching commands

search {[bound {,depth}]} {in module :} subject searchtype pattern {such that
condition} .
Performs a breadth-first search for rewrite proofs starting at subject to a final state that
matches pattern and satisfies an optional condition (whose syntactic form is the same
as the one of conditions for conditional equations and memberships; see Section 4.3).
Possible values for searchtype are

=>1 one step proof
=>+ one or more steps proof
=>* zero or more steps proof
=>! only canonical final states, that cannot be further rewritten,

are allowed as solutions

The optional bound argument provides an upper bound in the number of solutions to be
found; if it is omitted, infinity is assumed.

The optional depth argument indicates the maximum depth of the search. If it is omitted,
infinity is assumed. It is also possible to give a depth bound without giving a bound on
the number of solutions returned by requesting a search of the form search [,m]

The search type =>1 is an abbreviation of the search type =>+ with the depth bound set
to 1.

As usual, if the in clause is omitted, the current module is assumed.

For examples, see Section 5.4.3.

show search graph .
Displays the search graph generated by the last search.

show path number .
Displays the path to a given state, identified by the number, in a search graph.

show path labels number .
Works like the command above, but only shows labels of applied rules instead of the full
path.

560 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

23.5 Strategic rewriting commands

srewrite {[bound]} {in module :} subject by strategyexpr .
Causes the specified term to be rewritten according to the given strategy in the given
module. The command performs an exhaustive fair search for all the strategy solutions,
unless the optional bound on the number of solutions is specified. If the in clause is
omitted, the current module is assumed. srewrite may be abbreviated to srew.

For examples, see Section 10.1.

dsrewrite {[bound]} {in module :} subject by strategyexpr .
Like the previous command, but solutions are searched depth-first. dsrewite may be
abbreviated to dsrew.

For more details, see Section 10.4.

23.6 Unification, variants, and narrowing commands

{irredundant} unify {[bound]} {in module :} term1 =? term’ 1 { /\ . . . /\ termk

=? term’ k } .
Computes a complete set of order-sorted unifiers modulo the (supported) equational ax-
ioms in the given module for the provided unification problem. If the cardinality of the set
of unifiers is greater than the specified bound, the unifiers beyond that bound are omitted.
The module can be any module or theory declared in the current Maude session; as usual,
if the in clause is omitted, the current module is used. If the keyword irredundant is
used, a minimal set of unifiers is returned.

For examples, see Section 13.4.

{filtered} variant unify {[bound]} {in module :} term1 =? term’ 1 { /\ . . . /\ termk

=? term’ k } {such that term”1, . . ., term”n irreducible}.
Computes a complete set of order-sorted unifiers modulo the equations declared with the
variant attribute (which must satisfy the finite variant property) plus the (supported)
equational axioms in the given module for the provided unification problem. It may
be necessary to satisfy an optional irreducibility condition on extra terms term”1, . . .,
term”n. If the cardinality of the set of unifiers is greater than the specified bound, the
unifiers beyond that bound are omitted. The module can be any module or theory declared
in the current Maude session; as usual, if the in clause is omitted, the current module is
used. If the keyword filtered is used, a minimal set of unifiers is returned.

For more details, see Section 14.9.

variant match {[bound]} {in module :} term1 <=? term’ 1 { /\ . . . /\ termk <=?
term’ k } {such that term”1, . . ., term”n irreducible} .
Computes a complete set of order-sorted matches modulo the equations declared with the
variant attribute (which must satisfy the finite variant property) plus the (supported)
equational axioms in the given module for the provided matching problem. It may be nec-
essary to satisfy an optional irreducibility condition on extra terms term”1, . . ., term”n.
If the cardinality of the set of matchers is greater than the specified bound, the matchers
beyond that bound are omitted. The module can be any module or theory declared in the
current Maude session; as usual, if the in clause is omitted, the current module is used.

For more details, see Section 14.13.

23.7. SMT COMMANDS 561

get {irredundant} variants {[bound]} {in module :} term {such that term”1, . . .,
term”n irreducible} .
Compute incrementally a set of most general variants of the given term in the (supported)
equational theory of the given module, where the equations of interest must be declared
with the variant attribute. The keyword irredundant is useful for theories that do
have the finite variant property, since it will provide the set of most general variants
of the given term. If the cardinality of the set of variants is greater than the specified
bound, the variants beyond that bound are omitted. It may be necessary to satisfy an
optional irreducibility condition on extra terms term”1, . . ., term”n. The module can be
any module or theory declared in the current Maude session; as usual, if the in clause is
omitted, the current module is used.

For examples and more details, see Section 14.4.

{f}vu-narrow {[bound {,depth}]} {in module :} pattern1 searchtype pattern2 {such
that term”1, . . ., term”n irreducible} .
Performs a breadth-first narrowing search using variant-based unification starting at an
initial state pattern1 (a term with variables) to a final state (a term with variables,
possibly shared with the initial term) that unifies pattern2 and satisfies an optional irre-
ducibility condition on extra terms term”1, . . ., term”n. If the letter f is added at the
beginning, a folding narrowing search is used instead. Possible values for searchtype are
(but their meaning differ from that of the search command of Section 5.4.3)

=>1 one step proof
=>+ one or more steps proof
=>* zero or more steps proof
=>! only canonical final states, that cannot be further narrowed,

are allowed as solutions

The optional bound argument provides an upper bound in the number of solutions to be
found; if it is omitted, infinity is assumed.

The optional depth argument indicates the maximum depth of the search. If it is omitted,
infinity is assumed. It is also possible to give a depth bound without giving a bound on the
number of solutions returned by requesting a search of the form vu-narrow [,m]

The search type =>1 is an abbreviation of the search type =>+ with the depth bound set
to 1.

As usual, if the in clause is omitted, the current module is assumed.

For examples, see Section 15.6.

23.7 SMT commands

check {in module :} term .
Cause the connected SMT solver to be queried with the specified term, containing only
constants and operator from the smt.maude signatures. If the in clause is omitted, the
current module is assumed.

For examples and more details, see Section 16.

562 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

23.8 Tracing commands

Tracing produces detailed information about each rewrite performed and each conditional
rewrite attempted. Since this typically results in an unmanageably huge volume of output,
there are commands to control what is actually displayed.

set trace on . / set trace off .
These commands turn tracing on and off. If tracing is turned on, all trace information
will be generated internally, even if none of it is displayed, thus considerably slowing the
speed of interpretation.

set trace condition on . / set trace condition off .
Determines whether the evaluations of conditions are traced.

set trace whole on . / set trace whole off .
Determines whether the whole term is printed before and after a rewrite. Regarding
strategy definitions, it determines whether the subject term is printed in each trace.

set trace substitution on . / set trace substitution off .
Determines whether the substitution is printed.

set trace mb on . / set trace mb off .
Determines whether membership axiom applications are printed.

set trace eq on . / set trace eq off .
Determines whether equation applications are printed.

set trace rl on . / set trace rl off .
Determines whether rule applications are printed.

set trace sd on . / set trace sd off .
Determines whether strategy definition applications are printed.

set trace select on . / set trace select off .
Determines whether only trace information for selected operator symbols is printed (rather
than all symbols).

trace select symbols . / trace deselect symbols .
Selects/deselects operator symbols and labels from the current module for tracing with
the select option. Examples:

trace select foo bar baz .

trace deselect baz .

trace exclude modules . / trace include modules .
Controls which modules are traced. Examples:

trace exclude META-LEVEL .

trace include MY-MOD1 MY-MOD2 .

set trace rewrite on . / set trace rewrite off .
Determines whether the redex and its replacement are printed.

23.9. PRINT ATTRIBUTE COMMANDS 563

set trace body on . / set trace body off .
Determines whether the “start of rewrite” line (i.e., the one beginning with *’s) and
the body of the equation/rule/membership/strategy defintion being used are printed; if
turned off, just the label and the substitution are printed. By setting both body and
rewrite to off (see previous command), these options reduce a trace to a list of labels
much like that produced by the show path labels number command.

set trace builtin on . / set trace builtin off .
Determines whether trace information for built-in operator symbols is printed.

23.9 Print attribute commands

In print attribute mode, when a statement is executed, the items in its print attribute are
printed, with variables taking their value in the current substitution.

set print attribute on . / set print attribute off .
These commands turn print attribute mode on and off. It is off by default.

set print attribute newline on . / set print attribute newline off .
These commands determine whether a newline is printed following the items of a print
attribute. By default a newline is printed (even if there are no items).

Note that print attribute mode is like trace mode, break mode, and profile mode in that
in this mode all execution takes the slow path. This is true even if no print attributes are
encountered.

23.10 Print option commands

set print mixfix on . / set print mixfix off .
Controls whether operators with mixfix syntax are printed in either mixfix or prefix
form. User-defined syntax is supported for pretty-printing, even though it is not currently
supported for parsing. It is sometimes advantageous to have uniform prefix notation for
output; for example, if the output is going to be postprocessed by some other tool. Default
is on.

set print graph on . / set print graph off .
If on, terms that are internally represented by graphs (currently, result terms together
with terms being reduced and terms in substitutions during tracing) are printed as graph
representations rather than as terms, together with the number of operator symbols in
the full term. This can be useful in some pathological cases where the size of the term is
exponential on the size of the graph. Default is off.

set print flattened on . / set print flattened off .
Controls whether arguments under operators with the associative attribute are printed
in flattened form or not. Default is on.

set print with parentheses on . / set print with parentheses off .
If on, mixfix terms are printed with additional parentheses to make grouping explicit.
Default is off.

564 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

set print with aliases on . / set print with aliases off .
Controls if variables aliases are used. Default is on.

set print number on . / set print number off .
Controls if special output convention for natural numbers is used. Default is on.

set print rational on . / set print rational off .
Controls if special output convention for rational numbers is used. Default is on.

set print color on . / set print color off .
Controls if reduction status coloring is used. Default is off.

set print format on . / set print format off .
Controls if format attributes are obeyed. Default is on.

set print conceal on . / set print conceal off .
Controls if argument hiding is used. Default is off.

print conceal symbols . / print reveal symbols .
Controls which operators have their arguments hidden.

set print constants with sorts on . / set print constants with sorts off .
Controls whether constants c of sort s are printed as (c).s even if desambiguation is not
strictly needed. Default is off.

23.11 Show option commands

set show stats on . / set show stats off .
Determines whether the number of rewrites is printed with the results of the reduce,
rewrite, and continue commands in Section 23.2. Default is on.

set show loop stats on . / set show loop stats off .
As above but for loop mode.

set show timing on . / set show timing off .
Determines whether the cpu and real time used during rewriting is printed with the results
of the reduce, rewrite, and continue commands in Section 23.2. Default is on.

set show loop timing on . / set show loop timing off .
As above but for loop mode.

set show command on . / set show command off .
Determines whether the full form of certain commands is printed before they are executed.
Default is on.

set show breakdown on . / set show breakdown off .
Determines whether a breakdown of rewrites is dispayed. Default is off.

set show gc on . / set show gc off .
Determines which message is printed when a garbage collect is performed. Default is off.

23.12. SHOW COMMANDS 565

set show advisories on . / set show advisories off .
Determines whether advisories are displayed. Default is on.

23.12 Show commands

show modules .
Lists the names of all the modules that are currently in the module database maintained
by the system.

show module {module} .
Prints out a representation of the given module (or of the current module if none is given).

show all {module} .
Prints out a flattened representation of the given module (or of the current module if
none is given).

show sorts {module} .
Prints out a representation of the sort and subsort information for the given module (or
for the current module if none is given).

show ops {module} .
Lists the operators in the given module (or in the current module if none is given).

show vars {module} .
Lists the variables in the given module (or in the current module if none is given).

show mbs {module} .
Lists the membership axioms in the given module (or in the current module if none is
given).

show eqs {module} .
Lists the equations in the given module (or in the current module if none is given).

show rls {module} .
Lists the rules in the given module (or in the current module if none is given).

show strats {module} .
Lists the strategies in the given module (or in the current module if none is given).

show sds {module} .
Lists the strategy definitions in the given module (or in the current module if none is
given).

show components {module} .
Lists the connected components (kinds) of the poset of sorts for the given module (or for
the current module if none is given).

show summary {module} .
Shows a summary of statistics for the context free grammar and term rewriting system
generated for the given module (or for the current module if none is given).

566 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

show views .
Lists the names of all the views that are currently in the view database maintained by
the system.

show view {view} .
Prints out the given view (or of the last view entered into the system if none is given).

23.13 Profiler commands

set profile on . / set profile off .
Turns profiling on and off. Default is off.

set clear profile on . / set clear profile off .
Controls whether profile is clear before each command. Default is on.

show profile {module} .
Shows current profile for the given module (or in the current module if none is given). It
shows both percentages and absolute rewrite counts.

23.14 Debugger commands

set break on . / set break off .
Controls whether break points are obeyed.

break select symbols . / break deselect symbols .
Selects/deselects operator symbols and labels from the current module for break points
with the select option. Examples:

break select foo bar baz .

break deselect baz .

resume .
Only usable from the debugger. Exits the debugger and resumes the current rewriting
activity.

abort .
Only usable from the debugger. Exits the debugger and abandons the current rewriting
activity.

step .
Only usable from the debugger. Performs a single step of the current rewriting activity
with tracing switched on.

where .
Only usable from the debugger. Prints the stack of pending rewrite tasks together with
explanations of how they arose.

Moreover, any command that involves the execution of rewriting or narrowing steps can be
prefixed by the debug word to drop into the debugger before the first step takes place. These
commands are reduce, rewrite, frewrite, erewrite, continue (in Section 23.2), search (in

23.15. MISCELLANEOUS COMMANDS 567

Section 23.4), srewrite, dsrewrite (in Section 23.5), variant unify, variant match, get
variants, vu-narrow and fvu-narrow (in Section 23.6).

23.15 Miscellaneous commands

parse {in module :} term .
Causes the specified term to be parsed using the signature of the given module. If the in
clause is omitted, the current module is assumed.

select module .
Selects a named module to be the current module. All commands that require a module
refer to the current module, unless a module is explicitly given. The current module is
usually the last module entered or used; for example, after the command show module

AMODULE, the AMODULE module becomes the current module.

set protect module on . / set protect module off .
Adds or removes the named module from the set of modules that are automatically
imported in protecting mode in every module.

set extend module on . / set extend module off .
Adds or removes the named module from the set of modules that are automatically
imported in extending mode in every module.

set include module on . / set include module off .
Adds or removes the named module from the set of modules that are automatically
imported in including mode in every module.

set verbose on . / set verbose off .
Controls display of extra information, depending on command. Default is off.

set clear memo on . / set clear memo off .
Controls whether the memoization tables are cleared before each command.

do clear memo { module } .
Clear the memoization tables of the given module (or of the current module if none is
given).

23.16 System level commands

These commands control system level activities. Unlike all the above commands they are not
followed by a period.

pwd
Prints the path of the working directory.

ls {flags} {directories}
Runs the UNIX ls command to list the files in the specified directories or working direc-
tory if none specified. The allowable flags depend on your local implementation of ls.
Example:

568 CHAPTER 23. COMPLETE LIST OF MAUDE COMMANDS

ls -lF /usr/bin/usr/local

ll Runs the common UNIX abbreviation ll (for ls -l).

cd directory-name
Changes the working directory to directory-name.

pushd directory-name
Saves the current working directory on a stack and then changes the working directory
to directory-name.

popd
Changes the working directory to that which is on the top of the directory stack and pops
the directory stack.

in file-name
Causes a specified file to be included at this point. For files specified by a bare file name,
it checks (with .maude, .fm, .obj extensions) if the filename is in one of these locations:
(a) the current directory; (b) the directories in the MAUDE_LIB environment variable, and
(c) the directory containing the executable. Otherwise, the full file name must be given,
together with a full path name if the file is not in the current working directory. The in

command may be nested, i.e., the included file may contain in commands. Example:

in ../Examples/foo.maude

Notice that compilation of operator declarations and statements is done lazily, so that the
module is not necessarily fully compiled when included. This implies that some warnings
and advisories will only show up when a reduction actually takes place in the module.
This also holds for a module that is entered by writing it in the prompt instead of a file.

load file-name
Performs the same job as in but does not produce detailed output as modules are entered.
Example:

load ../Examples/foo.maude

sload file-name
Performs the same job as load but loads the named file only if it has changed (determined
by the file system’s modify time) since it was last read (via in, load, sload or command
line argument).1 Example:

sload ../Examples/foo.maude

eof Causes the interpreter to respond as if it had reached the end of file.

quit
Causes the interpreter to exit.

1Note that since modify times are stored as seconds, there is a potential race condition if a file is modified,
loaded, and modified again within the space of a second, so sload is best used to load relatively static files
rather than machine generated/updated ones.

Chapter 24

Core Maude Grammar

This chapter describes the syntax of Maude using the following extended BNF notation: the
symbols ‘(’ and ‘)’ are used as metaparentheses; the symbol ‘|’ is used to separate alternatives;
square bracket pairs, ‘[’ and ‘]’, enclose optional syntax; ‘*’ indicates zero or more repetitions
of preceding unit; ‘+’ indicates one or more repetitions of preceding unit; and the string “x”
denotes x literally. As an application of this notation, A(, A)* indicates a non-empty list of A’s
separated by commas. Finally, %%% indicates comments in the syntactic description, as opposed
to comments in the Maude code.

24.1 The grammar

〈MaudeTop 〉 ::=

(〈SystemCommand 〉 | 〈Command 〉 | 〈DebuggerCommand 〉 |
〈Module 〉 | 〈Theory 〉 | 〈View 〉)+

〈SystemCommand 〉 ::= in 〈FileName 〉 | load 〈FileName 〉 | sload 〈FileName 〉 |
quit | eof | popd | pwd |
cd 〈Directory 〉 | push 〈Directory 〉 |
ls [〈LsFlag 〉] [〈Directory 〉]

〈Command 〉 ::= select 〈ModId 〉 . |
parse [in 〈ModId 〉 :] 〈Term 〉 . |
[debug] reduce [in 〈ModId 〉 :] 〈Term 〉 . |
[debug] rewrite [[〈Nat 〉]] [in 〈ModId 〉 :] 〈Term 〉 . |
[debug] frewrite [〈DoubleBound 〉] [in 〈ModId 〉 :

] 〈Term 〉 . |
[debug] erewrite [〈DoubleBound 〉] [in 〈ModId 〉 :]

〈Term 〉 . |
[debug] (srewrite | dsrewrite) [[〈Nat 〉]] [in 〈ModId 〉 :]

〈Term 〉 using 〈Strat 〉 . |
check [in 〈ModId 〉 :] 〈Term 〉 . |
(match | xmatch) [[〈Nat 〉]] [in 〈ModId 〉 :]

〈Term 〉 <=? 〈Term 〉 [such that 〈Condition 〉] . |
[debug] variant match [[〈Nat 〉]] [in 〈ModId 〉 :]

〈Term 〉 <=? 〈Term 〉 [such that 〈Condition 〉] . |

569

570 CHAPTER 24. CORE MAUDE GRAMMAR

[irredudant] unify [[〈Nat 〉]] [in 〈ModId 〉 :]
〈UnificationEquation 〉 (/\ 〈UnificationEquation 〉)* . |

[debug] [filtered] variant unify [[〈Nat 〉]] [in 〈ModId 〉 :]
〈UnificationEquation 〉 (/\ 〈UnificationEquation 〉)* . |

[debug] get [irredundant] variants [[〈Nat 〉]] [in 〈ModId 〉 :] 〈Term 〉 . |
[debug] (search | vu-narrow) [〈DoubleBound 〉] [in 〈ModId 〉 :]

〈Term 〉 〈SearchType 〉 〈Term 〉 [such that 〈Condition 〉] . |
[debug] continue 〈Nat 〉 . |
loop [in 〈ModId 〉 :] 〈Term 〉 . |
(〈TokenString 〉) |
trace (select | deselect | include | exclude)

(〈OpId 〉 | (〈OpForm 〉))+ . |
print (conceal | reveal) (〈OpId 〉 | (〈OpForm 〉))+ . |
break (select | deselect) (〈OpId 〉 | (〈OpForm 〉))+ . |
show 〈ShowItem 〉 [〈ModId 〉] . |
show view [〈ViewId 〉] . |
show modules . |
show views . |
show search graph . |
show path [labels] 〈Nat 〉 .

do clear memo [〈ModId 〉] . |
set 〈SetOption 〉 (on | off) .

〈DoubleBound 〉 ::= [〈Nat 〉 [, 〈Nat 〉]] | [, 〈Nat 〉]

〈SearchType 〉 ::= =>1 | =>+ | =>* | =>!

〈UnificationEquation 〉 ::= 〈Term 〉 =? 〈Term 〉

〈ShowItem 〉 ::= module | all | sorts | ops | vars | mbs |
eqs | rls | strats | sds | summary | kinds | profile

〈SetOption 〉 ::= show 〈ShowOption 〉 |
print 〈PrintOption 〉 |
trace [〈TraceOption 〉] |
break | verbose | profile |
clear (memo | rules | profile) |
protect 〈ModId 〉 |
extend 〈ModId 〉 |
include 〈ModId 〉

〈ShowOption 〉 ::= advise | stats | loop stats | timing |
loop timing | breakdown | command | gc

〈PrintOption 〉 ::= mixfix | flat | with parentheses |
with aliases | conceal | number | rat | color |
format | graph | attribute | attribute newline |
constants with sorts

24.1. THE GRAMMAR 571

〈TraceOption 〉 ::= condition | whole | substitution | select |
mbs | eqs | rls | sds | rewrite | body

〈DebuggerCommand 〉 ::= resume . | abort . | step . | where .

〈Module 〉 ::= fmod 〈ModId 〉 [〈ParameterList 〉] is 〈ModElt 〉* endfm |
mod 〈ModId 〉 [〈ParameterList 〉] is 〈ModElt’ 〉* endm |
smod 〈ModId 〉 [〈ParameterList 〉] is 〈SmodElt 〉* endsm

〈Theory 〉 ::= fth 〈ModId 〉 is 〈ModElt 〉* endfth |
th 〈ModId 〉 is 〈ModElt’ 〉* endth |
sth 〈ModId 〉 is 〈SmodElt 〉* endsth

〈View 〉 ::= view 〈ViewId 〉 [〈ParameterList 〉] from 〈ModExp 〉 to 〈ModExp 〉 is

〈ViewElt 〉*
endv

〈ParameterList 〉 ::= { 〈ParameterDecl 〉 (, 〈ParameterDecl 〉)* }

〈ParameterDecl 〉 ::= 〈ParameterId 〉 :: 〈ModExp 〉

〈ModElt 〉 ::= including 〈ModExp 〉 . |
extending 〈ModExp 〉 . |
protecting 〈ModExp 〉 . |
sorts 〈Sort 〉+ . |
subsorts 〈Sort 〉+ (< 〈Sort 〉+)+ . |
op 〈OpForm 〉 : 〈Type 〉* 〈Arrow 〉 〈Type 〉 [〈Attr 〉] . |
ops (〈OpId 〉 | (〈OpForm 〉))+ : 〈Type 〉* 〈Arrow 〉 〈Type 〉

[〈Attr 〉] . |
vars 〈VarId 〉+ : 〈Type 〉 . |
〈Statement 〉 [〈StatementAttr 〉] .

〈ViewElt 〉 ::= var 〈varId 〉+ : 〈Type 〉 . |
sort 〈Sort 〉 to 〈Sort 〉 . |
label 〈LabelId 〉 to 〈LabelId 〉 . |
op 〈OpForm 〉 to 〈OpForm 〉 . |
op 〈OpForm 〉 : 〈Type 〉* 〈Arrow 〉 〈Type 〉 to 〈OpForm 〉 . |
op 〈Term 〉 to term 〈Term 〉 . |
strat 〈StratId 〉 to 〈StratId 〉 . |
strat 〈StratId 〉 [: 〈Type 〉*] @ 〈Type 〉 to 〈StratId 〉 . |
strat 〈StratCall 〉 to expr 〈Strat 〉 .

〈ModExp 〉 ::= 〈ModId 〉 |
(〈ModExp 〉) |
〈ModExp 〉 + 〈ModExp 〉 |
〈ModExp 〉 * 〈Renaming 〉
〈ModExp 〉 { 〈ViewId 〉 (, 〈ViewId 〉)* }

〈Renaming 〉 ::= (〈RenamingItem 〉 (, 〈RenamingItem 〉)*)

572 CHAPTER 24. CORE MAUDE GRAMMAR

〈RenamingItem 〉 ::= sort 〈Sort 〉 to 〈Sort 〉 |
label 〈LabelId 〉 to 〈LabelId 〉 |
op 〈OpForm 〉 〈ToPartRenamingItem 〉 |
op 〈OpForm 〉 : 〈Type 〉* 〈Arrow 〉 〈Type 〉 〈ToPartRenamingItem 〉
strat 〈StratId 〉 to 〈StratId 〉 |
strat 〈StratId 〉 [: 〈Type 〉*] @ 〈Type 〉 to 〈StratId 〉 |

〈ToPartRenamingItem 〉 ::= to 〈OpForm 〉 [〈Attr 〉]

〈Arrow 〉 ::= -> | ~>

〈Type 〉 ::= 〈Sort 〉 | 〈Kind 〉

〈Kind 〉 ::= [〈Sort 〉 (, 〈Sort 〉)*]

〈Sort 〉 ::= 〈SortId 〉 | 〈Sort 〉 { 〈Sort 〉 (, 〈Sort 〉)* }

〈ModElt’ 〉 ::= 〈ModElt 〉 |
〈Statement’ 〉 [〈StatementAttr 〉] .

〈SmodElt 〉 ::= including 〈ModExp 〉 . |
extending 〈ModExp 〉 . |
protecting 〈ModExp 〉 . |
vars 〈VarId 〉+ : 〈Type 〉 . |
strats 〈StratId 〉+ [: 〈Type 〉*] @ 〈Type 〉 [〈StratAttr 〉] .

〈StratStatement 〉 [〈StatementAttr 〉] .

〈Statement 〉 ::= mb [〈Label 〉] 〈Term 〉 : 〈Sort 〉 |
cmb [〈Label 〉] 〈Term 〉 : 〈Sort 〉 if 〈Condition 〉 |
eq [〈Label 〉] 〈Term 〉 = 〈Term 〉 |
ceq [〈Label 〉] 〈Term 〉 = 〈Term 〉 if 〈Condition 〉

〈Statement’ 〉 ::= rl [〈Label 〉] 〈Term 〉 => 〈Term 〉 |
crl [〈Label 〉] 〈Term 〉 => 〈Term 〉 if 〈Condition’ 〉

〈StratStatement 〉 ::= sd 〈StratCall 〉 := 〈Strat 〉 |
csd 〈StratCall 〉 := 〈Strat 〉 if 〈Condition 〉

〈Label 〉 ::= [〈LabelId 〉] :

〈Condition 〉 ::= 〈ConditionFragment 〉 (/\ 〈ConditionFragment 〉)*

〈Condition’ 〉 ::= 〈ConditionFragment’ 〉
(/\ 〈ConditionFragment’ 〉)*

〈ConditionFragment 〉 ::= 〈Term 〉 = 〈Term 〉 | 〈Term 〉 := 〈Term 〉
| 〈Term 〉 : 〈Sort 〉

24.1. THE GRAMMAR 573

〈ConditionFragment’ 〉 ::= 〈ConditionFragment 〉 | 〈Term 〉 => 〈Term 〉

〈Attr 〉 ::=

[(assoc | comm |
[left | right] id: 〈Term 〉 |
idem | iter | memo | ditto |
config | obj | msg | ctor |
metadata 〈StringId 〉
strat (〈Nat 〉+) |
poly (〈Nat 〉+) |
frozen [(〈Nat 〉+)] |
prec 〈Nat 〉 |
gather ((e | E | &)+) |
format (〈Token 〉+) |
special (〈Hook 〉+))+]

〈StratAttr 〉 ::= [metadata 〈StringId 〉]

〈StatementAttr 〉 ::=

[(nonexec |
metadata 〈StringId 〉 |
label 〈LabelId 〉 |
print 〈PrintItem 〉*)+]

〈StatementAttrEq 〉 ::=

[(〈StatementAttr 〉 | otherwise | variant)+]

〈StatementAttrRl 〉 ::=

[(〈StatementAttr 〉 | narrowing)+]

〈PrintItem 〉 ::= 〈StringId 〉 | 〈VarId 〉 | 〈VarAndSortId 〉

〈Hook 〉 ::= id-hook 〈Token 〉 [(〈TokenString 〉)] |
(op-hook | term-hook) 〈Token 〉 (〈TokenString 〉)

〈Strat 〉 ::= idle | fail |
〈RuleApp 〉 | top(〈RuleApp 〉) |
〈Strat 〉 ? 〈Strat 〉 : 〈Strat 〉 |
〈TestVariant 〉 〈Term 〉 [such that 〈Condition 〉]
〈Strat 〉 ; 〈Strat 〉 |
〈Strat 〉 | 〈Strat 〉 |
〈Strat 〉 * |
〈MrewVariant 〉 〈Term 〉 [such that 〈Condition 〉] by 〈VarStratList 〉
〈StratCall 〉
〈Strat 〉 +

〈Strat 〉 or-else 〈Strat 〉
not(〈Strat 〉)

〈Strat 〉 !

try(〈Strat 〉)

574 CHAPTER 24. CORE MAUDE GRAMMAR

test(〈Strat 〉)

〈RuleApp 〉 ::= 〈LabelId 〉 [[〈Substitution 〉]] [{ 〈Strat 〉 (, 〈Strat 〉)* }]

〈Substitution 〉 ::= 〈VarId 〉 <- 〈Term 〉 |
〈Substitution 〉 , 〈Substitution 〉

〈StratCall 〉 ::= 〈StratId 〉 [()] |
〈StratId 〉 (〈Term 〉 (, 〈Term 〉)*)

〈VarStratList 〉 ::= 〈VarId 〉 using 〈Strat 〉 |
〈VarStratList 〉 , 〈VarStratList 〉

〈TestVariant 〉 ::= match | xmatch | amatch

〈MrewVariant 〉 ::= matchrew | xmatchrew | amatchrew

〈FileName 〉 %%% OS dependent

〈Directory 〉 %%% OS dependent

〈LsFlag 〉 %%% OS dependent

〈StringId 〉 %%% characters enclosed in double quotes "..."

〈ModId 〉 %%% simple identifier, by convention all capitals

〈ViewId 〉 %%% simple identifier, by convention capitalized

〈ParameterId 〉 %%% simple identifier, by convention single capital

〈SortId 〉 %%% simple identifier, by convention capitalized

〈VarId 〉 %%% simple identifier, by convention capitalized

〈VarAndSortId 〉 %%% an identifier consisting of a variable name

followed by a colon followed by a sort name

〈OpId 〉 %%% identifier possibly with underscores

〈OpForm 〉 ::= 〈OpId 〉 | (〈OpForm 〉) | 〈OpForm 〉+
〈Nat 〉 %%% a natural number

〈Term 〉 ::= 〈Token 〉 | (〈Term 〉) | 〈Term 〉+
〈Token 〉 %%% sequence of printable ASCII characters delimited by

whitespace. The symbols (,), [,], {, } and comma form

separate tokens themselves, unless backquoted

〈TokenString 〉 ::= 〈Token 〉 | (〈TokenString 〉) | 〈TokenString 〉*
〈LabelId 〉 %%% simple identifier

〈StratId 〉 %%% simple identifier

In parsing module expressions, instantiation has higher precedence than renaming, which
in turn has higher precedence than summation.

24.2 Synonyms

sort = sorts

subsort = subsorts

var = vars

24.2. SYNONYMS 575

Command only synonyms:

advise = advisory = advisories

alias = aliases

attr = attribute

cmd = command

cond = condition

cont = continue

dsrew = dsrewrite

eqs = eq

erew = erewrite

flat = flattened

frew = frewrite

irred = irreducible

kinds = components

label = labels

mbs = mb

nar = narrow

paren = parens = parentheses

q = quit

rat = rational

red = reduce

rew = rewrite

rls = rl = rule = rules

s.t. = such that

srew = srewrite

subst = substitution

sds = sd

Module only synonyms:

assoc = associative

ceq = cq

comm = commutative

config = configuration

ctor = constructor

ex = extending

id: = identity:

idem = idempotent

inc = including

iter = iterated

msg = message

obj = object

owise = otherwise

poly = polymorphic

prec = precedence

pr = protecting

strat = strategy %%% reduction strategy attribute

strats = strat %%% rewriting strategy declaration

576 CHAPTER 24. CORE MAUDE GRAMMAR

24.3 Lexical Issues

Tokens are sequences of printable ASCII characters delimited by white space, except that ‘(’,
‘)’, ‘[’, ‘]’, ‘{’, ‘}’, and ‘,’ are always considered as single character tokens, unless backquoted.

Single line comments are started by one of *** or ---, and ended by the end of line.
Multiline comments are started by ***(and ended by). Parentheses (whether backquoted or
not) must balance within multiline comments.

String identifiers use C backslash conventions [87, Section A2.5.2].

Bibliography

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986. Cited in 8.1.

[2] Gul Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based specification lan-
guage for probabilistic object systems. In A. Cerone and H. Wiklicky, editors, Pro-
ceedings Third Workshop on Quantitative Aspects of Programming Languages, QAPL’05,
Edinburgh, UK, April 2005, volume 153(2) of Electronic Notes in Theoretical Computer
Science, pages 213–239. Elsevier, 2006. http://www.sciencedirect.com/science/

journal/15710661. Cited in 1.4.

[3] Maŕıa Alpuente, Santiago Escobar, and José Iborra. Modular termination of basic nar-
rowing. In Andrei Voronkov, editor, Rewriting Techniques and Applications, 19th In-
ternational Conference, RTA 2008, Hagenberg, Austria, July 15-17, 2008, Proceedings,
volume 5117 of Lecture Notes in Computer Science, pages 1–16. Springer, 2008. Cited in

13.5.1.

[4] Maŕıa Alpuente, Moreno Falaschi, and Germán Vidal. Partial evaluation of functional
logic programs. ACM Transactions on Programming Languages and Systems, 20(4):768–
844, 1998. Cited in 15.1.

[5] Maŕıa Alpuente, José Iborra, and Santiago Escobar. Termination of narrowing revisited.
Theoretical Computer Science, 410(46):4608–4625, 2009. Cited in 13.5.1, 14.8, 5.

[6] Krzysztof R. Apt. Chapter 10 - Logic programming. In Jan Van Leeuwen, editor, Formal
Models and Semantics, Handbook of Theoretical Computer Science, pages 493 – 574.
Elsevier, Amsterdam, 1990. Cited in 15.6.

[7] Thomas Arts and Hans Zantema. Termination of logic programs using semantic unifi-
cation. In Maurizio Proietti, editor, Logic Programming Synthesis and Transformation,
5th International Workshop, LOPSTR’95, Utrecht, The Netherlands, September 20-22,
1995, Proceedings, volume 1048 of Lecture Notes in Computer Science, pages 219–233.
Springer, 1996. Cited in 15.1.

[8] Kyungmin Bae, Santiago Escobar, and José Meseguer. Abstract logical model checking
of infinite-state systems using narrowing. In Femke van Raamsdonk, editor, 24th Inter-
national Conference on Rewriting Techniques and Applications, RTA 2013, June 24-26,
2013, Eindhoven, The Netherlands, volume 21 of LIPIcs, pages 81–96. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2013. Cited in 13.5.2, 15.2, 15.7.

[9] David Basin, Manuel Clavel, and José Meseguer. Reflective metalogical frameworks. ACM
Transactions on Computational Logic, 5(3):528–576, 2004. Cited in 1.4.

577

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

578 BIBLIOGRAPHY

[10] Jan Bergstra and John Tucker. Characterization of computable data types by means
of a finite equational specification method. In J. W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The
Netherlands, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer
Science, pages 76–90. Springer, 1980. Cited in 1.1.2, 7.1.

[11] Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass. Ropes: An alternative
to strings. Softw. Pract. Exp., 25(12):1315–1330, 1995. Cited in 7.8.

[12] Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Pierre-Etienne Moreau. ELAN
from a rewriting logic point of view. Theoretical Computer Science, 285(2):155–185, 2002.
Cited in 1.7, 3.

[13] Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Christophe Ringeissen. Rewrit-
ing with strategies in ELAN: A functional semantics. Int. J. Found. Comput. Sci.,
12(1):69–95, 2001. Cited in 10.

[14] Christopher Bouchard, Kimberly A. Gero, Christopher Lynch, and Paliath Narendran. On
forward closure and the finite variant property. In Pascal Fontaine, Christophe Ringeissen,
and Renate A. Schmidt, editors, Frontiers of Combining Systems - 9th International
Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings, volume
8152 of Lecture Notes in Computer Science, pages 327–342. Springer, 2013. Cited in 14.2.

[15] Alexandre Boudet. Unification in a combination of equational theories: an efficient algo-
rithm. In Mark E. Stickel, editor, 10th International Conference on Automated Deduc-
tion, Kaiserslautern, FRG, July 24-27, 1990, Proceedings, volume 449 of Lecture Notes
in Computer Science, pages 292–307. Springer, 1990. Cited in 13.7.1.

[16] Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A new AC-unification algorithm
with an algorithm for solving systems of diophantine equations. In Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science (LICS 1990), pages 289–299.
IEEE Computer Society Press, June 1990. Cited in 13.7, 13.7.1, 13.7.3.

[17] Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35–132, 2000. Cited in

1.2, 3.5, 4, 4.3, 4.6, 4.7, 6.1.1, 13.5.1.

[18] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strate-
go/XT 0.17. A language and toolset for program transformation. Science of Computer
Programming, 72(1-2):52–70, 2008. Cited in 10.

[19] Roberto Bruni and José Meseguer. Generalized rewrite theories. In Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Lan-
guages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The
Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Com-
puter Science, pages 252–266. Springer, 2003. Cited in 1.2, 5.3, 6.1.1.

[20] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986. Cited in 13.7.3.

[21] Rod Burstall and Joseph A. Goguen. The semantics of Clear, a specification language. In
Dines Bjørner, editor, Abstract Software Specifications, 1979 Copenhagen Winter School,
January 22 - February 2, 1979, Proceedings, volume 86 of Lecture Notes in Computer
Science, pages 292–332. Springer, 1980. Cited in 6, 6.3, 21.3.1.

BIBLIOGRAPHY 579

[22] Fabricio Chalub and Christiano Braga. Maude MSOS tool. In Grit Denker and Car-
olyn Talcott, editors, Proceedings Sixth International Workshop on Rewriting Logic and
its Applications, WRLA 2006, Vienna, Austria, April 1–2, 2006, volume 176(4) of
Electronic Notes in Theoretical Computer Science, pages 3–17. Elsevier, 2007. http:

//www.sciencedirect.com/science/journal/15710661. Cited in 1.5.

[23] Andrew Cholewa, José Meseguer, and Santiago Escobar. Variants of variants and the
finite variant property. Technical report, Department of Computer Science, University of
Illinois at Urbana-Champaign, http://hdl.handle.net/2142/47117, 2014. Cited in 13.5.1,

14.2.

[24] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999. Cited in 12, 12.3, 12.3.

[25] Manuel Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metaprogram-
ming Applications. CSLI Publications, 2000. Cited in 17, 17.7.

[26] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and José F. Quesada. A tutorial on Maude. SRI International, March 2000,
http://maude.cs.illinois.edu/maude1/tutorial/. Cited in 17.7.

[27] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and José F. Quesada. Towards Maude 2.0. In Futatsugi [74], pages 294–315.
http://www.sciencedirect.com/science/journal/15710661. Cited in 9.3.1.

[28] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and José F. Quesada. Maude: specification and programming in rewriting
logic. Theoretical Computer Science, 285(2):187–243, 2002. Cited in 17.1, 17.7.

[29] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude, A High-Performance Logical Frame-
work, volume 4350 of Lecture Notes in Computer Science. Springer, 2007. Cited in 1.7, 1,

5.3, 9.3.2, 11.4, 12.5.

[30] Manuel Clavel, Francisco Durán, Steven Eker, and José Meseguer. Building equational
proving tools by reflection in rewriting logic. In Kokichi Futatsugi, Ataru T. Nakagawa,
and Tetsuo Tamai, editors, CAFE: An Industrial-Strength Algebraic Formal Method. El-
sevier, 2000. http://maude.cs.illinois.edu/papers/. Cited in 1.3, 1.4, 4.7, 6.1.1, 6.3.2.

[31] Manuel Clavel, Francisco Durán, Steven Eker, José Meseguer, and Mark-Oliver Stehr.
Maude as a formal meta-tool. In Jeannette M. Wing, Jim Woodcock, and Jim Davies,
editors, FM’99 — Formal Methods, World Congress on Formal Methods in the Develop-
ment of Computing Systems, Toulouse, France, September 20–24, 1999 Proceedings, Vol-
ume II, volume 1709 of Lecture Notes in Computer Science, pages 1684–1703. Springer,
1999. Cited in 1.4.

[32] Manuel Clavel and José Meseguer. Reflection and strategies in rewriting logic. In
Meseguer [105], pages 126–148. http://www.sciencedirect.com/science/journal/

15710661. Cited in 17.

[33] Manuel Clavel and José Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285(2):245–288, 2002. Cited in 1.1.2, 17.

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://maude.cs.illinois.edu/maude1/tutorial/
http://www.sciencedirect.com/science/journal/15710661
http://maude.cs.illinois.edu/papers/
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

580 BIBLIOGRAPHY

[34] Manuel Clavel, José Meseguer, and Miguel Palomino. Reflection in membership equa-
tional logic, many-sorted equational logic, Horn logic with equality, and rewriting logic. In
Gadducci and Montanari [76], pages 91–107. http://www.sciencedirect.com/science/
journal/15710661. Cited in 1.1.2, 17.

[35] Alain Colmerauer, Henry Kanoui, and Michel van Caneghem. Étude et réalisation d’un
système Prolog. techreport, Groupe d’Intelligence Artificielle, U.E.R. de Luminy, Univer-
sité d’Aix-Marseille II, 1979. Cited in 10.5.

[36] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: how to get rid
of some algebraic properties. In Jürgen Giesl, editor, Term Rewriting and Applications,
16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings,
volume 3467 of Lecture Notes in Computer Science, pages 294–307. Springer, 2005. Cited

in 13.5.1, 14.2, 14.2, 14.8, 15.2.

[37] Evelyn Contejean and Hervé Devie. An efficient incremental algorithm for solving systems
of linear diophantine equations. Information and Computation, 113(1):143–172, 1994.
Cited in 7.15, 7.15, 13.7.

[38] Evelyne Contejean, Claude Marché, and Xavier Urbain. CiME, 2004. Available at http:
//cime.lri.fr/. Cited in 13.6, 13.7.

[39] Nachum Dershowitz. Goal solving as operational semantics. In International Logic Pro-
gramming Symposium, Portland, OR, pages 3–17. MIT Press, December 1995. Cited in

15.1.

[40] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Se-
mantics, pages 243–320. North-Holland, 1990. Cited in 4.8.

[41] Arie van Deursen. Executable Language Definitions. PhD thesis, University of Amster-
dam, 1994. Cited in 18.3.

[42] Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Prototyping: An
Algebraic Specification Approach. World Scientific, 1996. Cited in 3, 10, 18.3.

[43] Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic approach.
In Andrzej Tarlecki, editor, Mathematical Foundations of Computer Science 1991, 16th
International Symposium, MFCS’91, Kazimierz Dolny, Poland, September 9-13, 1991,
Proceedings, volume 520 of Lecture Notes in Computer Science, pages 141–150. Springer,
1991. Cited in 7.15.

[44] Francisco Durán. A Reflective Module Algebra with Applications to the Maude Lan-
guage. PhD thesis, University of Málaga, Spain, 1999. http://maude.cs.illinois.

edu/papers/. Cited in 6, 21, 22.8.

[45] Francisco Durán. The extensibility of Maude’s module algebra. In Teodor Rus, editor,
Algebraic Methodology and Software Technology, 8th International Conference, AMAST
2000, Iowa City, Iowa, USA, May 20-27, 2000, Proceedings, volume 1816 of Lecture Notes
in Computer Science, pages 422–437. Springer, 2000. Cited in 21.

[46] Francisco Durán, Salvador Lucas, Claude Marché, José Meseguer, and Xavier Urbain.
Proving operational termination of membership equational programs. Higher-Order and
Symbolic Computation, 21(1-2):59–88, 2008. Cited in 1.3, 4.7.

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://cime.lri.fr/
http://cime.lri.fr/
http://maude.cs.illinois.edu/papers/
http://maude.cs.illinois.edu/papers/

BIBLIOGRAPHY 581

[47] Francisco Durán, Salvador Lucas, and José Meseguer. MTT: The Maude termination
tool (system description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney,
Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer
Science, pages 313–319. Springer, 2008. Cited in 1.3, 4.7, 21.5.

[48] Francisco Durán and José Meseguer. A Church-Rosser checker tool for Maude equational
specifications. Manuscript, Computer Science Laboratory, SRI International, 2000. http:
//www.lcc.uma.es/~duran/CRC/. Cited in 1.3.

[49] Francisco Durán and José Meseguer. An extensible module algebra for Maude. In Kirchner
and Kirchner [89], pages 174–195. http://www.sciencedirect.com/science/journal/
15710661. Cited in 21.

[50] Francisco Durán and José Meseguer. The Maude specification of Full Maude. Technical
report, Computer Science Laboratory, SRI International, February 1999. http://maude.
cs.illinois.edu/papers/. Cited in 21.

[51] Francisco Durán and José Meseguer. Parameterized theories and views in Full Maude 2.0.
In Futatsugi [74], pages 316–338. http://www.sciencedirect.com/science/journal/

15710661. Cited in 21.

[52] Francisco Durán and José Meseguer. Structured theories and institutions. Theoretical
Computer Science, 309(1-3):357–380, 2003. Cited in 6.

[53] Francisco Durán and José Meseguer. Maude’s module algebra. Science of Computer
Programming, 66(2):125–153, 2007. Cited in 6.

[54] Francisco Durán and José Meseguer. A Church-Rosser checker tool for conditional order-
sorted equational Maude specifications. In Peter Csaba Ölveczky, editor, 8th International
Workshop on Rewriting Logic and its Applications, WLRA 2010, Paphos, Cyprus, March
20-21, 2010, Proceedings, volume 6381 of Lecture Notes in Computer Science, pages 69–
85. Springer, 2010. Cited in 1.3, 4.7, 6.1.1, 13.5.3, 21.5.

[55] Francisco Durán and José Meseguer. A Maude coherence checker tool for conditional
order-sorted rewrite theories. In Peter Csaba Ölveczky, editor, 8th International Work-
shop on Rewriting Logic and its Applications, WLRA 2010, Paphos, Cyprus, March 20-
21, 2010, Proceedings, volume 6381 of Lecture Notes in Computer Science, pages 86–103.
Springer, 2010. Cited in 1.3, 13.5.3.

[56] Francisco Durán and José Meseguer. On the Church-Rosser and coherence properties of
conditional order-sorted rewrite theories. Journal of Logic and Algebraic Programming,
81(7-8):816–850, 2012. Cited in 1.3, 6.1.1, 13.5.3, 21.5.

[57] Steven Eker. Fast matching in combination of regular equational theories. In Meseguer
[105], pages 90–109. http://www.sciencedirect.com/science/journal/15710661.
Cited in 1.1.3, 13.7.3.

[58] Steven Eker. Term rewriting with operator evaluation strategies. In Kirchner and Kirch-
ner [89], pages 311–330. http://www.sciencedirect.com/science/journal/15710661.
Cited in 4.4.7, 4.4.7, 17.

http://www.lcc.uma.es/~duran/CRC/
http://www.lcc.uma.es/~duran/CRC/
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://maude.cs.illinois.edu/papers/
http://maude.cs.illinois.edu/papers/
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

582 BIBLIOGRAPHY

[59] Steven Eker. Associative-commutative rewriting on large terms. In Robert Nieuwenhuis,
editor, Rewriting Techniques and Applications, 14th International Conference, RTA 2003,
Valencia, Spain, June 9-11, 2003, Proceedings, volume 2706 of Lecture Notes in Computer
Science, pages 14–29. Springer, 2003. Cited in 1.1.3.

[60] Steven Eker. Unification in Maude, January 2007. Talk at the “Protocol eXchange
Seminar”, Naval Postgraduate School. Available at http://maude.cs.illinois.edu/

talks/eker-unification.pdf. Cited in 13.7.

[61] Steven Eker, Narciso Mart́ı-Oliet, José Meseguer, and Alberto Verdejo. Deduction, strate-
gies, and rewriting. In Myla Archer, Thierry Boy de la Tour, and César Muñoz, editors,
Proceedings of the 6th International Workshop on Strategies in Automated Deduction,
STRATEGIES 2006, Seattle, WA, USA, August 16, 2006, volume 174(11) of Electronic
Notes in Theoretical Computer Science, pages 3–25. Elsevier, 2007. Cited in 10.

[62] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL model
checker. In Gadducci and Montanari [76], pages 143–168. http://www.sciencedirect.
com/science/journal/15710661. Cited in 12.3, 12.4.

[63] Santiago Escobar. Functional logic programming in maude. In Shusaku Iida, José
Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software - Essays
Dedicated to Kokichi Futatsugi, volume 8373 of Lecture Notes in Computer Science, pages
315–336. Springer, 2014. Cited in 15.8, 15.8.

[64] Santiago Escobar. Multi-paradigm programming in maude. In Vlad Rusu, editor, Rewrit-
ing Logic and Its Applications - 12th International Workshop, WRLA 2018, Held as a
Satellite Event of ETAPS, Thessaloniki, Greece, June 14-15, 2018, Proceedings, volume
11152 of Lecture Notes in Computer Science, pages 26–44. Springer, 2018. Cited in 15.8,

15.8.

[65] Santiago Escobar, Joe Hendrix, Catherine Meadows, and José Meseguer. Diffie-Hellman
cryptographic reasoning in the Maude-NRL protocol analyzer. In Monica Nesi and Ralf
Treinen, editors, Proceedings Second International Workshop on Security and Rewriting
Techniques, SecReT 2007, Paris, France, June 29, 2007, 2007. Cited in 13.6.

[66] Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-based inference
system for the NRL Protocol Analyzer and its meta-logical properties. Theoretical Com-
puter Science, 367(1-2):162–202, 2006. Cited in 13.5.2.

[67] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Cryptographic
protocol analysis modulo equational properties. In Alessandro Aldini, Gilles Barthe,
and Roberto Gorrieri, editors, Foundations of Security Analysis and Design V, FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer Science,
pages 1–50. Springer, 2009. Cited in 13.5.2.

[68] Santiago Escobar and José Meseguer. Symbolic model checking of infinite-state systems
using narrowing. In Franz Baader, editor, Term Rewriting and Applications, 18th Inter-
national Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, volume
4533 of Lecture Notes in Computer Science, pages 153–168. Springer, 2007. Cited in 13.5.2,

15.2, 15.7.

[69] Santiago Escobar, José Meseguer, and Ralf Sasse. Effectively checking the finite variant
property. In Andrei Voronkov, editor, Rewriting Techniques and Applications, 19th In-
ternational Conference, RTA 2008, Hagenberg, Austria, July 15-17, 2008, Proceedings,

http://maude.cs.illinois.edu/talks/eker-unification.pdf
http://maude.cs.illinois.edu/talks/eker-unification.pdf
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

BIBLIOGRAPHY 583

volume 5117 of Lecture Notes in Computer Science, pages 79–93. Springer, 2008. Cited

in 13.5.1, 14.2.

[70] Santiago Escobar, José Meseguer, and Ralf Sasse. Variant narrowing and equational
unification. In Grigore Roşu, editor, Proceedings 7th International Workshop on Rewriting
Logic and its Applications, WRLA 2008, Budapest, Hungary, March 29–30, 2008, volume
238(3) of Electronic Notes in Theoretical Computer Science, pages 88–102. Elsevier, 2009.
http://www.sciencedirect.com/science/journal/15710661. Cited in 13.5.1.

[71] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant narrowing and optimal
variant termination. Journal of Logic and Algebraic Programming, 81(7-8):898–928, 2012.
Cited in 13.5.1, 14.8, 15.2, 15.6, 15.7.

[72] François Fages. Associative-commutative unification. Journal of Symbolic Computation,
3(3):257–275, 1987. Cited in 13.7.1.

[73] M. Fay. First-order unification in an equational theory. In W. H. Joyner, editor, Proceed-
ings of the 4th Workshop on Automated Deduction, Austin, Texas, USA, pages 161–167.
Academic Press, 1979. Cited in 15.1.

[74] Kokichi Futatsugi, editor. Proceedings Third International Workshop on Rewriting Logic
and its Applications, WRLA 2000, Kanazawa, Japan, September 18–20, 2000, vol-
ume 36 of Electronic Notes in Theoretical Computer Science. Elsevier, 2000. http:

//www.sciencedirect.com/science/journal/15710661. Cited in 27, 51.

[75] Kokichi Futatsugi and Razvan Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998. Cited in 1.7.

[76] Fabio Gadducci and Ugo Montanari, editors. Proceedings Fourth International Workshop
on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, September 19–21,
2002, volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2004.
http://www.sciencedirect.com/science/journal/15710661. Cited in 34, 62, 136.

[77] Joseph Goguen and José Meseguer. Eqlog: Equality, types and generic modules for logic
programming. In Douglas DeGroot and Gary Lindstrom, editors, Logic Programming,
Functions, Relations and Equations, pages 295–363. Prentice-Hall, 1986. Cited in 15.1.

[78] Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theoretical Computer
Science, 105:217–273, 1992. Cited in 3.8, 4.

[79] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Introducing OBJ. In Joseph A. Goguen and Grant Malcolm, editors, Software
Engineering with OBJ: Algebraic Specification in Action, pages 3–167. Kluwer Academic
Publishers, 2000. Cited in 2, 1.1.2, 1.7, 3.9.1, 3.9.2, 4.4.7, 6, 6.3, 21.3.1.

[80] Michael Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994. Cited in 15.1, 15.8.

[81] Joe Hendrix and José Meseguer. On the completeness of context-sensitive order-sorted
specifications. Technical Report UIUCDCS-R-2007-2812, Computer Science Dept., Uni-
versity of Illinois at Urbana-Champaign, February 2007. Cited in 4.4.7, 4.7.

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

584 BIBLIOGRAPHY

[82] Joe Hendrix and José Meseguer. Order-sorted equational unification revisited. In
Günter Kniesel and Jorge Sousa Pinto, editors, Proceedings Ninth International Work-
shop on Rule-Based Programming, RULE 2008, Hagenberg Castle, Austria, volume
290 of Electronic Notes in Theoretical Computer Science, pages 37–50. Elsevier, 2012.
http://www.sciencedirect.com/science/journal/15710661. Cited in 13.6.

[83] Joe Hendrix, José Meseguer, and Hitoshi Ohsaki. A sufficient completeness checker for lin-
ear order-sorted specifications modulo axioms. In Ulrich Furbach and Natarajan Shankar,
editors, Automated Reasoning - Third International Joint Conference, IJCAR 2006, Seat-
tle, Washington, August 17 - 20, 2006, Proceedings, volume 4130 of Lecture Notes in
Artificial Intelligence, pages 151–155. Springer, 2006. Cited in 1.3, 4.7, 20.1.2.

[84] Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert A.
Kowalski, editors, Fifth Conference on Automated Deduction, CADE 1980, Les Arcs,
France, July 8-11, 1980, Proceedings, volume 87 of Lecture Notes in Computer Science,
pages 318–334. Springer, 1980. Cited in 13.5.1, 14.8, 15.1, 15.3, 15.6.

[85] Jean-Pierre Jouannaud, Claude Kirchner, and Hélène Kirchner. Incremental construc-
tion of unification algorithms in equational theories. In Josep Dı́az, editor, Automata,
Languages and Programming, 10th Colloquium, ICALP83, Barcelona, Spain, July 18-22,
1983, Proceedings, volume 154 of Lecture Notes in Computer Science, pages 361–373.
Springer, 1983. Cited in 2, 13.5.1, 14.8, 15.3, 5.

[86] D. Kapur and P. Narendran. Matching, Unification and Complexity. ACM SIGSAM
Bulletin, 21(4):6–9, 1987. Cited in 14.9.

[87] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second
Edition. Prentice Hall, 1988. Cited in 3.1, 7.8, 24.3.

[88] Dohan Kim, Christopher Lynch, and Paliath Narendran. Reviving basic narrowing mod-
ulo. In Andreas Herzig and Andrei Popescu, editors, Frontiers of Combining Systems -
12th International Symposium, FroCoS 2019, London, UK, September 4-6, 2019, Pro-
ceedings, volume 11715 of Lecture Notes in Computer Science, pages 313–329. Springer,
2019. Cited in 14.8.

[89] Claude Kirchner and Hélène Kirchner, editors. Proceedings Second International Work-
shop on Rewriting Logic and its Applications, WRLA’98, Pont-à-Mousson, France,
September 1–4, 1998, volume 15 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1998. http://www.sciencedirect.com/science/journal/15710661. Cited in

49, 58.

[90] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. A rewriting based model
of probabilistic distributed object systems. In Elie Najm, Uwe Nestmann, and Perdita
Stevens, editors, Formal Methods for Open Object-Based Distributed Systems: 6th IFIP
WG 6.1 International Conference, FMOODS 2003, Paris, France, November 19.21, 2003.
Proceedings, volume 2884 of Lecture Notes in Computer Science, pages 32–46. Springer,
2003. Cited in 1.4.

[91] Joop M. I. M. Leo. A general context-free parsing algorithm running in linear time on
every LR(k) grammar without using lookahead. Theor. Comput. Sci., 82(1):165–176,
1991. Cited in 3.9.

[92] Éduard Lucas. Recréations mathématiques. Albert Blanchard, 2 edition, 1992. Cited in

10.

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

BIBLIOGRAPHY 585

[93] Salvador Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1):1–61, 1998. Cited in 4.7,

15.5.

[94] Salvador Lucas. Termination of rewriting with strategy annotations. In Robert Nieuwen-
huis and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, 8th International Conference, LPAR 2001, Havana, Cuba, December 3-7,
2001, Proceedings, volume 2250 of Lecture Notes in Artificial Intelligence, pages 669–684.
Springer, 2001. Cited in 4.7.

[95] Salvador Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002. Cited in 4.7.

[96] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems
— Specification. Springer, 1992. Cited in 12.

[97] Narciso Mart́ı-Oliet, José Meseguer, and Alberto Verdejo. Towards a strategy language for
Maude. In Narciso Mart́ı-Oliet, editor, Proceedings of the Fifth International Workshop
on Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, March 27-April
4, 2004, volume 117 of Electronic Notes in Theoretical Computer Science, pages 417–441.
Elsevier, 2004. Cited in 10.

[98] Narciso Mart́ı-Oliet, José Meseguer, and Alberto Verdejo. Towards a strategy language
for Maude. In Narciso Mart́ı-Oliet, editor, Proceedings Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, March 27–28, 2004,
volume 117 of Electronic Notes in Theoretical Computer Science, pages 417–441. Elsevier,
2005. http://www.sciencedirect.com/science/journal/15710661. Cited in 21.

[99] Narciso Mart́ı-Oliet, José Meseguer, and Alberto Verdejo. A rewriting semantics for
Maude strategies. In Grigore Roc,u, editor, Proceedings of the Seventh International
Workshop on Rewriting Logic and its Applications, WRLA 2008, Budapest, Hungary,
March 29-30, 2008, volume 238(3) of Electronic Notes in Theoretical Computer Science,
pages 227–247. Elsevier, 2009. Cited in 10.

[100] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. Cited in 7.5.

[101] Ian A. Mason and Carolyn L. Talcott. Actor languages: Their syntax, semantics, trans-
lation, and equivalence. Theoretical Computer Science, 228(1), 1999. Cited in 2.

[102] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992. Cited in 1.2, 5.3.

[103] José Meseguer. Multiparadigm logic programming. In Hélène Kirchner and Giorgio Levi,
editors, Algebraic and Logic Programming, Third International Conference, Volterra,
Italy, September 2–4, 1992, Proceedings, volume 632 of Lecture Notes in Computer Sci-
ence, pages 158–200. Springer, 1992. Cited in 15.1.

[104] José Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Directions
in Concurrent Object-Oriented Programming, pages 314–390. The MIT Press, 1993. Cited

in 22.1.4, 5.

http://www.sciencedirect.com/science/journal/15710661

586 BIBLIOGRAPHY

[105] José Meseguer, editor. Proceedings First International Workshop on Rewriting Logic
and its Applications, WRLA’96, Asilomar, California, September 3–6, 1996, volume 4
of Electronic Notes in Theoretical Computer Science. Elsevier, 1996. http://www.

sciencedirect.com/science/journal/15710661. Cited in 32, 57.

[106] José Meseguer. Membership algebra as a logical framework for equational specification.
In Francesco Parisi-Presicce, editor, Recent Trends in Algebraic Development Techniques,
12th International Workshop, WADT’97, Tarquinia, Italy, June 3–7, 1997, Selected Pa-
pers, volume 1376 of Lecture Notes in Computer Science, pages 18–61. Springer, 1998.
Cited in 1.2, 3.5, 4, 4.3, 4.7.

[107] José Meseguer. Strict coherence of conditional rewriting modulo axioms. Technical Re-
port http://hdl.handle.net/2142/50288, Computer Science Department, University
of Illinois at Urbana-Champaign, August 2014. Cited in 2.

[108] José Meseguer. Order-sorted rewriting and congruence closure. In Proc. FOSSACS 2016,
volume 9634 of Lecture Notes in Computer Science, pages 493–509. Springer, 2016. Cited

in 16.6.

[109] José Meseguer. Variant-based satisfiability in initial algebras. Sci. Comput. Program.,
154:3–41, 2018. Cited in 16.6.

[110] José Meseguer. Generalized rewrite theories, coherence completion, and symbolic meth-
ods. J. Log. Algebraic Methods Program., 110, 2020. Cited in 13.5.2.

[111] José Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John Reynolds, editors, Algebraic Methods in Semantics, pages 459–541.
Cambridge University Press, 1985. Cited in 1.3.

[112] José Meseguer, Joseph A. Goguen, and Gert Smolka. Order-sorted unification. J. Symbolic
Computation, 8(4):383–413, 1989. Cited in 13.6.

[113] José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Equational abstractions. In
Franz Baader, editor, Automated Deduction - CADE-19. 19th International Conference
on Automated Deduction, Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings,
volume 2741 of Lecture Notes in Computer Science, pages 2–16. Springer, 2003. Cited in

11.4.

[114] José Meseguer and Prasanna Thati. Symbolic reachability analysis using narrowing and
its application to verification of cryptographic protocols. Higher-Order and Symbolic
Computation, 20(1-2):123–160, 2007. Cited in 13.5.2, 15.1, 15.2, 15.3, 1, 15.4, 15.7.

[115] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979. Cited in 16.6.

[116] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT mod-
ulo theories: From an abstract davis–putnam–logemann–loveland procedure to dpll(T).
Journal of the ACM, 53(6):937–977, 2006. Cited in 16.

[117] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
pages 371–443. Elsevier and MIT Press, 2001. Cited in 3.

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

BIBLIOGRAPHY 587

[118] Vivek Nigam, Carolyn Talcott, and Abraão Aires Urquiza. Towards the automated ver-
ification of cyber-physical security protocols: Bounding the number of timed intruders.
In ESORICS 2016: European Symposium on Research in Computer Security, 2016. Cited

in 17.6.12.

[119] Vivek Nigam, Carolyn Talcott, and Abraão Aires Urquiza. Symbolic timed trace equiva-
lence. In Foundations of Security, Protocols, and Equational Reasoning: Essays Dedicated
to Catherine A. Meadows, LNCS, pages 89–111. Springer, 2019. Cited in 17.6.12.

[120] Peter Csaba Ölveczky and José Meseguer. Specification of real-time and hybrid systems
in rewriting logic. Theoretical Computer Science, 285(2):359–405, 2002. Cited in 2, 22.2.

[121] Peter Csaba Ölveczky and José Meseguer. Specification and analysis of real-time systems
using Real-Time Maude. In T. Margaria and M. Wermelinger, editors, Fundamental
Approaches to Software Engineering, 7th International Conference, FASE 2004, Held as
Part of ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume
2984 of Lecture Notes in Computer Science, pages 354–358. Springer, 2004. Cited in 1.3,

1.4, 1.5.

[122] Peter Csaba Ölveczky and José Meseguer. Semantics and pragmatics of Real-Time
Maude. Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007. Cited in 1.3,

1.4, 1.5, 2, 22.2.

[123] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233–264, 1981. Cited in 21.5.

[124] Gordon Plotkin. Building-in equational theories. In Bernard Meltzer and Donald Michie,
editors, Machine Intelligence 7, Proceedings of the Seventh Annual Machine Intelligence
Workshop, Edinburgh, 1971, pages 73–90. Edinburgh University Press, 1972. Cited in

13.5.3.

[125] Loic Pottier. Minimal solutions of linear diophantine systems: bounds and algorithms.
In Ronald V. Book, editor, Rewriting Techniques and Applications, 4th International
Conference, RTA-91, Como, Italy, April 10-12, 1991, Proceedings, volume 488 of Lecture
Notes in Computer Science, pages 162–173. Springer, 1991. Cited in 7.15.

[126] Uday S. Reddy. Narrowing as the operational semantics of functional languages. In Pro-
ceedings of the 1985 Second Symposium on Logic Programming, Boston, Massachusetts,
July 15-18, 1985, pages 138–151. IEEE Computer Society Press, 1985. Cited in 15.1.

[127] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal
of the Association for Computing Machinery, 12(1):23–41, 1965. Cited in 13.5.3.

[128] C. Rocha and J. Meseguer. Five isomorphic boolean theories and four equational decision
procedures. Technical Report UIUCDCS-R-2007-2818, CS Dept., University of Illinois at
Urbana-Champaign, February 2007. Available at http://hdl.handle.net/2142/11295.
Cited in 1.

[129] Camilo Rocha and José Meseguer. Theorem proving modulo based on boolean equa-
tional procedures. In Rudolf Berghammer, Bernhard Möller, and Georg Struth, editors,
Relations and Kleene Algebra in Computer Science, 10th International Conference on
Relational Methods in Computer Science, and 5th International Conference on Applica-
tions of Kleene Algebra, RelMiCS/AKA 2008, Frauenwörth, Germany, April 7-11, 2008.

http://hdl.handle.net/2142/11295

588 BIBLIOGRAPHY

Proceedings, volume 4988 of Lecture Notes in Computer Science, pages 337–351. Springer,
2008. Cited in 13.5.3.

[130] Manfred Schmidt-Schauss. Computational Aspects of Order-Sorted Logic with Term Dec-
larations, volume 395 of Lecture Notes in Computer Science. Springer, 1989. Cited in

13.6.

[131] Stephen Skeirik and José Meseguer. Metalevel algorithms for variant satisfiability. J. Log.
Algebr. Meth. Program., 96:81–110, 2018. Cited in 16.6.

[132] Gert Smolka, Werner Nutt, Joseph Goguen, and José Meseguer. Order-sorted equational
computation. In Maurice Nivat and Hassan Aı̈t-Kaci, editors, Resolution of Equations in
Algebraic Structures, volume 2, pages 297–367. Academic Press, 1989. Cited in 13.6.

[133] Mark E. Stickel. A complete unification algorithm for associative-commutative functions.
In Advanced Papers of the Fourth International Joint Conference on Artificial Intelli-
gence, Tbilisi, Georgia, USSR, 3-8 September 1975, pages 71–76, 1975. Cited in 13.7.1.

[134] Carolyn L. Talcott. Composable semantic models for actor theories. Higher-Order and
Symbolic Computation, 11(3):281–343, 1998. Cited in 8.1.

[135] Ana Paula Tomás. On Solving Linear Diophantine Constraints. PhD thesis, Universidade
do Porto, 1997. Cited in 7.15.

[136] Alberto Verdejo and Narciso Mart́ı-Oliet. Implementing CCS in Maude 2. In Gad-
ducci and Montanari [76], pages 263–281. http://www.sciencedirect.com/science/

journal/15710661. Cited in 5.2.

[137] Emanuele Viola. E-unifiability via narrowing. In Antonio Restivo, Simona Ronchi Della
Rocca, and Luca Roversi, editors, Theoretical Computer Science, 7th Italian Conference,
ICTCS 2001, Torino, Italy, October 4-6, 2001, Proceedings, volume 2202 of Lecture Notes
in Computer Science, pages 426–438. Springer, 2001. Cited in 13.5.1, 14.8, 21.5.

[138] Patrick Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285(2):487–517, 2002. Cited in 1.2, 1.2, 5.3, 5.3, 13.5.3.

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661

Subject Index

abort, 103 (debugger), 471 (debugger), 566
(debugger)

abstraction, see model checking
allow-files, 232, 236, 556
allow-processes, 232, 249, 556
always-advise, 556
ansi-color, 555
AProVe, 301
array, 203–205
ASF+SDF, 50n, 70n, 440
assoc, 48, 53, 124, 488, 490, 491, 494, 495, 557
associative, see assoc

attribute, 53–69
equational, 53–54
statement, 69–75

batch, 555
Boolean value, 144–148
break point, 470, 482
break select, 470, 566
bubble, 440

CafeOBJ, 19
cd, 568
ceq, 50
ChC, 13, 301, 338, 516
check, 379, 561
Church-Rosser, 78

context-sensitive, 79
ground, 78
modulo, 79

class, 522 (Full Maude)
inheritance, 523 (Full Maude)

multiple, 523 (Full Maude)
Clear, 105
cmb, 50
coherence, 93, 321

checking, 93
completion, 516 (Full Maude)
ground, 93

collapse theory, 341, 492
comm, 48, 53, 492

comment, 27, 576
multiline, 576

commutative, see comm

config, 212, 216, 220, 221
configuration, see config

confluence, 77
connected component, see subsort relation
constant, 33

metarepresentation, 384
qualified, 36

constructor, 55–58
non-free, 56

constructor, see ctor

cont, see continue

continue, 98, 557
core dumped, 489
Core Maude, 16
counter, 152–154
cq, see ceq

CRC, 13, 299, 300, 338, 516
crl, 91
ctor, 55, 62
CVC4, 375–376

deadlock freedom, 295
debug, 566
debugger, 103, 154, 470–473
debugging, see tracing, term coloring, 461, 507

(Full Maude)
dependent type, 160
descent function, 382, 392–430
downModule, 392
metaApply, 398
metaCheck, 420
metaDisjointUnify, 407
metFrewrite, 398
metaGetVariant, 411
metaIrredudantDisjointUnify, 408
metaIrredudantUnify, 408
metaNarrowingApply, 416
metaNarrowingSearch, 416
metaNarrowingSearchPath, 416

589

590 Subject Index

metaNormalize, 396
metaParse, 420
metaPrettyPrint, 421
metaReduce, 395
metaRewrite, 397
metaSrewrite, 406
metaUnify, 407–411
metaVariantDisjointUnify, 414
metaVariantMatch, 415
metaVariantUnify, 414
metaXapply, 400
upModule, 392
upTerm, 392

design, 1–9
Diophantine equation solver, 205
distributed dataset, 223
ditto, 62
do clear memo, 68
do clear memo, 567
dsrew, see dsrewrite

dsrewrite, 280, 560
metarepresentation, see descent function

ELAN, 19, 50n, 261
eof, 568
eq, 48
equation, 48–49

executable, 48, 75
metarepresentation, 386

equational condition, 49–52
abbreviated Boolean equation, 50, 51
matching equation, 50, 51
ordinary equation, 51
satisfaction, 51

equational simplification, 77
modulo, 49, 54
sharing, 87n, 87

erew, see erewrite

erewrite, 152, 231, 557
erewrite-loop-mode, 556
evaluation strategy, see strategy
ex, see extending

expressiveness, 4–7
extending, 106, 108
external object, 231–259

File IO, 236–240
file.maude, 232–240
filtered variant unify, 560
filtered variant unify generates all the

unifiers and, then, filters them against each
other in order to return a minimal set of
most general unifiers modulo the equational
theory., 357

finite variant property, 346
checking, 347

fmod, 30, 47
format, 59, 112, 470
formula

satisfiable, 375
unsatisfiable, 375
valid, 375

foundations, 9–11
frew, see frewrite

frewrite, 94, 98, 99, 152, 557
metarepresentation, see descent function

frozen argument, see strategy
frozen, 68
fth, 115
Full Maude, 16, 121n, 211, 317, 503–520

differences with Core Maude, 519
fvu-narrow, 369

metarepresentation, see descent function

gather, 40, 112
get irredundant variants, 348–352
get variants, 348–355, 561

help, 555

id, 53, 492
idem, 53, 488, 489, 492, 493
idempotent, see idem

identifier, 29–31, 33, 35, 37
escape character, 29
nonprinting characters, 29
quoted, see quoted identifier
special, 29

identity, see id

in, 25, 26, 568
inc, see including

including, 106, 108, 109, 116
initial algebra, 52
interaction, 23–27, 504 (Full Maude)

interrupt, 103
metarepresentation, see read-eval-print loop

interactive, 555
invariant, 293–294

model checking of, 294–297
bounded, 297–299

violation, 338
irredundant unify, 323, 334
iter, 55, 81, 84, 124, 148, 495, 557
iterated, see iter

kind, 35–36
canonical representation, 35
metarepresentation, 383

Subject Index 591

Kripke structure, 305
associated to a module, 306

label, 69, 89, 272
left id, 53, 494
linear temporal logic, 303

model checking, see model checking
satisfiability, 315

linear.maude, 205
list

from set, 187–188
generalized, 188–190
of sets, 128
parameterized, 134, 182–184

sorted, 135
sortable, 193–199

strict weak order, 193
total preorder, 196

ll, 568
load, 25, 26, 568
logic programming, 281–292

cut, 288
negation as failure, 287

loop, 558
ls, 567
LTL, see linear temporal logic

machine-int.maude, 143
map, 202–203
match, 86, 558

metarepresentation, see descent function
matching, 77

modulo, 79–84, 93, 494
with extension, 80, 494

Maude-NPA, 337
MAUDE LIB, 25, 26
mb, 49
membership, 49, 495

metarepresentation, 386
membership equational logic, 47, 135
memo, 66
memoization, 66–68

table size, 66
message, 522 (Full Maude)
message, 220, 222
metadata, 62, 70, 89, 272
meta-interpreter.maude, 449
MiniMaude, 452–459
Mobile Maude, 249
mod, 31, 89
model checker

implementation, 310
procedure, 309

model checking, 309–315

abstraction, 299–302
logical, 338, 363, 369

model-checker.maude, 303, 307, 310, 312, 315
module, 30–31

algebra, 105
database, 508 (Full Maude)
expression, 105, see module operation, 116
functional, 30, 47–88

admissible, 75–76
initial model, 76
mathematical semantics, 47, 48, 52
operational semantics, 47, 48, 79

hierarchy, see module importation
importation, 105–111, 116, 132

extending, 108
implicit, 106
including, 108–109
protecting, 107

metarepresentation, 386
object-based, 211–221

asynchronous, 212
configuration, 212
fairness, 217
synchronous, 212
uniqueness, 217

object-oriented, 521 (Full Maude)
as system module, 548 (Full Maude)
operation, 534 (Full Maude)
parameterized, 531 (Full Maude)

operation, 105
instantiation, 105, 115, 128–134
metarepresentation, 389
power, 512 (Full Maude)
renaming, 105, 112–114, 132, 275
summation, 105, 111, 132
tuple, 511 (Full Maude)

parameterized, 115, 124–128
bound parameter, 132
free parameter, 132
interface, 124
metarepresentation, 389
parameter, 115
parameter label, 124
parameter theory, 124, 126, 127

predefined, 143–205
signature, 30

extended, see parsing
strategy, 271

importation, 274
parameterized, 275

system, 30, 89–103
admissible, 92
initial model, 95
mathematical semantics, 89, 94

592 Subject Index

operational semantics, 93, 94
monoid, 116

commutative, 116
monomial, 129
msg, see message

MTT, 13, 299–301, 516

narrowing, 335, 356, 361–374
based unification, 335–336
completeness, 363–364
folding variant, 336, 356, 363, 369
modulo axioms, 336
with extra variables, 372
with rules, 337
with simplification, 364–365

narrowing, 365
no-advise, 556
no-ansi-color, 555
no-banner, 556
no-mixfix, 555
no-prelude, 555
no-tecla, 555
no-wrap, 556
nonexec, 48, 70, 89, 263, 372
number

floating-point, 164–168
integer, 154–157
machine, 157–160
natural, 148–151
random, 152–154
rational, 160–164
string conversion, 171–173

OBJ, 19, 105, 115
obj, see object

OBJ3, 4n, 6, 19, 63, 105, 125
object, see module object-based, 212, 521 (Full

Maude)
object, 212, 220, 222
op, 33, 36
operation

metalevel, see descent function
partial, 35
total, 35

operator, 33–34, 37
arity, 33
at the kind level, 35, 497
at the sort level, 495
built-in, 69, 124, 324
coarity, 33
derived, see view
domain sort, see operator arity
gathering, see parsing
iterated, see iter

mapping, see view, 120, 123
metarepresentation, 386
name

empty syntax, 34
mixfix form, 34
prefix form, 33, 37
several identifiers, 34

overloaded, 36, 490
ad-hoc, 36
subsort, 36, 62

polymorphic, 58, 124
precedence, see parsing
range sort, see operator coarity

ops, 34
optimizing, see debugger, profiler, 461
otherwise, 51, 70–74, 86
overloading, see operator overloaded
owise, see otherwise

parse, 43, 567
metarepresentation, see descent function

parsing, 38–45
extended grammar, 42
gathering, 39

default pattern, 40
precedence, 39

default value, 40
overridden, 39

pattern, 51
performance, 8–9, 482
poly, see polymorphic

polymorphic, 58, 114, 145, 147
polynomial, 129, 131
popd, 568
pr, see protecting

prec, see precedence

precedence, 39, 112
prelude.maude, 25, 143, 176, 177, 231, 381, 384,

387, 428
preregularity, 38, 491

modulo, 38
print, 74, 89, 272, 499
print conceal, 564
print reveal, 564
print-to-stderr, 556
printing

format, 59–62
color, 60
space, 59

metarepresentation, see descent function
probabilistic models, 153
process, 249–259
process.maude, 249
profiler, 474–482

Subject Index 593

profiling, 482, 507 (Full Maude)
protecting, 106, 107
pushd, 568
pwd, 567
Python, 253

q, see quit

qidlist
string conversion, 174–176

quit, 25, 568
quoted identifier, 173–174

random-seed, 152, 556
reachability problem, 337
read-eval-print loop, 446
Real-Time Maude, 13
red, see reduce

reduce, 25, 52, 85, 556
metarepresentation, see descent function

reflection, 381
moving between levels, see descent function,

513 (Full Maude)
tower of, 390

resume, 471 (debugger), 566 (debugger)
rew, see rewrite

rewrite condition, 91–92
rewrite expression, 91
satisfaction, 93

rewrite rule, 89
executable, 92
meaning

computational, 89
logical, 89

metarepresentation, 386
object-oriented, 524 (Full Maude)

rewrite, 94, 96, 98, 99, 152, 556
metarepresentation, see descent function

rewriting
modulo, 94
sharing, 88n

rewriting logic
proof equivalence, 95
reflective, 381
rewrite proof, 95

right id, 53, 494
ring, 117
rl, 90

SAT problem, 375
SAT solver, 375
satisfiability module theories, see SMT
SCC, 13, 56, 299, 301
search, 99, 559

metarepresentation, see descent function

object-oriented, 526 (Full Maude)
searching, see search

segmentation fault, 489
select, 25, 567
semiring, 117
set

from list, 187–188
generalized, 190–193
parameterized, 184–186
partially ordered, 117
totally ordered, 117

set clear memo, 68
set break, 471, 566
set clear memo, 567
set clear profile, 474, 566
set clear rules, 558
set extend, 147, 567
set include, 567
set print, 469
set print attribute, 563
set print attribute newline, 563
set print color, 564
set print conceal, 564
set print constants with sorts, 564
set print flattened, 563
set print format, 564
set print graph, 563
set print mixfix, 563
set print number, 148, 564
set print parentheses, 563
set print rat, 160
set print rational, 564
set print with aliases, 564
set profile, 474, 566
set protect, 146, 567
set show advisories, 565
set show breakdown, 564
set show command, 564
set show gc, 564
set show loop stats, 564
set show loop timing, 564
set show stats, 564
set show timing, 564
set trace, 87, 461, 484, 562
set trace body, 563
set trace builtin, 563
set trace condition, 562
set trace eq, 562
set trace mb, 562
set trace rewrite, 562
set trace rl, 562
set trace sd, 562
set trace select, 87, 461, 562
set trace substitution, 562

594 Subject Index

set trace whole, 562
set verbose, 567
set print format, 60
show, 88
show all, 565
show components, 88, 565
show eqs, 565
show mbs, 565
show module, 565
show modules, 565
show ops, 565
show path, 559
show path labels, 559
show profile, 475, 566
show rls, 95, 565
show sds, 565
show search graph, 100, 559
show sorts, 88, 565
show strats, 565
show summary, 565
show vars, 565
show view, 566
show views, 566
show pid, 556
simplicity, 1–4
sload, 25, 568
smod, 271
SMT, 375–380
SMT-LIB, 375–380

Core, 376
Ints, 377
Reals, 378
Reals-Ints, 379

smt.maude, 376
socket, 240–249

buffered, 246–249
socket.maude, 240
socket.maude, 251
sort, 31–32

error supersort, see kind
least sort, 38, 76
mapping, see view, 120
metarepresentation, 383
name collision, 126
parameterized, 125
structured, 32

sort decreasingness, 78
sort, 31
sorts, 31
special, 69, 143
srew, see srewrite

srewrite, 262, 280, 560
metarepresentation, see descent function

stack, 531 (Full Maude)

standard streams, 232–236
Status report, 473
step, 471 (debugger), 566 (debugger)
sth, 276
strat, 63
Stratego, 261
strategy

internal, 66, 431–434
object-message fair, 220–223
operator, 63–66

bottom-up, see eager
default, 63
eager, 63
frozen, 66, 68, 94, 365
lazy, 63
operator-by-operator, 63

strategy language, 261–292
all, 263
alternative, 266
amatch, 264
amatchrew, 268, 269
concatenation, 266
conditional, 267
csd, 272
disjunction, 266
fail, 267
idle, 267
iteration, 266
match, 264
matchrew, 268
metarepresentation, 385
named strategies, 271
named strategy

mapping, 276
overloaded, 272

negation, 267
non-void iteration, 267
normalization, 268
not, 267
one, 269
or-else, 267
rule application, 262

initial substitution, 263
rewriting condition, 263

sd, 272
set-theoretic semantics, 262, 265
strat, 271
strategy call, 270
strategy combinator, 261
strategy declaration, 271
strategy definition, 272
strategy expression, 262
strategy module, see module > strategy
subject sort, 271

Subject Index 595

test, 264
test, 268
top, 264
try, 268
xmatch, 264
xmatchrew, 268

strategy, see strat

string, 168–171
number conversion, 171–173
qidlist conversion, 174–176

submodule, see module importation, 105
subsort relation, 32–33

connected component, 33
metarepresentation, 386
partial order, 33

subsort, 32
subsorts, 32
substitution, 76

well-sorted, 76
sufficient completeness, 56
supermodule, see module importation, 106
symbolic reachability analysis, 336–338, 363, 369

tautology checker, 315
tecla, 555
term, 37–38

canonical form, 47, 78
relative to strategy, 64

coloring, 469–470
error, 35
flattened, 81
ground, 38, 47
metarepresentation, 384
qualified, 36
undefined, 35

termination, 77
context-sensitive, 79
ground, 78
modulo, 79

th, 115
theory, 115–120

flat, 117n, 117
functional, 115

admissible, 115
mathematical semantics, 115
operational semantics, 115

importation, 116
including, 116, 117

metarepresentation, 386
object-oriented, 531 (Full Maude)
predefined, 176–181
strategy, 275
structured, see theory importation
system, 115

admissible, 115
mathematical semantics, 115
operational semantics, 115

token, 440, 576
trace deselect, 562
trace exclude, 461
trace include, 562
trace select, 87, 461, 562
tracing, 461–469, 482, 507 (Full Maude)
trust, 232, 236, 249, 255, 556

unification, 319–343
E-unification, 319
algorithm, 320

endogenous, 339
exogenous, 339
order-sorted, 338–343

associative, 331–334
associative-commutative, 325–326
associative-commutative-identity, 327–329
associative-identity, 334
combination, 340–342
equational, 319
finitary, 320
hybrid approach, 321
identity, 329–331
implementation, 340–343
iter, 326–327
narrowing-based, 335–336
order-sorted, 320–321
problem, 320
semantic, 319
syntactic, 319
unitary, 320
variant-based, 356–360

unifier, 319
E-unifier, 320
complete set, 320
most general, 319
semantic, 319

unify, 323–335, 560
metarepresentation, see descent function

universal theory, 381
Universal, 58, 145, 147

var, 37
in views, 122

variable, 36–37
fresh, 324, 349, 407, 411, 414, 416
in a module, 37
metarepresentation, 384
on-the-fly, 37

variant, 345–360
based unification, 356–360

596 Subject Index

incremental, 358
with irreducibility constraints, 358, 414

complete set, 345
finite variant property, 346
generation, 348–355

incremental, 353
with irreducibility constraints, 352, 411, 412

satisfiability, 380
variant, 346
variant match, 359–560
variant unify, 357–360, 560

metarepresentation, see descent function
vars, 37
vector, 205
version, 555
view, 115, 120–124, 276

between theories, 123, 279
metarepresentation, 390
object-oriented, 531 (Full Maude)
parameterized, 138
predefined, 176–181

view, 120
vu-narrow, 366, 561

metarepresentation, see descent function

where, 471 (debugger), 566 (debugger)

xmatch, 83, 86, 87, 559
metarepresentation, see descent function

xml-log, 556

Yices2, 375–376

Index of Maude Modules

3*NAT, 49

ABELIAN-GROUP, 351
ACCOUNT, 525, 548
ACTOR-CONF, 216
ACTOR-O-CONF, 220
AGENT-TEST, 227
ARRAY, 203
ASSOC-ID-EX, 494
ASSOC-MB-EX1, 495
ASSOC-MB-EX2, 496
ASSOCIATIVE-EX1, 492
ASSOCIATIVE-EX2, 492

BACKTRACKING, 277
BAG, 128
BANK-ACCOUNT, 213
BANK-ACCOUNT-TEST, 110, 214
BANK-MANAGER, 215
BANK-MANAGER-TEST, 215
BASIC-SET, 125
BB-TEST, 98
BOOL, 146
BOOL-OPS, 146
BOOLEAN, 376
BT-ELEMS, 277
BT-QUEENS, 278
BT-STRAT, 277
BUFFERED-SOCKET, 246
BUYING-STRATS, 431

CHECK-RROBIN, 545
CLOCK, 153
COLLAPSE-ID-EX, 492
COLLAPSE-IDEM-EX, 493
COLLAPSE-NAT-EX, 493
COLOR-TEST, 60
COMM-ID-UNIFICATION-EX, 330
COMM-IDEM-EX, 489
COMMON-MESSAGES, 232
CONFIGURATION, 211
CONFIGURATION+, 549

CONVERSION, 171
COPY-FILE, 239
COUNTER, 152

DATA-AGENTS, 225
DATA-AGENTS-CONF, 110, 223
DATA-AGENTS-INTERFACE, 224
DIOPHANTINE, 206

EXCLUSIVE-OR, 346
EXCLUSIVE-OR-MB, 349
EXCLUSIVE-OR-NOT-COHERENT, 517
EXT-BOOL, 63, 147
EXTENDED-RENT-A-CAR-

STORE-TEST, 543

FACTORIAL, 148
FACTORIAL-CLIENT, 246
FACTORIAL-SERVER, 245
FIBONACCI, 67, 88, 474
FILE, 236
FLOAT, 164
FLOAT-STRING, 111
FOLDING-NARROWING-VENDING-MACHINE, 370
FORMAT-DEMO, 61

GENERIC-SET-LIST, 138

HANOI, 261
HANOI-AUX, 271
HANOI-SOLVE, 271
HELLO, 233
HET-LIST, 58
HTTP/1.0-CLIENT, 242

ID-UNIFICATION-EX, 330
ILLEGAL-INST, 133
INDEX-PAIR, 205
INSERTION-SORT, 273
INSERTION-SORT-INT, 273
INT, 154
INT-GT-3, 156
INT-LIST, 184

597

598 Index of Maude Modules

INT-LIST*, 190
INT-LIST-AND-SET, 188
INT-MATRIX, 205
INT-SET, 186
INT-SET-MAX, 131
INT-SORTABLE-LIST-AND-SET, 200
INT-SORTABLE-LIST-AND-SET’, 201
INT-VECTOR, 206
INTEGER, 377
ITER-EXAMPLE, 326
ITER-MB-EX1, 498
ITER-MB-EX2, 499

LAST-APPEND, 372
LEFTID-UNIFICATION-EX, 329
LEGAL-INST, 133
LEX-PAIR, 127, 130
LEXICAL, 174
LIBRARY, 512
LIST, 182
LIST*, 188
LIST-AND-SET, 187
LIST-CONS, 134
LIST-CONS-TEST, 135
LOOP-MODE, 446
LP-EXTRA, 284
LP-EXTRA+CUT, 290
LP-EXTRA+NEG, 287
LP-SEMANTICS, 283
LP-SEMANTICS+CALL, 291
LP-SYNTAX, 281
LP-SYNTAX+CUT, 289
LTL, 304
LTL-SIMPLIFIER, 310

MACHINE-INT, 158
MACHINE-INT-TEST, 159
MAP, 202
MATRIX, 205
MAUDE-PROCESS, 255
MAYBE, 126
MEMBERSHIP, 373
META-CONDITION, 385
META-LEVEL, 392
META-MODULE, 386
META-STRATEGY, 385
META-TERM, 383
META-VIEW, 390
METADATA-EX, 70
METAXMATCH-EX, 403
MINI-MAUDE, 443
MINI-MAUDE-META-INTERPRETER, 453
MINI-MAUDE-SYNTAX, 441
MMAP, 142

MODEL-CHECK-BAD-EX, 314
MODEL-CHECKER, 312
MONOMIAL, 129
MUTEX, 307
MUTEX-CHECK, 312
MUTEX-PREDS, 307
MY-QID-SET-LIST, 132
MY-SET-LIST, 132

NAIVE-NAT-LIST-MIXFIX-

MAX, 112
NAIVE-SORTED-NAT-LIST, 497
NARROWING-VENDING-MACHINE, 366
NARROWING-VM-NOTOP, 518
NAT, 148
NAT-LIST, 183
NAT-LIST-GENERATOR, 476
NAT-LIST-KIND, 497
NAT-LIST-MAX, 112
NAT-LIST-MIXFIX-MAX, 113
NAT-MSET-MIN, 470
NAT-NARROWING, 362
NAT-PLUS, 513
NAT-SORTED-SIZES, 141
NAT-VARIANT, 346
NAT/, 544
NAT3, 440
NON-ASSOCIATIVE-EX, 491
NULL-SIZES5, 140
NUMBERS, 56, 84

O-TICKER, 220
O-TICKER-CUSTOMER, 220
O-TICKER-FACTORY, 220
OO-STACK, 532
OO-STACK2, 533
OVER-ASSOC-EX1, 490
OVER-ASSOC-EX2, 490
OWISE-TEST1, 73
OWISE-TEST2, 73
OWISE-TEST2-TRANSFORMED, 74

PAIR, 126
PAR-TH-EXAMPLE, 141
PARSING-EX1, 43
PARSING-EX2, 43
PARSING-EX3, 44
PARSING-EX4, 44
PATH, 505
PERSON-RECORD, 512
PFUN, 139
PL-SIMPLIFIER, 286
PL-SIMPLIFIER-BASE, 286
POLYNOMIAL, 129

Index of Maude Modules 599

POWER[5], 512
PRELIM-SET, 124
PRINT-ATTR-AMBIGUOUS, 499
PRINT-ATTRIBUTE-EX, 74
PROCESS, 250
PROCESS-DC, 251
PROCESS-PROXY, 253
PROCESS-PYTHON, 253
PROCS-RESOURCES, 295
PROCS-RESOURCES-ENABLED, 296
PROLOG, 285
PROLOG+CUT, 289
PROLOG+NEG, 288
PROLOG-MAIN, 286

QID, 173
QID-LIST, 184
QID-RAT-POLY, 131
QID-SET, 186
QID-SET*, 192
QUEENS, 278

RANDOM, 152
RAT, 160
RAT-POLY, 131
READERS-WRITERS, 297
READERS-WRITERS-ABS, 300
READERS-WRITERS-PREDS, 300
REAL, 378
REAL-INTEGER, 379
RENAMED-INT, 157
RENAMING-EX-A, 113
RENAMING-EX-B, 113
RENAMING-EX-C, 113
RENAMING-EX-D, 114
RENAMING-EX-E, 114
RENAMING-EX-F, 114
RENAMING-PAR-MOD-A, 133
RENAMING-PAR-MOD-B, 133
RENAMING-PAR-MOD-C, 133
RENT-A-CAR-STORE-TEST, 541
REW-SEQ, 541
REW-SEQ-TEST, 542
RIGHTID-UNIFICATION-EX, 329
ROT13, 233
RROBIN, 545

SAMPLER, 152
SAT-SOLVER, 315
SAT-SOLVER-TEST, 316
SATISFACTION, 307
SAVING-ACCOUNT, 526, 550
SET, 184
SET*, 190

SET-KIND, 139
SET-LIST, 129
SET-MAX, 130
SIEVE, 65, 109
SIMPLE-CLOCK, 294
SIMPLE-NAT, 25
SIMPLE-NAT-LIST, 497
SIMPLE-VENDING-MACHINE, 97
SIZES, 140
SMOD-IMPORT-EXAMPLE, 274
SMOD-IMPORT-EXAMPLE’, 274
SMOD-IMPORT-EXAMPLE’’, 275
SMOD-IMPORT-EXAMPLE0, 274
SMODULE, 276
SOCKET, 240
SORTABLE-LIST, 195
SORTABLE-LIST’, 198
SORTABLE-LIST-AND-SET, 199
SORTABLE-LIST-AND-SET’, 200
SORTED-LIST, 136
SORTED-LIST-TEST, 137
SORTED-NAT-LIST-KIND, 497
SORTED-SIZES, 141
STD-STREAM, 232
STRAT-EX1, 64
STRAT-EX2, 64
STRATS, 272
STRING, 168
STRING-LIST, 249
STRING-NAT-ARRAY, 204
STRING-NAT-MAP, 203
STRING-NULL-SIZES, 140
STRING-OPS, 242
STRING-SET-MAX, 131
STRING-SORTABLE-LIST, 195
STRING-SORTABLE-LIST’, 199
SWAPPING, 273

TEXT-RI, 379
TICKER, 216
TICKER-CUSTOMER, 218
TICKER-FACTORY, 218
TICKER-FACTORY-TEST, 218
TICKER-TEST, 217
TRUTH, 144
TRUTH-VALUE, 144
TUPLE[2], 511

UNIF-VENDING-MACHINE, 327
UNIF-VENDING-MACHINE-MB, 328
UNIFICATION-CYCLE, 341
UNIFICATION-EX1, 323
UNIFICATION-EX3, 325
UNIFICATION-EX4, 332

600 Index of Maude Modules

UNIFICATION-EX5, 334
UP-DOWN-TEST, 395

VARIANT-UNIFICATION-ASSOC, 354
VARIANT-VENDING-MACHINE, 350
VECTOR, 205
VENDING-MACHINE, 90, 95, 110
VENDING-MACHINE-GRAMMAR, 435
VENDING-MACHINE-

INTERFACE, 436

VENDING-MACHINE-

SIGNATURE, 90
VENDING-MACHINE-TOP, 96

WEAKLY-SORTABLE-LIST, 193
WEAKLY-SORTABLE-LIST’, 197
WRONG-NAT-SET, 488

XMATCH-TEST, 82

Index of Maude Theories

+MONOID, 116

BIT-WIDTH, 158

CELL, 531
CHOICE, 119

DEFAULT, 177

INTERPRETER, 285

MONOID, 116

NSPOSET, 118
NSTOSET, 119
NZNAT#, 544

POSET, 118

RING, 117

SEMIRING, 117
SPOSET, 117
STHEORY, 276
STOSET, 118
STRICT-TOTAL-ORDER, 179
STRICT-WEAK-ORDER, 179
STRIV, 276

TAOSET, 117
TOSET, 119
TOTAL-ORDER, 181
TOTAL-PREORDER, 180
TRIV, 115, 177

UNIFICATION-EX2, 324

601

602 Index of Maude Theories

Index of Maude Views

32-BIT, 158
64-BIT, 158

5, 546

Account, 535

Bool, 177

DEFAULT, 178
DEFAULT+, 273

Float, 177
Float0, 178
Float<, 180
Float<=, 181

IndexPair, 205
Int, 123, 177
Int0, 178
Int<, 180
Int<0, 273
Int<=, 181
IntAsStoset, 122
IntAsToset, 122
IntVector, 206

Maybe, 140

Nat, 177
Nat0, 178
Nat<, 180
Nat<=, 181
NatAsToset, 137

Pair, 139

PAR-TH-EXAMPLE, 141
POSET, 133
PosetToToset, 123

Qid, 131, 177
Qid0, 178
QueensBT, 278
QueensBT2, 279

Rat, 177
Rat0, 178
Rat<, 180
Rat<=, 181
RING, 133
RingToRat, 121

Set, 138
Simple, 285
SModule, 276
SModule’, 277
SPosetToInt, 122
STOSET, 130
STRICT-TOTAL-ORDER, 179
STRICT-WEAK-ORDER, 179
String, 177
String0, 178
String<, 180
String<=, 181
StringAsToset, 121
STRIV, 279
StrivIdle, 279
Substitution, 540

TOSET, 123, 136
TOTAL-ORDER, 181
TOTAL-PREORDER, 181

603

	Introduction
	Simplicity, expressiveness, and performance
	Simplicity
	Expressiveness
	Performance

	The logical foundations of Maude
	Programming, specification, and verification
	A high-performance logical framework
	Core Maude vs. Full Maude
	Manual structure
	The Maude book

	I Core Maude
	Using Maude
	Getting Maude
	Running Maude
	Getting support and more information
	Reporting bugs in Maude

	Syntax and Basic Parsing
	Identifiers
	Modules
	Sorts and subsorts
	Operator declarations
	Kinds
	Operator overloading
	Variables
	Terms and preregularity
	Parsing
	Default precedence values
	Default gathering patterns
	The extended signature of a module
	Parsing examples

	Functional Modules
	Unconditional equations
	Unconditional memberships
	Conditional equations and memberships
	Operator attributes
	Equational attributes
	The iter attribute
	Constructors
	Polymorphic operators
	Format
	Ditto
	Operator evaluation strategies
	Memo
	Frozen arguments
	Special

	Statement attributes
	Labels
	Metadata
	Nonexec
	Otherwise
	Print

	Admissible functional modules
	Matching and equational simplification
	More on matching and simplification modulo
	The reduce, match, trace, and show commands

	System Modules
	Unconditional rules
	Conditional rules
	Admissible system modules
	The rewrite, frewrite, and search commands
	The rewrite command
	The frewrite command
	The search command

	Module Operations
	Module importation
	Protecting
	Extending
	Including
	Default conventions in module importations
	Some module hierarchy examples

	Module summation and renaming
	The summation module expression
	Module renaming

	Parameterized programming
	Theories
	Views
	Parameterized modules
	Module instantiation
	Lists
	Sorted lists
	Parameterized views

	Predefined Data Modules
	Boolean values
	Natural numbers
	Random numbers and counters
	Integer numbers
	Machine integers
	Rational numbers
	Floating-point numbers
	Strings
	String and number conversions
	Quoted identifiers
	Conversions between strings and lists of quoted identifiers
	Basic theories and standard views
	TRIV
	DEFAULT
	STRICT-WEAK-ORDER and STRICT-TOTAL-ORDER
	TOTAL-PREORDER and TOTAL-ORDER

	Containers: lists and sets
	Lists
	Sets
	Relating lists and sets
	Generalized lists
	Generalized sets
	Sortable lists
	Making lists out of sets

	Maps and arrays
	Maps
	Arrays

	A linear Diophantine equation solver
	Predefined Parameterized Views

	Object-Based Programming
	Configurations
	Object-message fair rewriting
	Example: data agents

	External Objects and IO
	Standard streams
	The Hello Word! example
	A ROT13 cypher example
	A calculator example

	File I/O
	A file copy example

	Sockets
	An HTTP/1.0 client example
	Buffered sockets

	Processes
	A desk calculator process
	Python and Maude processes

	Control-C on external events

	Strategy Language
	The strategy language
	Basic control combinators
	Rewriting of subterms
	The one operator
	Strategy calls

	Strategy modules
	Module importation

	Parameterization in strategy modules
	Strategy search and the dsrewrite command
	Case study: logic programming
	Negation as failure
	Cuts

	Model Checking Invariants Through Search
	Invariants
	Model checking of invariants
	Bounded model checking of invariants
	Verifying infinite-state systems through abstractions

	LTL Model Checking
	LTL formulas and the LTL module
	Associating Kripke structures to rewrite theories
	LTL model checking
	The LTL satisfiability and tautology checker
	Other model-checking examples

	Unification
	Introduction
	Order-sorted unification
	A hybrid approach to equational order-sorted unification

	Theories currently supported
	The unify command
	Non-supported unification examples
	Associative-commutative (AC) unification examples
	Unification examples with the iter attribute
	Associative-commutative with identity (ACU) unification examples
	Unification examples with an identity symbol
	Associative (A) unification examples
	Associative with identity (AU) unification examples

	Some applications of unification
	Narrowing-based unification
	Symbolic reachability analysis in rewrite theories
	Other automated deduction applications

	Endogenous vs. exogenous order-sorted unification algorithms
	Some notes on the implementation of unification
	Combining unification algorithms
	Combining incomplete unification algorithms
	Diophantine basis element selection

	Variants and Variant Unification
	Introduction
	Term variants
	Theories currently supported
	The get variants command
	Variant generation with irreducibility constraints
	Incremental variant generation
	Variant generation in incomplete unification examples
	Variant-based equational order-sorted unification
	The variant unify command
	Variant-based unification with irreducibility constraints
	Incremental variant unification
	Variant unification in incomplete unification examples
	The variant match command

	Narrowing
	Introduction
	Applications
	Completeness of narrowing
	Narrowing with simplification
	Theories supported for narrowing reachability
	The vu-narrow command
	The fvu-narrow command
	Narrowing with extra variables in righthand sides of rules

	SMT Solving
	Boolean formulas
	Formulas using integer linear arithmetic
	Formulas using rational linear arithmetic
	Formulas using rational and integer linear arithmetic
	Satisfiability of formulas
	A brief introduction to variant satisfiability

	Reflection, Metalevel Computation, and Internal Strategies
	Reflection and metalevel computation
	The META-TERM module
	Metarepresenting sorts and kinds
	Metarepresenting terms

	The META-STRATEGY module: Metarepresenting the strategy language
	The META-MODULE module: Metarepresenting modules
	The META-VIEW module: Metarepresenting views
	The META-LEVEL module: Metalevel operations
	Moving between reflection levels: upModule, upTerm, and others
	Simplifying: metaReduce and metaNormalize
	Rewriting: metaRewrite and metaFrewrite
	Applying rules: metaApply and metaXapply
	Matching: metaMatch and metaXmatch
	Searching: metaSearch and metaSearchPath
	Rewriting using strategies: metaSrewrite
	Unification
	Variants: metaGetVariant
	Variant Matching and Unification
	Narrowing
	Checking satisfiability modulo theories: metaCheck
	Parsing and pretty-printing: metaParse and metaPrettyPrint
	Sort operations
	Other metalevel operations: wellFormed

	Internal strategies

	User Interfaces and Metalanguage Applications
	User interfaces
	The interaction with the system
	Tokens, bubbles, and metaparsing
	The LOOP-MODE module (deprecated)

	Meta-interpreters
	Maude meta-interpreters
	A Russian dolls example
	An execution environment for Mini-Maude

	Debugging and Troubleshooting
	Debugging approaches
	Tracing
	Term coloring
	The debugger
	Status report
	The profiler
	Performance note

	Debugging strategy executions
	Traps and known problems
	Associativity and idempotency
	Segmentation fault (core dumped)
	Bare variable lefthand sides
	Operator overloading and associativity
	Preregularity and equational attributes
	Collapse theories
	One-sided identities and associativity
	Memberships for associative operators
	Memberships for iterated operators
	Ambiguity in print attribute items

	II Full Maude
	Full Maude: Extending Core Maude
	Running Full Maude
	Using Core Maude modules in Full Maude
	Additional module operations in Full Maude
	The tuple and power module expressions

	Moving up and down between reflection levels
	Up
	Down

	Ax-coherence completion
	Differences between Full Maude and Core Maude

	Object-Oriented Modules
	Object-oriented systems
	Objects and messages
	Classes
	Inheritance
	Object-oriented rules

	Example: a rent-a-car store
	Object-oriented parameterized programming
	Theories
	Views
	Parameterized object-oriented modules

	Module operations on object-oriented modules
	Module summation and renaming
	Module instantiation

	Example: extended rent-a-car store
	A strategy for sequential rule execution
	Model checking a round-robin scheduling algorithm
	From object-oriented modules to system modules

	III Reference
	Complete List of Maude Commands
	Command line flags
	Rewriting commands
	Matching commands
	Searching commands
	Strategic rewriting commands
	Unification, variants, and narrowing commands
	SMT commands
	Tracing commands
	Print attribute commands
	Print option commands
	Show option commands
	Show commands
	Profiler commands
	Debugger commands
	Miscellaneous commands
	System level commands

	Core Maude Grammar
	The grammar
	Synonyms
	Lexical Issues

	Bibliography
	Subject Index
	Index of Maude Modules
	Index of Maude Theories
	Index of Maude Views

